Contents

Preface xv
List of Contributors xix

1. Antioxidants: Introduction 1
 Chunhuan He, Yingming Pan, Xiaowen Ji and Hengshan Wang
 1.1 The Meaning of Antioxidant 1
 1.2 The Category of Antioxidants and Introduction of often Used Antioxidants 2
 1.2.1 BHT 4
 1.2.2 Quercetin 5
 1.2.3 BHA 5
 1.2.4 2-tert-Butylhydroquinone (TBHQ) 6
 1.2.5 Gallic Acid 6
 1.2.6 Resveratrol 6
 1.2.7 Luteolin 7
 1.2.8 Caffeic Acid 7
 1.2.9 Catechin 7
 1.3 Antioxidant Evaluation Methods 8
 1.3.1 DPPH Radical Scavenging Assay 8
 1.3.2 ABTS Radical Scavenging Activity 8
 1.3.3 Phosphomolybdenum Assay 9
 1.3.4 Reducing Power Assay 9
 1.3.5 Total Phenols Assay by Folin-Ciocalteu Reagent 10
 1.3.6 Hydroxyl Radical Scavenging Assay 10
 1.3.7 β-carotene–linoleic Acid Assay 11
 1.3.8 Superoxide Radical Scavenging Assay 11
 1.3.9 Metal Ion Chelating Assay 12
 1.3.10 Determination of Total Flavonoid Content 12
Contents

1.4 Antioxidant and its Mechanisms
 1.4.1 Mechanism of Scavenging Free Radicals
 1.4.2 Mechanism of Metal Chelating Properties
1.5 Adverse Effects of Antioxidants
References

2. Natural Polyphenol and Flavonoid Polymers
 Kelly C. Heim
 2.1 Introduction
 2.2 Structural Classification of Polyphenols
 2.2.1 Simple Phenolics
 2.2.2 Stilbenes
 2.2.3 Lignin
 2.2.4 Flavonoids
 2.2.5 Tannins
 2.3 Polyphenol Biosynthesis and Function in Plants
 2.3.1 Biosynthesis
 2.3.2 Protective Roles
 2.4 Tannins in Human Nutrition
 2.4.1 Dietary Sources and Intake
 2.4.2 Absorption and Metabolism
 2.5 Antioxidant Activity of Tannins
 2.5.1 Mechanisms
 2.5.2 Structure-activity Relationships
 2.6 Protective Effects of Proanthocyanidins in Human Health
 2.7 Conclusion
Acknowledgements
References

3. Synthesis and Applications of Polymeric Flavonoids
 Hiroshi Uyama and Young-Jin Kim
 3.1 Introduction
 3.2 Polycondensates of Catechin with Aldehydes
 3.3 Enzymatically Polymerized Flavonoids
 3.4 Biopolymer-flavonoid Conjugates
 3.5 Conclusion
References
4. Antioxidant Polymers: Metal Chelating Agents 87
 Hiba M. Zalloum and Mohammad S. Mubarak
 4.1 Introduction 87
 4.1.1 Antioxidants 87
 4.1.2 Natural Polymers as Antioxidants 88
 4.1.3 Chelating Polymers and Heavy Metal Ions 90
 4.2 Chitin and Chitosan 91
 4.2.1 Chitin and Chitosan Derivatives 94
 4.2.2 Chitin and Chitosan as Chelating Agents 95
 4.3 Alginites 96
 4.4 Chelation Studies 97
 4.4.1 Chitosan Derivatives as Chelating Agents 101
 4.4.2 Alginites as Chelating Agents 103
 4.5 Conclusions 106
 References 107

5. Antioxidant Polymers by Chitosan Modification 115
 Jarmila Vinšová and Eva Vavříková
 5.1 Introduction 115
 5.2 Chitosan Characteristics 117
 5.3 Reactive Oxygen Species and Chitosan as Antioxidant 117
 5.4 Structure Modifications 120
 5.4.1 N-Carboxymethyl Chitosan Derivatives 120
 5.4.2 Quaternary Salts 121
 5.4.3 Sulphur Derivatives 122
 5.4.4 Chitosan Containing Phenolic Compounds 124
 5.4.5 Schiff Bases of Chitosan 127
 5.5 Conclusion 129
 References 129

6. Cellulose and Dextran Antioxidant Polymers for Biomedical Applications 133
 Sonia Trombino, Roberta Cassano and Teresa Ferrarelli
 6.1 Introduction 133
 6.2 Antioxidant Polymers Cellulose-based 134
 6.2.1 Cellulose 134
 6.2.2 Antioxidant Biomaterials
 Carboxymethylcellulose-based 135
 6.2.3 Ferulate Lipoate and Tocopherulate Cellulose 136
6.2.4 Cellulose Hydrogel Containing
Trans-ferulic Acid 138
6.2.5 Polymeric Antioxidant Membranes Based
on Modified Cellulose and PVDF/cellulose
Blends 139
6.2.6 Synthesis of Antioxidant Novel Broom
and Cotton Fibers Derivatives 140
6.3 Antioxidant Polymers Dextran-based 142
6.3.1 Dextran 142
6.3.2 Biocompatible Dextran-coated Nanoceria
with pH-dependent Antioxidant Properties 143
6.3.3 Conjugates of Dextran with Antioxidant
Properties 145
6.3.4 Dextran Hydrogel Linking Trans-ferulic
Acid for the Stabilization and Transdermal
Delivery of Vitamin E 146

References 149

7. Antioxidant Polymers by Free Radical Grafting
on Natural Polymers 153
Manuela Curcio, Ortensia Ilaria Parisi,
Francesco Puoci, Ilaria Altimari, Umile Gianfranco
Spizzirri and Nevio Picci
7.1 Introduction 153
7.2 Grafting of Antioxidant Molecules
on Natural Polymers 156
7.3 Proteins-based Antioxidant Polymers 157
7.4 Polysaccharides-based Antioxidant Polymers 164
7.4.1 Chitosan 164
7.4.2 Starch 166
7.4.3 Inulin and Alginate 170
7.5 Conclusions 175
Acknowledgements 176
References 176

8. Natural Polymers with Antioxidant Properties:
Poly-/oligosaccharides of Marine Origin 179
Guangling Jiao, Guangli Yu, Xiaoliang Zhao,
Junzeng Zhang and H. Stephen Ewart
8.1 Introduction to Polysaccharides
from Marine Sources 180
8.1.1 Polysaccharides from Marine Algae 180
8.1.2 Polysaccharides from Marine Invertebrates 181
8.1.3 Marine Bacteria Polysaccharides 182
8.2 Antioxidant Activities of Marine Polysaccharides and their Derivatives 183
8.2.1 Antioxidant Evaluation Methods 183
8.2.2 Marine Sulfated Polysaccharides 187
8.2.3 Marine Uronic Acid-containing Polysaccharides 188
8.2.4 Marine Non-acidic Polysaccharides and their Oligomers 189
8.2.5 Marine Glycoconjugates 189
8.3 Applications of Marine Antioxidant Polysaccharides and their Derivatives 191
8.3.1 Applications in Food Industry 191
8.3.2 Applications as Medicinal Materials 191
8.3.3 Applications as Cosmetic Ingredients 192
8.3.4 Applications in Other Fields 193
8.4 Structure-antioxidant Relationships of Marine Poly-/oligosaccharides 193
8.5 Conclusions 195
Acknowledgements 195
References 195

Begoña Giménez, M. Elvira López-Caballero,
M. Pilar Montero and M. Carmen Gómez-Guillén

9.1 Introduction 204
9.2 Whole Fish Hydrolysates 207
9.3 Marine Invertebrate Hydrolysates 223
9.4 Fish Frames Hydrolysates 227
9.5 Viscera Hydrolysates 228
9.6 Muscle Hydrolysates 232
9.7 Collagen and Gelatin Hydrolysates 240
9.8 Seaweeds Hydrolysates 243
9.9 Potential Applications 245
9.10 Conclusions 249
Acknowledgements 250
References 250
10. Synthetic Antioxidant Polymers: Enzyme Mimics

Cheng Wang, Gang-lin Yan and Gui-min Luo

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td>10.2 Organo-selenium/tellurium Compound Mimics</td>
<td>260</td>
</tr>
<tr>
<td>10.2.1 Chemistry of Organo-selenium/tellurium Compounds as GPX Mimics</td>
<td>261</td>
</tr>
<tr>
<td>10.2.2 Synthetic Organo-selenium/tellurium Compounds as GPX Mimics</td>
<td>262</td>
</tr>
<tr>
<td>10.2.3 Cyclodextrin-based Mimics</td>
<td>272</td>
</tr>
<tr>
<td>10.3 Metal Complex Mimics</td>
<td>281</td>
</tr>
<tr>
<td>10.3.1 The Role of Metal Ions in Complexes</td>
<td>282</td>
</tr>
<tr>
<td>10.3.2 Manganese Complexes Mimics</td>
<td>283</td>
</tr>
<tr>
<td>10.3.3 Other Metal Complex Mimics</td>
<td>293</td>
</tr>
<tr>
<td>10.4 Selenoprotein Mimics</td>
<td>295</td>
</tr>
<tr>
<td>10.4.1 Strategies of Selenoprotein Synthesis</td>
<td>296</td>
</tr>
<tr>
<td>10.4.2 Synthetic Selenoproteins</td>
<td>305</td>
</tr>
<tr>
<td>10.5 Supramolecular Nanoenzyme Mimics</td>
<td>312</td>
</tr>
<tr>
<td>10.5.1 Advantages of Supramolecular Nanoenzyme Mimics</td>
<td>313</td>
</tr>
<tr>
<td>10.5.2 Supramolecular Nanoenzyme Mimics with Antioxidant Acitivity</td>
<td>314</td>
</tr>
<tr>
<td>10.6 Conclusion</td>
<td>325</td>
</tr>
<tr>
<td>References</td>
<td>325</td>
</tr>
</tbody>
</table>

11. Synthetic Polymers with Antioxidant Properties

Ashveen V. Nand and Paul A. Kilmartin

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>333</td>
</tr>
<tr>
<td>11.2 Intrinsically Conducting Polymers</td>
<td>334</td>
</tr>
<tr>
<td>11.3 Intrinsically Conducting Polymers with Antioxidant Properties</td>
<td>335</td>
</tr>
<tr>
<td>11.4 Synthesis of Antioxidant Intrinsically Conducting Polymers</td>
<td>336</td>
</tr>
<tr>
<td>11.4.1 Chemical Synthesis</td>
<td>337</td>
</tr>
<tr>
<td>11.4.2 Electrochemical Synthesis</td>
<td>337</td>
</tr>
<tr>
<td>11.4.3 Other Polymerization Techniques</td>
<td>338</td>
</tr>
<tr>
<td>11.5 Polymer Morphologies</td>
<td>339</td>
</tr>
<tr>
<td>11.5.1 Polyaniline</td>
<td>340</td>
</tr>
<tr>
<td>11.5.2 Polypyrrole</td>
<td>340</td>
</tr>
<tr>
<td>11.5.3 Poly(3,4-ethylenedioxythiophene)</td>
<td>342</td>
</tr>
<tr>
<td>11.6 Mechanism of Radical Scavenging</td>
<td>343</td>
</tr>
<tr>
<td>11.7 Assessment of Free Radical Scavenging Capacity</td>
<td>344</td>
</tr>
<tr>
<td>11.7.1 DPPH Assay</td>
<td>345</td>
</tr>
<tr>
<td>11.7.2 ABTS Assay</td>
<td>346</td>
</tr>
</tbody>
</table>
12. Synthesis of Antioxidant Monomers Based on Sterically Hindered Phenols, α-Tocopherols, Phosphites and Hindered Amine Light Stabilizers (HALS) and their Copolymerization with Ethylene, Propylene or Styrene

Carl-Eric Wilén

12.1 Introduction

12.2 Synthesis of Antioxidant Monomers to Enhance Physical Persistence and Performance of Stabilizers

12.2.1 Copolymerization of Antioxidants with α-Olefins Using Coordination Catalysts

12.2.2 Synthesis of Antioxidant Monomers

12.3 Phenolic Antioxidant Monomers and their Copolymerization with Coordination Catalysts

12.3.1 Copolymerization of Antioxidant Monomers with Ethylene or Propylene using Traditional Ziegler-Natta Catalysts

12.4 Copolymerization of Antioxidant Monomers with Ethylene, Propylene, Styrene and Carbon Monoxide Using Single Site Catalysts

12.4.1 Copolymerization of Phenolic Antioxidant Monomers

12.4.2 Copolymerization of HALS Monomers using Single Site Catalysts

12.5 Conclusions

Acknowledgements

References

13. Novel Polymeric Antioxidants for Materials

Ashish Dhawan, Vijayendra Kumar,
Virinder S. Parmar and Ashok L. Cholli

13.1 Industrial Antioxidants

13.2 Antioxidants Used in Plastics (Polymer) Industry

13.2.1 Primary Antioxidants

13.2.2 Secondary Antioxidants

13.3 Antioxidants Used in Lubricant Industry
Contents

13.4 Antioxidants Used in Elastomer (Rubber) Industry 390
13.5 Antioxidants Used in Fuel Industry 392
13.6 Antioxidants Used in Food Industry 393
13.6.1 Natural Food Antioxidants 393
13.6.2 Synthetic Food Antioxidants 394
13.7 Limitations of Conventional Antioxidants 395
13.7.1 Performance Issues because of Antioxidant Efficiency Loss 395
13.7.2 Environmental Issues and Safety Concerns 395
13.7.3 Compatibility Issues 396
13.7.4 Poor Thermal Stability 396
13.8 Trends towards High Molecular Weight Antioxidants 396
13.8.1 Functionalization of Conventional Antioxidants with Hydrocarbon Chains 397
13.8.2 Macromolecular Antioxidants 397
13.8.3 Polymer-bound Antioxidants 398
13.8.4 Polymeric Antioxidants 401
13.9 Motivation, Design and Methodology for Synthesis of Novel Polymeric Antioxidant
13.9.1 Design of the Polymeric Antioxidants 408
13.9.2 Methodology 408
13.10 Biocatalytic Synthesis of Polymeric Antioxidants 409
13.11 General Procedure for Enzymatic Polymerization 410
13.11.1 Synthesis and Characterization of Polymeric Antioxidants 411
13.11.2 Antioxidant Activity of Polymeric Antioxidants 417
13.11.3 Evaluation of Polymeric Antioxidants in Vegetable Oils by Accelerated Oxidation 420
13.12 Conclusions 421
Acknowledgement 422
References 422

14. Biopolymeric Colloidal Particles Loaded with Polyphenolic Antioxidants 427

Ashok R. Patel and Krassimir P. Velikov
14.1 Introduction 427
14.2 Polyphenols: Antioxidant Properties and Health Benefits 428
14.3 Polyphenols: Formulation and Delivery Challenges 429
 14.3.1 Solubility 430
 14.3.2 Chemical Reactivity and Degradation 430
 14.3.3 Stability in Physiological Conditions 430
 14.3.4 First Pass Metabolism and Pharmacokinetics 431
 14.3.5 Organoleptic Properties and Aesthetic Appeal 431
14.4 Polyphenols Loaded Biopolymeric Colloidal Particles 431
 14.4.1 Curcumin Loaded Biopolymeric Colloidal Particles 433
 14.4.2 Silibinin Loaded Biopolymeric Colloidal Particles 441
 14.4.3 Quercetin Loaded Biopolymeric Colloidal Particles 447
14.5 Conclusion 454
References 455

15. Antioxidant Polymers for Tuning Biomaterial Biocompatibility: From Drug Delivery to Tissue Engineering 459

David Cochran and Thomas D. Dziubla 459
15.1 Introduction 459
15.2 Oxidative Stress in Relation to Biocompatibility 460
 15.2.1 Mechanism of Immune Response 460
 15.2.2 Examples in Practice 464
15.3 Antioxidant Polymers in Drug Delivery 467
 15.3.1 Uses as Active Pharmaceutical Ingredients 467
 15.3.2 Uses as Pharmaceutical Excipients 468
15.4 Antioxidant Polymers in Anti-cancer Therapies 470
15.5 Antioxidant Polymers in Wound Healing and Tissue Engineering 472
 15.5.1 Antioxidant Polymers Incorporated into Biomaterials 472
15.6 Conclusions and Perspectives 476
References 479

Index 485