Index

(−)-Epicatechin, 56
(−)-Epicatechin gallate, 56
(−)-Epigallocatechin, 56
(−)-Epigallocatechin gallate, 56
(+)-Catechin, 56
1,1-Diphenyl-2-picrylhydrazyl (DPPH), 90
2,2-Diphenyl-1-picrylhydrazyl (DPPH), 89
2,4-Dihydroxybenzaldehyde, 102
2-tert-Butylhydroquinone, 6
4-(Diethylamino) salicylaldehyde, 102
9,12-octadecanedienic acid glycidyl (CG), 102
9-Octadecenoic acid, 102
9-octadeicenic acid glycidyl, 102
α-lipoic acid, 134–140
α-tocopherol, 134, 139, 140
α-tocopherolulate cellulose, 136
β-Carotene–linoleic acid assay, 11

ABTS,
radical scavenging assessment, 347–348
reduction potential, 348
ABTS radical, 8
Abzyme, 300
Acrylamide (AAm), 324
Acyclic multidentate ligand complexes, 290
Adsorption, 91, 93, 96, 98, 99, 101, 102, 103, 104, 105, 106
Alginate, 170
Alginates, 96–97
as antioxidants, 96–97
calcium, 105
chelating agents, 103–106
chitosan-coated calcium, 104
sodium, 104
structure and Properties, 96–97
zinc, 106
Alginic acid, 93, 97, 101
Alkyl halides, 262
Aluminum, 90
Aminoacid composition, 206, 222, 237, 242
Aminoacyl-tRNA-synthetase, 310
Anthocyanidine, 56
Anti-allergic effect, 76
Antibacterial, 135
Anticholesterolmic, 94
Anticoagulant, 94
Antifungal, 135
Anti-inflammatory, 135
Antimicrobial, 94, 95, 103
Antimicrobial activity, 76
Antioxidants, Primary, 388
Antioxidant, 2, 134–137
ascorbic acid, 345
polyphenol, 346
radical scavenging, 334, 336
Antioxidant activity, 88, 89, 90, 136, 139
Antioxidant biomaterials, 135
Antioxidant enzyme, 56
Antioxidant monomers, 355, 361, 364

485
aniline monomers, 371
\(\alpha\)-tocopherol monomers, 364, 365, 374–375
hindered amine light stabilizers (HALS) monomers, 366–369, 376–378
phosphites monomers, 365, 367
sterically hindered phenolic monomers, 364, 365, 369–371

Antioxidant polymers, 369–378, 134, 153
grafting of natural polymers, 156
polyethylene copolymers, 373, 374, 376–378
polyketone copolymers, 375
polynorbornene copolymers, 375
polypropylene copolymers, 371, 372
polysaccharides-based, 164
polystyrene copolymers, 374
protein based, 157

Antioxidant property, 71
Antioxidants for elastomers, 390
Antioxidants for fuels, 392
Antioxidants for lubricants, 389
Antioxidants for plastics, 386
Antioxidants for processed food, 393
Antioxidants, higher molecular weight, 396
Antioxidants, polymer bound, 398
Antioxidants, Polymeric, 401
Antioxidants, Secondary, 389

Antioxidative evaluation methods,
DPPH, 183, 187–190, 194
FRAP, 183, 194
ORAC, 183, 187

Antiproliferative, 223, 239, 244
AQUACEL®, 135
Aromatic amino acids, 227, 237
Arsenic, 90, 98, 99
Artherosclerosis, 134
Aryllithiums, 262
Arylseleno-cyanates, 262
Ascorbic acid, 89, 134
Asthma, 134
Atom transfer radical polymerization (ATRP), 324
Auto-oxidation, 60
Auxotrophic expression technique, 297, 310
Azlactone, 145

Baeyer acid, 57
Benzenoid, 344, 349
Benzo-\(\gamma\)-pyrone, 55
BHA, 5
Bioactive molecules, 138
Biocompatibility, definition, 460
Biocompatibility, 93, 95, 106, 138
Biodegarterability, 93, 95, 106
Biodegradability, 138
Bioimprinting, 298
Bioinformatics, 304
Biomaterials, 134–138
Biomimetic chemistry, 314
Biopolymer, 69, 134
Biosorption, 99, 105
Biosynthesis, 297
Bitterness, 236, 245
Blood pressure, 91
Bones, 204, 237, 240–241
Bovine serum albumin (BSA), 300
Broom, 140, 141
Butylated hydroxytoluene, 4
Butylhydroquinone, 88
Cadmium, 90, 92, 97, 103, 105
Caffeic acid, 7, 126
Calcium, 105
Calix[4]arene, 103
Carbodiimide, 100
Carbohydrates, 134
Carboxymethylcellulose, 135
Carcinogenesis, 134
Catalase (CAT), 259
Catalytic antibody, 300
Cataracts, 134
Catechin, 7, 90
Cellular Adhesion Molecules, 470, 471
Cellulose, 91, 93, 134–138
cellulose derivative, 134
cellulose membranes, 139
Chain autoxidation, 57
Chain breaking antioxidant, 57
Chalcone, 56
Chelating polymers, 90, 103
Chemical transformation, 297
Chemically bound antioxidant, 361
Chemiluminescence, 89
Chemopreventive activity, 72
Chitin,
chelating agents, 95–96
deacetylation, 92–93
natural polysaccharides, 91
structure and properties, 91–94
Chitosan, 116, 117, 164
bioactivity, 88
chitosan coated silica (CCS), 104
chelating agents, 95–96, 101–103
chitosan antioxidant activity, 120
chitosan sulphate, 122
complexes, 89
derivatives, 88, 89, 94, 95
gallate chitosan, 124
galloylate, 89
gold nanocomposites, 88
high molecular weight chitosan, 118
low molecular weight chitosan, 118
N-alkylidination, 94
N-carboxymethyl chitosan, 120
N-maleoyl chitosan, 121
N-succinyl chitosan, 121
oxidative degradation, 89
quaternized chitosan, 121, 125
shiff base of chitosan, 127
thiolated chitosan, 124
Chitosan derivatives as chelating agents, 101–103
Cholesterol, 91, 119
Chromium, 92, 97, 99
Chromium (Cr), 293
Cinnamoyl chloride, 103
Cinnamoyl isothiocyanate, 103
Coagulation, 91, 96, 101, 107
Cobalt, 92, 97, 99, 100
Cobalt (Co), 293
Collagen and gelatin, 204, 240–243
Collagen fiber, 81
Collagenase, 63
Competitive inhibitor, 66
Controlled release, 138
Copper, 90, 92, 97, 98, 99, 100, 103, 105
Copper (Cu), 293
Corrole, 288
Corrosion inhibitor, 90
Cosmetic application, 192
Cotton, 134, 140, 141
Covalently linking, 134
Curcumin,
PolyCurcumin, 471
Cyclic voltammetry, 342
Cyclodextrin (CD), 273
Cytotoxic, 239, 240, 242
Degradation, 134
Degradation and stabilization cycles, 357
Degree of hydrolysis, 224, 226–227, 232
Deiodinases, 295
Dendrimer enzyme model, 317
Dendrimers, 312
Desalination, 96
Dextran, 134, 142, 146
Diabetes, 134
Diadzein, 75
Diethyl selenide, 261
Digestive enzymes, 204, 228
diphenolase action, 66
diselenides, 261
D-Mannuronic acid, 96
dopant, 335–336, 344
DPPH,
 radical scavenging assessment, 347
 reduction potential, 346
DPPH radical, 8
drug delivery formulations, 135
drug packaging, 134
egg albumin (OVA), 300
elastase, 64
electrochemical analysis, 68
electron paramagnetic resonance (EPR), 89
electrostatic interaction, 62
emeraldine, 344
enzymatic browning, 66
enzymatic catalysis, 69
enzymatic conjugation, 76
enzymatic oxidative coupling, 70
enzymatic polymerization, 69
enzyme mimics, 260
enzyme model, 312
ethyl bridge, 57
ethylenediamine tetracetic acid dihydrate, 102
eugenol, 126
extracellular matrix, 63
Fe-containing porphyrin, 70
fenton reactions, 14
ferulate cellulose, 136
fibroplasia, 95
fish species,
 alaska pollack, 227, 241–242
 anchovy, 223
 bigeye tuna, 236, 240
 brownstripe red snapper, 229, 233, 237
 capelin, 222, 235, 247
catfish, 237
cobia, 241, 243
herring, 222
hoki, 228, 241–242
mackerel, 234
pacific hake, 234
round scad, 237
saithe, 233, 235
sardine, 230–231
seaweed pipefish, 222
tilapia, 233–234, 237, 247
yellowfin sole, 227, 234
flavanol, 56
flavanone, 56
flavone, 56
flavonoid, 55
flavonoid conjugate, 57
flavonoid-grafted chitosan fiber, 81
flavonoids,
 biosynthesis, 34–35
 monomeric, 28–29, 34–35
 polymeric see proanthocyanidins,
 flavonol glycoside, 74
flocculation, 96, 107
Folin-Ciocalteu reagent, 10
food packaging, 134
food supplements, edible food coating,
 food preservation, 191
 lipid oxidation, 191
frames, 227–228
free radical scavenging,
 assessment, 346–348
 mechanism, 344–346
free radicals, 133, 134, 136
free radicals, 87, 88
freundlich, 104–105
functional materials, 134
gallic acid, 6, 89
gastrointestinal digestion, 235, 240
gelatin, 76
gelatinase, 63
Glucosamine, 91, 92
Glucosyltransferase, 74
Glutaredoxins (Grxs), 311
Glutathione (GSH), 264
Glutathione peroxidase (GPX), 259
Glutathione S-transferase (GST), 259
Glycol chitin, 94
Green tea, 126

Hapten, 302
Heads, 204, 207, 222, 227, 230–231
Heavy metal ions, 90, 92, 95, 97, 104, 105, 106, 107
Hemodialysis membranes, 134
Hemostatic activity, 95
Hesperidin, 74
Homeostasis, 63
Horseradish peroxidase, 70, 89
Human serum albumin, 119
Human serum albumin (HSA), 300
Hyaluronidase, 76
Hydrogel, 138
Hydrogen bond, 62
Hydrogen peroxide, 88
Hydrogen peroxide (H2O2), 260
Hydrolase, 69
Hydroperoxide, 60
Hydroperoxides, 87
Hydroperoxides (ROOH), 260
Hydrophobic amino acids, 223, 236–237
Hydroxyanisole, 88
Hydroxyl radical, 10, 58, 88, 89
Hydroxyl radical (•OH), 260
Hydroxylation, 66
Hydroxylic groups, 135
Hydroxymethylcellulose, 135
Hydroxypropylmethylcellulose, 135
Hydroxytoluene, 88

Iminoacetate, 100
Iminodiacetate, 100
Immune response, 460–464
adaptive response, 461
inflammatory response, 460
Immunoglobulin, 300
In vitro digestibility, 244
Industrial antioxidants, 386
Inflammation, 134
Inhibitory activity, 60
Interflavon bond, 57
Intrinsically conducting polymers, 334–336
Inulin, 170
Ion-exchange resins, 101
Iron, 92, 97, 98
Iron (Fe), 293
Isoflavone, 56

Kaoline, 105–106

Laccase, 70
Langmuir isotherm, 105
Late metal transition catalyst, 379–380
Lead, 90, 92, 97, 98, 104, 105
Leucoemeraldine, 344
L-Guluronic acid, 96, 104
Lignin, 27–28
Lineweaver-Burk plot, 62
Linoleic acid, 89, 90
Lipid oxidation, 60

Lipids, 134
Lipoate cellulose, 136
Low-density lipoprotein, 59
Luteolin, 7

Macrocyclic compounds, 283
Macromolecules, 133
Maillard reaction, 223
Manganese (Mn), 283
Marine Invertebrates, arca subcrenata, 226
Atlantic sea cucumber, 226
clam, 225
corus betulinus, 225
crustacean, 223–224
green sea urchin, 226
mussel, 226
rotifers, 225
shrimp, 224–225, 235
squid, 225, 230, 239, 241–243, 248

Marine organisms,
algae, 180, 181, 184, 185, 190
marine bacteria, 182, 188, 189
marine invertebrates, 181, 185
sea urchin, sea cucumber, 182, 188, 190, 191

Marine polysaccharides,
agar, 181, 184, 193, 194
alginic acid, 181, 182, 184, 188, 191–194
carrageenan, 181, 184, 187, 191, 193
chitin, chitosan, 182, 185, 189, 191–194
chondroitin sulfate, 181, 182, 185 derivatives, 182, 187–189, 191–193
exopolysaccharides, 186–189
fucoidan, 181, 182, 184, 187
glycoconjugates, 189
laminaran, glucan, 181, 194
mannan, 189
Neo-agarobiose, 192
oligosaccharides, 189–190, 193, 195
porphyran, 187
sulfated fucon, 181, 182, 185, 187, 188, 194
ulvan, 181, 185, 188,
xylan, 184

Matrix metalloproteinase, 63, 120
Matrix protein, 65
Melanin pigment, 66
Melanin synthesis, 66
Mercury, 90, 92, 97
Metal Chelation, 72
Metal ion chelating assay, 12
Metallocene, 363, 371–378
Methionine (Met), 297
Micelle enzyme model, 314
Michaelis-Menten constant, 63
Microcrystalline cellulose, 135
Microorganisms,
Bacillus, 224–225
fermentation, 230–231
fungal protease, 229
microbial, 224, 226
yeast, 224, 244
Microsomal membranes, 141, 146
Mixed type inhibition, 64
Molecular imprinting, 298
Molecular weight, 207, 225, 233, 247
Molybdenum, 92
Monoclonal antibody (McAb), 301
Monophenolase action, 66
Monoselenides, 267
Monotelu-rides, 267
Muscle, 232–240
Nanoceria, 143
Nanoenzyme, 312
Nanofibers, 313
Nanoparticle-based enzyme model, 320
Nanoparticles, 313
Nanoparticulate, 142
Nanoporous matrices, 314
Nanoscale, 313
Nanoscience, 313
Nanotechnology, 313
Nanotubes, 314
Natural fibers, 134
Natural food antioxidants, 393
Natural polymers,
as antioxidants 88, 88
Nickel, 90, 92, 97, 98, 103, 104
N-isopropylacrylamide (NIPAAm), 324
Nitric oxide (NO), 260
Nitrilotriacetic acid NTA, 99, 100
Non-toxicity, 138
Nucleic acid, 134

Octahedral derivative, 79
Oligostilbenes, 27
Organic peroxides, 260
Organo-selenium compound, 261
Osmosis, 91
Overoxidized seleninic, 264
Oxidant, 337–338
Oxidation reactions, 88
Oxidation reactivity, 69
Oxidative damage, 75
Oxidative deterioration, 61
Oxidative polymerization, 70
Oxidative stress, 58, 134, 137, 140, 143
Biomaterial cracking, 465
Signalling Pathways, 470–471
Oxidoreductase, 70
Oxygen radicals, 88

Packaging, 135–140
Parkinson’s disease, 134
Pernigraniline, 344
Peroxidase, 70
Peroxidation, 59
Peroxiredoxins, 311
Peroxynitrite (ONOO−), 281
Phage display antibody library, 303
Pharmaceutical formulations, 134
Pharmacological agent, 63
Phenol derivative, 70
Phenolic radical intermediate, 70
Phospholipid peroxidation, 61
Phosphomolybdenum assay, 9
Phycobiliproteins, 243–244
Physiological activity, 57
Plant polyphenolic, 55
Platinum, 90, 103
Poly(3,4-ethylenedioxythiophene), morphology, 343–344
structure, 335
synthesis, 338
Poly(4-aminostyrene), 101
Poly(allylamine), 79
Poly(amine acid), 69
Poly(aminosulfonic acid), 336
Poly(ε-lysine), 76
Poly(rutin), 75
Polyacetylene, 334
Polyampholytes, 94
Polyaniline,
morphology, 340–342
oxidation level, 348–349
oxidation potential, 344
structure, 335
surface area, 349
synthesis, 337–339
Polyaromatic, 69
Polyaspartate hydrogel, 98
Polychlorinated biphenyl (PCB), 96
Polycondensate, 58
Polyester, 69
Polyhedral oligomeric silsesquioxane, 79
Polymeric antioxidants, 385
Polymeric flavonoid, 57
Polymeric matrices, 134
Polymeric micelle, 312
Polymerization,
chemical, 337
electrochemical, 338
enzyme, 340
microwave, 339
photo, 339–340
plasma, 339
Polymorphonuclear
leukocytes, 136
Polyphenol, 4
Polyphenol loaded biopolymeric colloid particles,
Curcumin loaded biopolymeric colloid particles, 433–441
Quercetin loaded biopolymeric colloid particles, 447–454
Silibinin loaded biopolymeric colloid particles, 441–447
Polyphenol oxidase, 80
Polyphenols: Anti-oxidant properties and health benefits, 428-429
Polyphenols: Formulation and delivery challenges, 429-431
Polyprrole,
- morphology, 342-343
- oxidation, 344
- structure, 335
- synthesis, 338-340
Polysaccharide, 69
Porphyrin, 288
Postsurgical adhesions, 136
Preconcentration techniques, 90
Proanthocyanidins,
- analysis in food, 31, 33, 36-37, 45-46
- antiinflammatory activity, 41-44
- antioxidant activity, 31, 33, 41-45
- bioavailability, 36-40
- biosynthesis, 34-35
- chelating effects, 42-43
- degree of polymerization, 31, 33-37, 39-42, 44-45
- food sources, 31, 36-38
- metabolism, 37-41, 44-45
- research methods, 31, 33, 36-37, 41, 44-46
Prodrug, 138
Pro-oxidant property, 71
Pro-oxidative, 222, 229, 233, 245, 248
Propyl gallate, 15, 88
Protein disulfide isomerases (PDI), 311
Proteins, 134
Pyrane ring, 56
Quercetin, 5, 74
- Quercetin-HEMA, 473, 474
- Quinoid, 344, 349
Radical scavengers, 88
Radical scavenging properties, 89
Reactive nitrogen species, 13
Reactive Oxigen Species (ROS), 134, 135, 140
Reactive oxygen species, 13, 58, 88, 97
- hydrogen peroxide, 41-42
- peroxyl radicals, 41-42
- peroxynitrite, 41
- scavenging by polyphenol polymers, 31, 33, 41-45
- singlet oxygen, 41
Reactive oxygen species (ROS), 260
Reactive oxygen species, ROS, 117
Redox behavior, 68
Reducing power, 9
Reductive amination, 94
Resveratrol, 6, 127
Rheumatoid arthritis, 134
ROS, 205, 222, 233, 236, 239, 249
Rutin, 74
Salen derivatives, 285
Salicyaldehyde, 102
Scavenger, 138, 143
Scavenging activity, 58
Schiff base, 60
Schiff base ligand complexes, 285
Seaweeds,
- algae, 205, 243-245
- Chlorella vulgaris, 244
- macroalgae, 243
- microalgae, 244
- Spirulina, 224, 244
Selenenic acid, 264
Selenenyl sulfide intermediate, 264
Selenides, 261
Selenium, 261
Selenoamino acid, 262
Selenocarbohydrates, 262
Selenocysteine (Se-Cys, Sec), 295
Selenocysteine insertion sequence (SECIS), 297
Selenocysteiny-tRNA (tRNA-Sec), 297
Selenoenzyme, 306
Selenol, 264
Selenols, 261
Selenomethionine (Se-Met), 297
Selenonic, 264
Selenopeptides, 262, 295
Selenoprotein, 295
Selenotrypsin, 306
Semisynthesis, 297
Serine (Ser), 298
Shrimp shells, 91
Silver, 92, 97
Single-chain variable fragment (scFv), 302
Singlet oxygen (1O2), 260
Skin, 204, 241–243, 248–249
Small molecular micelle, 312
Smart selenoenzyme model, 323
Sodium borohydride, 262
Sodium diselenide, 262
Sodium hydride, 262
Sodium perchlorate, 103
Sodium selenide, 262
Soybean peroxidase, 75
ß-carotene, 222–223, 231, 246
Starch, 166
Substrate, 302
Subtilisin, 306
Superoxide anion, 58, 88, 90, 118
Superoxide dismutase (SOD), 259
Superoxide Dismutase Mimetics, 475
Superoxide radical, 11
Superoxides (O2•–), 260
Supramolecular, 312
Surface imprinted nanoparticles, 312
Synthetic antioxidants, 205, 222, 245
Synthetic food antioxidants, 394
Synthetic polymers, 334

Tannins,
condensed tannins see proanthocyanidins,
hydrolysable tannins, 29–31, 38–39, 44
phlorotannins, 33
TBARS, 233, 237–238, 247–248
Tellurium, 261
Tellurocysteine (Te-Cys, Tec), 311
Tellurol enzyme, 311
Telluroproteins, 298
Tellurosubtilisin, 306
Temperature-responsive microgels, 313
Therapeutic molecule, 73
Thioredoxin (Trx), 311
Thioredoxin reductases (TrxR), 295
Total flavonoid content, 12
trans-ferulic acid, 134, 138, 140
Triglyceride, 91
Tyrosinase, 66
Tyrosine, 66
Ultrafiltration, 207, 227
Uncompetitive inhibitor, 62
Unstable bioactive molecules, 134

Viscera,
pyloric caeca, 227, 229
skipjack tuna liver, 228
viscera, 206, 223, 225–226, 228–232
Vitamin E, 136, 146
carbohydrate-vitamin E hybrid, 469
poly(trolox), 467, 468
Waste, 204, 223–224, 228, 243
Wastewater treatment, 91, 92, 95, 101, 105
Water insoluble collagen, 76
Whole fish, 207, 222–223

Xanthine oxidase, 58
Ziegler-Natta catalyst, 369–372
Zinc, 92, 97, 106
Zinc (Zn), 293