CONTENTS

Preface

1. Probability and Statistics

1.1. Basic Definitions and Concepts of Probability
1.2. Discrete Random Variables and Probability Distribution Functions
1.3. Moments of a Discrete Random Variable
1.4. Continuous Random Variables
1.5. Moments of a Continuous Random Variable
1.6. Continuous Probability Distribution Functions
1.7. Random Vector
1.8. Continuous Random Vector
1.9. Functions of a Random Variable
1.10. Basic Elements of Statistics
1.10.1. Measures of Central Tendency
1.10.2. Measure of Dispersion
1.10.3. Properties of Sample Statistics
1.11. Inferential Statistics
1.11.1. Point Estimation
1.11.2. Interval Estimation
1.12. Hypothesis Testing
1.13. Reliability

2. Transforms

2.1. Fourier Transform
2.2. Laplace Transform
2.3. Z-Transform
2.4. Probability Generating Function
2.4.1. Some Properties of a Probability Generating Function

Exercises
3. Differential Equations

3.1. Basic Concepts and Definitions
3.2. Existence and Uniqueness
3.3. Separable Equations
 3.3.1. Method of Solving Separable Differential Equations
3.4. Linear Differential Equations
 3.4.1. Method of Solving a Linear First-Order Differential Equation
3.5. Exact Differential Equations
3.6. Solution of the First ODE by Substitution Method
 3.6.1. Substitution Method
 3.6.2. Reduction to Separation of Variables
3.7. Applications of the First-Order ODEs
3.8. Second-Order Homogeneous ODE
 3.8.1. Solving a Linear Homogeneous Second-Order Differential Equation
3.9. The Second-Order Nonhomogeneous Linear ODE with Constant Coefficients
 3.9.1. Method of Undetermined Coefficients
 3.9.2. Variation of Parameters Method
3.10. Miscellaneous Methods for Solving ODE
 3.10.1. Cauchy–Euler Equation
 3.10.2. Elimination Method to Solve Differential Equations
 3.10.3. Application of Laplace Transform to Solve ODE
 3.10.4. Solution of Linear ODE Using Power Series
3.11. Applications of the Second-Order ODE
 3.11.1. Spring–Mass System: Free Undamped Motion
 3.11.2. Damped-Free Vibration
3.12. Introduction to PDE: Basic Concepts
 3.12.1. First-Order Partial Differential Equations
 3.12.2. Second-Order Partial Differential Equations
Exercises

4. Difference Equations

4.1. Basic Terms
4.2. Linear Homogeneous Difference Equations with Constant Coefficients
4.3. Linear Nonhomogeneous Difference Equations with Constant Coefficients 231
 4.3.1. Characteristic Equation Method 231
 4.3.2. Recursive Method 237
4.4. System of Linear Difference Equations 244
 4.4.1. Generating Functions Method 245
4.5. Differential–Difference Equations 253
4.6. Nonlinear Difference Equations 259
Exercises 264

5. Queueing Theory 267
 5.1. Introduction 267
 5.2. Markov Chain and Markov Process 268
 5.3. Birth and Death (B-D) Process 281
 5.4. Introduction to Queueing Theory 284
 5.5. Single-Server Markovian Queue, $M/M/1$ 286
 5.5.1. Transient Queue Length Distribution for $M/M/1$ 291
 5.5.2. Stationary Queue Length Distribution for $M/M/1$ 294
 5.5.3. Stationary Waiting Time of a Task in $M/M/1$ Queue 300
 5.5.4. Distribution of a Busy Period for $M/M/1$ Queue 300
 5.6. Finite Buffer Single-Server Markovian Queue: $M/M/1/N$ 303
 5.7. $M/M/1$ Queue with Feedback 307
 5.8. Single-Server Markovian Queue with State-Dependent Balking 308
 5.9. Multiserver Parallel Queue 311
 5.9.1. Transient Queue Length Distribution for $M/M/m$ 312
 5.9.2. Stationary Queue Length Distribution for $M/M/m$ 320
 5.9.3. Stationary Waiting Time of a Task in $M/M/m$ Queue 323
 5.10. Many-Server Parallel Queues with Feedback 326
 5.10.1. Introduction 326
 5.10.2. Stationary Distribution of the Queue Length 326
 5.10.3. Stationary Waiting Time of a Task in Many-Server Queue with Feedback 327
 5.11. Many-Server Queues with Balking and Reneging 328
 5.11.1. Priority $M/M/2$ with Constant Balking and Exponential Reneging 328
 5.11.2. $M/M/m$ with Constant Balking and Exponential Reneging 332
 5.11.3. Distribution of the Queue Length for $M/M/m$ System with Constant Balking and Exponential Reneging 333