Contents

Preface VII

List of Contributors IX

1 Colloid Aspects of Cosmetic Formulations with Particular Reference to Polymeric Surfactants 1
 Thanwat F. Tadros

 Abstract 1

 1.1 Introduction 2
 1.2 Interaction Forces and Their Combination 4
 1.3 Self-Assembly Structures in Cosmetic Formulations 11
 1.4 Structure of Liquid Crystalline Phases 12
 1.4.1 Hexagonal Phase 12
 1.4.2 Micellar Cubic Phase 13
 1.4.3 Lamellar Phase 14
 1.4.4 Discontinuous Cubic Phases 15
 1.4.5 Reversed Structures 15
 1.5 Driving Force for Formation of Liquid Crystalline Phases 15
 1.6 Polymeric Surfactants in Cosmetic Formulations 17
 1.7 Polymeric Surfactants for Stabilization of Nanoemulsions 20
 1.8 Polymeric Surfactants in Multiple Emulsions 28
 1.9 Polymeric Surfactants for Stabilization of Liposomes and Vesicles 31
 1.10 Conclusions 33

 References 33

2 Formulation and Stabilization of Nanoemulsions Using Hydrophobically Modified Inulin (Polyfructose) Polymeric Surfactant 35
 Thanwat F. Tadros, Martine Lemmens, Bart Levecke, and Karl Booten

 Abstract 35

 2.1 Introduction 36
 2.2 Materials 38
 2.3 Preparation of Nanoemulsions 39
3 Integrating Polymeric Surfactants in Cosmetic Formulations for the Enhancement of Their Performance and Stability 51
Thanwat F. Tadros, Martine Lemmens, Bart Levecke, and Karl Booten

Abstract 51
3.1 Introduction 52
3.2 Materials and Methods 53
3.3 Results and Discussion 55
3.3.1 Massage Lotion 55
3.3.2 Hydrating Shower Gel 57
3.3.2.1 Surface Viscosity and Elasticity Theory 57
3.3.2.2 The Gibbs–Marangoni Effect Theory 57
3.3.2.3 Surface Forces Theory (Disjoining Pressure \(\pi \)) 58
3.3.3 Soft Conditioner 59
3.3.4 Sun Spray SPF19 59
3.4 Conclusions 59
References 60

4 Application of Colloid and Interface Science Principles for Optimization of Sunscreen Dispersions 61
Lorna M. Kessell, Benjamin J. Naden, Ian R. Tooley, and Thanwat F. Tadros

Abstract 61
4.1 Introduction 62
4.2 Steric Stabilization 63
4.3 Solubility Parameters 65
4.4 Influence of the Adsorbed Layer Thickness on the Energy–Distance Curve 66
4.5 Criteria for Effective Steric Stabilization and Influence of Other Ingredients in the Formulation 67
4.6 Materials and Methods 67
4.7 Results 69
4.7.1 Adsorption Isotherms 69
4.7.2 Dispersant Demand 70
4.7.3 Quality of Dispersion UV-Vis Attenuation 71
5 Use of Associative Thickeners as Rheology Modifiers for Surfactant Systems

Thanwat F. Tadros and Steven Housley

Abstract 79

5.1 Introduction 79
5.2 Surfactant Systems as Rheology Modifiers 80
5.3 Associative Thickeners as Rheology Modifiers 81
5.4 Materials and Methods 86
5.5 Results 87
5.6 Discussion 90
5.7 Conclusion 91
References 91

6 Cosmetic Emulsions Based on Surfactant Liquid Crystalline Phases: Structure, Rheology and Sensory Evaluation

Thanwat F. Tadros, Sandra Léonard, Cornelis Verboom, Vincent Wortel, Marie-Claire Taelman, and Frederico Roschztatttz

Abstract 93

6.1 Introduction 93
6.2 Structure of Liquid Crystalline Phases 94
6.3 Driving Force for the Formation of Liquid Crystalline Phases 95
6.4 Formulation of Liquid Crystalline Phases 97
6.4.1 Oleosomes 97
6.4.2 Hydrosomes 98
6.5 Emulsion Stabilization Using Lamellar Liquid Crystals 98
6.6 Materials and Methods 99
6.7 Results and Discussion 101
6.7.1 Emulsion Structure and Rheology 101
6.7.2 Emulsion Structure and Sensory Attributes 103
6.7.3 Emulsion Structure, Rheology and Sensory Attributes 103
6.8 Conclusion 104
References 105
7 Personal Care Emulsions Based on Surfactant–Biopolymer Mixtures: Correlation of Rheological Parameters with Sensory Attributes

Tharwat F. Tadros, Sandra Léonard, Cornelis Verboom, Vincent Wortel, Marie-Claire Taelman, and Frederico Roschttardtz

Abstract

7.1 Introduction

7.2 Materials and Methods

7.2.1 Materials

7.2.2 Preparation of Powder Dispersions

7.2.3 Preparation of the Emulsion

7.2.4 Rheological Measurements

7.2.5 Principal Component Analysis (PCA)

7.3 Results

7.3.1 Rheological Results for Xanthan Gum and KX Solutions

7.3.2 Rheological Investigation of Stabilizing Systems

7.3.3 Rheological Investigations of Emulsions

7.3.3.1 Influence of Arlatone Concentration

7.3.3.2 Influence of Oil Volume Fraction

7.3.3.3 Influence of Temperature on the Rheology of KX, Arlatone V100, Arlatone V175 and the Emulsions Prepared Using the Stabilizers

7.3.4 PCA Results

7.4 Discussion

7.5 Conclusions

References

8 Correlation of “Body Butter” Texture and Structure of Cosmetic Emulsions with Their Rheological Characteristics

Tharwat F. Tadros, Sandra Léonard, Cornelis Verboom, Vincent Wortel, Marie-Claire Taelman, and Frederico Roschttardtz

Abstract

8.1 Introduction

8.2 Experimental

8.2.1 Materials

8.2.2 Rheological Measurements

8.2.2.1 Flow–Viscosity Curve Measurements

8.2.2.2 Dynamic (Oscillatory) Measurements

8.2.2.3 Constant Stress (Creep Test) Measurements

8.2.3 Schematic Representation of the Rheological Curves

8.2.4 Spectrum Descriptive Analysis

8.2.5 Principal Component Analysis

8.3 Results and Discussion

8.4 Conclusion

References
9 Interparticle Interactions in Color Cosmetics 145

Lorna M. Kessell and Thanwat F. Tadros

Abstract 145

9.1 Introduction 145

9.2 Fundamental Principles of Preparation of Pigment Dispersions 146

9.2.1 Wetting of the Powder 146

9.2.2 Wetting of the Internal Surface 147

9.3 Assessment of Wettability 148

9.3.1 Submersion Test – Sinking Time or Immersion Time 148

9.3.2 Contact Measurement for Assessment of Wettability 149

9.4 Dispersing Agents 150

9.5 Stabilization 151

9.5.1 Electrostatic Stabilization 152

9.5.2 Steric Stabilization 153

9.5.3 Optimizing Electrosteric and Steric Stabilization 154

9.6 Surface–Anchor Interactions 154

9.7 Optimizing Steric Potential 155

9.8 Classes of Dispersing Agents 157

9.9 Assessment of Dispersants 159

9.9.1 Adsorption Isotherms 159

9.9.2 Measurement of Dispersion and Particle Size Distribution 160

9.9.3 Rheological Measurements 160

9.10 Application of the Above Fundamental Principles to Color Cosmetics 162

9.11 Principles of Preparation of Color Cosmetics 163

9.11.1 Dispersion/Comminution 164

9.11.2 Optimizing Dispersion in Practice 165

9.11.3 Suspoemulsions 166

9.12 Conclusions 167

References 167

10 Starch-Based Dispersions 169

Ignác Capek

Abstract 169

10.1 Introduction 170

10.2 Starch-Based Nanomaterials 177

10.2.1 Modification Approaches 177

10.2.2 Crosslinking/Gelatinization 184

10.2.3 Grafting 191

10.3 Dispersions 201

10.4 Nanocomposites, Blends and Their Properties 212

10.5 Biodegradability 225

10.6 Starch–Additive Complexes 227

10.7 Conclusions 235

References 241
In Vivo Skin Performance of a Cationic Emulsion Base in Comparison with an Anionic System 247
Slobodanka Tamburic

Abstract 247

11.1 Introduction 247
11.2 Materials and Methods 249
11.2.1 Materials 249
11.2.2 Methods 251
11.3 Results and Discussion 252
11.4 Conclusion 256
References 256

The Impact of Urea on the Colloidal Structure of Alkylpolyglucoside-Based Emulsions: Physicochemical and In Vitro/In Vivo Characterization 259
Snezana Savic, Slobodanka Tamburic, Biljana Jancic, Jela Milic, and Gordana Vuleta

Abstract 259

12.1 Introduction 260
12.2 Experimental 261
12.2.1 Materials 261
12.2.2 Preparation of Samples 261
12.2.3 Physicochemical Characterization 261
12.2.3.1 Microscopy 261
12.2.3.2 Wide-Angle X-Ray Diffraction (WAXD) 261
12.2.3.3 pH Measurements 262
12.2.3.4 Conductivity Measurements 262
12.2.3.5 Rheological Measurements 262
12.2.3.6 Thermogravimetric Analysis (TGA) 262
12.2.4 In Vivo Short-Term Study 262
12.2.4.1 Study Design 263
12.2.5 In Vitro Release Study 263
12.2.6 Statistical Analysis 263
12.3 Results and Discussion 264
12.3.1 Physicochemical Characterization 264
12.4 Conclusion 273
References 273
13 Models for the Calculation of Sun Protection Factors and Parameters
Characterizing the UVA Protection Ability of Cosmetic Sunscreens 275
Bernd Herzog

Abstract 275
13.1 Introduction 275
13.2 Basic Principle 277
13.3 Calculation of the Overall UV Spectrum of a Sunscreen Agent 278
13.4 Models for Film Irregularities 279
13.4.1 The Step Film Model by O’Neill 279
13.4.2 The Modified Version of the Step Film Model by Tunstall 282
13.4.3 The Calibrated Two-Step Film Model 283
13.4.4 The Calibrated Quasi-Continuous Step Film Model 285
13.4.5 The Continuous Height Distribution Model Based on the Gamma Distribution 287
13.4.6 Comparison of the Models 289
13.5 Taking Photoinstabilities into Consideration 290
13.6 Consideration of the Distribution of the UV Extinction in the Water and the Oil Phases of the Formulation 294
13.7 Calculation of UVA Parameters 297
13.7.1 Australian Standard 297
13.7.2 UVA/UVB Ratio and Critical Wavelength 297
13.7.3 UVA Protection Factor (UVAPF) 298
13.7.4 The COLIPA Method for Assessment of UVA Protection 299
13.8 Correlations 300
13.8.1 Correlation of In Vivo SPF Data with SPF Calculations Using the Quasi-Continuous Step Film Model 300
13.8.2 Correlation of In Vivo UVAPF Data with UVAPF Calculations 302
13.9 Conclusion 305

References 305

Index 309