Index

Adipato (adi) complex, 116

Akaganeite, 416–418
collinear antiferromagnetism, 418
crystallinity, 418
Debye–Waller factor, 416
hyperfine parameters, 417, 418
properties, 418
room temperature Mössbauer spectrum, 417
three sexters for Mössbauer spectra, 416, 417
x-ray diffraction peaks, 418

Alkaline earth metal fluorides, 202
Aluminous silicate perovskite, 43
Aluminum
photomicrograph of, 586
SEM element mapping, 585

Ankerite (CaFe(CO$_3$)$_2$), 576
β–γ Anticoincidence detector, 60
APD. see Avalanche photodiode detectors (APDs)

Aqueous Fe(ClO$_4$)$_3$ solutions, 477
As–As bonding
s–p hybridization, 538

Atomic force microscopy, 374, 429
Atomic jumping, 60
Auger electrons, 338
Auger electron spectroscopy (AES), 6, 457, 460, 464
Auger ionization process, 333
Avalanche photodiode detectors (APDs), 4, 7–9, 44, 257, 268
Averaged powder magnetization, for ground doublet, 107
Azospirillum brasilense, 341, 343, 344
emission Mössbauer spectra, 337

Bacterial glutamine synthetase molecule, 341
BaFe$_2$As$_2$
atmospheric pressures, 539, 540
crystal structure, 536
low-spin nonmagnetic state, 541
Mössbauer spectroscopy, 536
Ba(Fe$_{0.91}$Co$_{0.09}$)$_2$As$_2$, magnetic susceptibility, 538
Ba(Fe$_{0.88}$Co$_{0.12}$)$_2$As$_2$, Mössbauer spectroscopy (MS), 537
Ba(Fe$_{0.95}$Ni$_{0.05}$)$_2$As$_2$, magnetic susceptibility, 539
BaFe$_1.9$Ni$_0.1$As$_2$ single-crystal, 538
BaFe$_2$O$_4$ crystalline particles, 545
BaFeO$_4$ sample, 515
20BaO·10Fe$_2$O$_3$·70V$_2$O$_5$ glass
activation energy, 547
current vs. voltage, 546
DTA chart, 545
electrical conductivity (s) and quadrupole splitting, 547
room-temperature electrical conductivity, 546
XRD pattern, 545
Barium ferrates(IV), 510
Barium–iron–vanadate glass
electrical resistivity, 543
BaSnF$_4$, structural determination
historical perspectives, 216–217
Mössbauer spectroscopy, 220
neutron powder diffraction, 225
sp d^2 hybridization, and VSEPR rules, 225–226
tetragonal symmetry, 225
BCS theory, superconductors, 397
Benzene-enclathrated Fe(NCS)$_2$(bpp)$_2$ to ab plane, 148
reversible structural changes, triggered by sorption of benzene molecules, 147–149
symmetry change around iron, 148
x-ray diffraction analysis, 147
Be window, 6, 7
Bifunctional mechanism, 564

Biology-related and biomedical applications, of Mössbauer spectroscopy, 272
tissues containing iron-storage proteins, 284–286
1,3-Bis(4-pyridyl)propane, 147
Bohr magneton, 361
Boltzmann constant, 546
Borate glass, 542
bpa: 1,2-Bis(4-pyridyl)ethane, 144
bpp: 1,3-Bis(4-pyridyl)propane, 144
Bravais single-crystalline lattice, 26
Brown’s model, 209
Ca$^{2+}$ concentrations, 597
CalO$_2$- type structure (Cmcm), 52
Calcine temperature
residual carbon content, 611
in rotary kiln roasting reduction, 611
vs. electrodes slipping, 612
vs. temperature, 611
Calcium
photomicrograph of, 586
SEM element mapping, 585
Calcium ferrate(VI)
FTIR spectra of, 507
Calcium silicate perovskite, 43
Carbon felts
microwave discharge, 528

Edited by Virender K. Sharma, Gostar Klingelhofer, and Tetsuaki Nishida.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

COPYRIGHTED MATERIAL
Carbon monoxide (CO) preferential oxidation (PROX), in rich hydrogen atmosphere, 564
Carbothermal reduction, of iron, 555
Cation–cation bond (CCB), 95
Cation-free glutamine synthetase emission Mössbauer spectra, 343
Cd-goethite particles, formation, 493
CEMS Mössbauer spectrum, 3, 59, 584
CEMS 2010 spectrometer, 386
Charge transfer phase transition (CTPT), 153, 161
photoinduced, 164–168
thermally induced, 161–164
Chemical oxygen demand (COD), 595–598, 600, 606
artificial drain, 597
redox titration method, 597
Chemical shift, 44
Clebsch–Gordan coefficients, 380
Chemical shift, 44
Coal combustion, 584
Coal oxidation, 579
Coal samples, room-temperature Mössbauer parameters, of, 580
Coals research
coal combustion, 584–587
experimental setup, 577
gasification, 587–590
iron/sulfur, speciation, 576
mild steel, corrosion of, 583–584
Mössbauer spectrometer, 577
results, 578, 581
sample preparation, 577–578
schematic representation, 577
SEM analyses, 577
weathering of, 578–583
XRD analyses, 577
57Co-cobalt(II)-doped GS emission Mössbauer spectra, 342
COD, see Chemical oxygen demand (COD)
57Co-Doped $Y_{1-x}Pr_xBa_2Cu_3O_{7-d}$, studies, 397–401
57Co emission studies, 398, 399
emission Mössbauer spectra, $Y_{0.8}Pr_{0.2}Ba_2Cu_3(57Co)O_{7-d}$, 398
Cu3O2p hybrid band, 397
Mössbauer parameters, room temperature, 400
praseodymium (Pr) effects, 397
ionic properties, 397, 398
PrBCO/YBCO lattice, 398
57Co emission Mössbauer spectra, 335
measurements, 334, 336, 340, 344
spectroscopic data, parameters, 340
Coherent quasielastic nuclear resonant scattering, 25–29
57Coii-doped cyanobacteria, 336
57Co ion implantation, 60
57Co-labeled cobalamins, 334
57Co-labeled vitamin B$_{12}$ coenzyme, 334
Colossal magnetoresistance (CMR), 393, 407–413
analogous cobalt-based perovskites, La$_{1-x}$Sr$_x$CoO$_3$ (See La$_{0.8}$Sr$_{0.2}$CoO$_{3-δ}$)
cobaltate perovskites, 407
iron-doped La$_{0.8}$Sr$_{0.2}$Fe$_{0.6}$Co$_{1-δ}$O$_{3-δ}$ perovskites, 411
(See also iron-doped La$_{0.8}$Sr$_{0.2}$Fe$_{0.6}$Co$_{1-δ}$O$_{3-δ}$)
La$_{0.7}$Ba$_{0.3}$Mn$_2$O$_3$ perovskites, 407
manganese perovskites, 407, 408
materials, 393
Nd$_{0.5}$Pb$_{0.5}$Mn$_2$O$_3$ perovskites, 407
57Co NMR spectroscopy, 410
Controlled radiative gamma decay, 293
within the framework of two-level approximation
at excited nucleus consideration, 293
Hamiltonian operator, 293
nonstationary Schrödinger equation, 294
solutions of system, for cases, 294–295
wave function of whole system, 294
Controlled radioactive, and excited nuclei radiative gamma decay
direct experimental observation, and study of process
by delayed gamma–gamma coincidence method, 311–314
detecting of effect of controlling time of radiation nuclear decay, 311
influence of distributed resonance screen made of 119Sn, 314
optimization of decay controlling system parameters, 313
spontaneous decay of radioactive Co57Fe nucleus, 313
structure of controlled, and uncontrolled nuclear transitions, 312
Controlled spontaneous gamma decay excited nucleus in system of mutually uncorrelated modes of electromagnetic vacuum, 295–296
spontaneous gamma decay in case of free space, 296–298
in case of nonresonant screen presence, 301–302
of excited nuclei in case of screen presence, 298
experimental study of phenomenon, by investigation of space anisotropy and self-focusing of Mössbauer radiation, 309–311
experimental study of phenomenon, for Mössbauer nuclei, 303–308
of nucleus in the case of resonant (Mössbauer) screen presence, 298–301
in system of synchronized modes of electromagnetic vacuum, 302–303
CONUSS program, 50
Conversion electron Mössbauer spectroscopy (CEMS), 447, 557, 577
Conversion x-ray Mössbauer spectroscopy (CXMS), 384 registration, 388
Coordination polymers of lanthanides (Ln), 116
Corrosion process, 418
Corrosion rate, of mild steel, 583
CoSn electrodes, in lithium test, 560
57Co substitution cations, in metalloproteins, 345
Coulomb excitation, 58, 59
Coulomb excitation and recoil implantation Mössbauer effect (CRIME), 59
Coulomb interaction, 152
between d electrons, 152
Crystal field splitting energy, 47
Crystal field theory, 46
on 3d electronic states, 46–47
Cubic fluoride (F) structure of MO$_2$, 74
Curie temperature, 521
Curie–Weiss law, 107, 173
Cyano-bridged coordination polymer complexes, 117
DCC model lattice parameter, 84–85
data analysis of Ce–Eu and Th–Eu, 85
DCC model, 86, 87
derivation, 85–88
model IV, 87–88
model extension attempt from macroscopic lattice parameter side, 89–92
quantitative BL(Eu$^{3+}$–O)-composition (y) curves, 88, 89
INDEX

DC magnetization, 435, 436
curve, 439, 440
magnetic moment, 435, 436
0D, 1D–3D network structure, 95
Debye velocity, 34
\(^{57}\)Mn, 60
Decomposition, of abundant mineral species, 584
Defect crystal chemistry (DCC) lattice parameter model, 76–79
Defect formation, 60
DF oxides, 74
Dicarboxylate anions, 116
Diffusion coefficients, 29
Diffusion mechanism, 59
Dilute Fe-doped YAG hyperfine fields, 526
Mössbauer analysis of, 526
Dilute magnetic semiconductors/insulators (DMS/DMI), 521
magnetic phase diagram, 522
magnetic properties, 525–526
DISCVER (discrete versions of Mössbauer spectra) program, 516
Disordered phases, structural studies, 226
disordered chloride fluoride phases, 232–241
Mössbauer spectroscopy, and bonding, 234, 236
sample preparation, 232, 234
tin sublattice strength vs. solid solution composition, 236–241
x-ray diffraction, and double disorder, 232–236
disordered fluoride phases, 226–232
lone pair stereoactivity, and tin coordination, 226–230
positional disorder, and orientational disorder, 230–232
Dissolved oxygen (DO) levels, 595
DNA/RNA polymerases, 344
DOS program, 35
DPS model spectra, representation, 517
Dried biomass (DB), 337
\(^{161}\)Dy in dysprosium dicarboxylates, 116
absorption area and number of methylene groups, relationship between, 119
common bands in infrared spectra, 117
experimental methods, 117
Mössbauer spectroscopy, 116, 118
Nowick–Wickman relaxation model, simulation, 121
polymeric dimensional state, relaxation time criteria, 121
spectral parameters, 118
temperature dependence, 119–120
Dysprosium–transition metal complexes, 117
EDTA treatment, 340
Eigen-polarizations, 17
Einstein-Smoluchovshi equation, 26
Electrical conductivity, 44, 603
Electrically conductive vanadate glass structural relaxation, 544
vanadate glass, electrically conductivity, 544
Electric field gradient (EFG), 12, 542
Electromagnetic isotope separation online (ISOL) technique, 59
Electron capture (EC) decay, 59
Electronic absorption, formula, 394
Electronic scattering length, 10
Electronic spin transition of Fe\(^{2+}\)
in ferropericlase, 47–49
Electron Mössbauer spectroscopy, 458–460
contribution, 460
depth-selective conversion electron Mössbauer spectroscopy (DCEMS), 459
electron spectrum, 459
electrostatic spherical analyzer, 459
spectra, 459
electron energy analyzer, 459
increasing surface sensitivity, 458–460
integral low-energy electron Mössbauer spectroscopy (ILEEMS), 460

diagram, 461
spectra recorded at different bias voltages from a 5 nm thick \(^{57}\)Fe film, 462
in ferropericlase, 47–49

Energy-dispersive x-ray analysis (EDX), 535
Ethylene glycol, in Ar atmosphere, 564
European Synchrotron Radiation Facility (ESRF), 4
Europium(III) dicarboxylates, 116
EXAFS analysis, 523
Experimental low-energy electron Mössbauer spectroscopy, 460–165
bias voltage, 462, 463
intensity of surface component relation, 463
channeltron, electron detector, 460, 461
channeltron detection efficiency curve, 461
dependence of number of counts recorded per unit time, 463
important parameter, 462
electrostatic energy analyzers, 460
transmission, IEMS, and ILEEMS spectra
acicular \(\gamma-\text{Fe}_2\text{O}_3\) nanoparticles, 464
\(\text{Fe}_{0.33}\text{NbTiP}_3\text{O}_{12}\), 464, 465
FactSage modeling, 589
under constant partial oxygen pressures pyrrhotite, 590
FARG room-temperature Mössbauer spectrum, 601, 602, 603, 604, 605
Fe-As-based high-temperature superconductors
experimental procedure, 535–537
injected electrons, 537–538
Ni-doped single crystals
new electron-rich species, 538–539
O2 adsorption, 539–541
Fe–As bonding, p–d hybridization, 538
Fe electrodes, magnette
nanoparticles, 489
Fe EXAFS spectra, 524
FeFe2O3/Ni6+ environments, in LiFe3Ni1−xO2 solids, 554
Fe(Ill)–salt solutions, hydrolysis reactions, 472
Fe ion, artificial drain, 600
FeIr alloy CO oxidation, exposure, 574
Fe ion, artificial drain, 600
Fe Mössbauer parameters
H2 volume fractions, 573
Ir–Fe/SiO2 catalyst, 572
quasi in situ, 570, 571
Fe Mössbauer spectroscopy technique
ammonium ferrocyanide, thermal decomposition, 371–374 decomposition
BaFe2O4 in dry/humid air, 515–516
iron(V) in air, 513–514
K2Fe4O9 in humid air, 514–515
of Na2FeO2 in air, 513
ferrates formation
Fe2O3/Na2O2, solid-state reaction, 516–517
ferrates (IV, V, and VI), 510–513
ferryl(IV) ion, 508–510
iron oxide, 470
nanocrystalline Fe2O3 catalyst, 376–377
nanocrystalline iron oxides
consecutive processes, 383–388
in-field transmission, 379–381
in situ high-temperature, 381–383
at various temperatures, 378–379
solid-state syntheses, 371
thermal conversion
Fe2(SO4)3 in air, 376
thermal decomposition
K2FeO4 in static air, 516
prussian blue in air, 374–376
use of, 371–377
Fe(NCX)2(bpa)2 (X=S, Se) assembled structures, 144
powder x-ray diffraction study, 145
structural change by desorption of propanol molecules, 144–145
time dependence of Fe Mössbauer spectra, 145
Fe(NCX)2(bpp)2 (2-benzene), 149
Fe Mössbauer spectrum, 149–150
Fe(NCX)2(bpp)2 in E/F
Fe–Ni production, in E/F
vs. Fe(Ni) alloy particle, microwave reduction, 616
Fe–Ni production, in E/F vs. calcine reduction degree, 612
Fe(NO3)3 solutions
characterization of, 475
dehydrolysis/predissociation, 473
particles precipitation, TEM images, 476
Fenton method, 596
Fe2O3
AFM images, 375
characteristic ordering temperature, 370
hysteresis loops, 369
individual polymorphs, stability of, 368
iron(II) oxide dihydrate, 376
modeled typical zero-field roomtemperature, 369, 370
Mössbauer hyperfine parameters, 369
nanoparticles, 369
crystallographic properties, 375
magnetization, temperature dependence of, 366
room temperature, 367
schematic representation of, 365
shape and size, 367
spin-flop field characteristic, 357
Fe2O3
iron(III) oxide, brown magnetic phase, 364
magnetization, temperature dependence, 366
room temperature, 367
schematic representation of, 365
γ-Fe2O3
low-temperature, 375
magnetic behavior, 361
Mössbauer spectra, 363
schematic representation, 360, 361
zero-field Mössbauer spectra, 362
FeOCl film, 386
β-FeOOH characteristic XRD patterns, 481
FeCl3 hydrolysis, 474
FE-SEM images of, 482
XRD lines, 476
γ-FeOOH particles
iron oxyhydroxide–surfactant, 485
lamellar microstructure, 476
precipitation process, 485
in situ nucleation, 486
α-FeOOH samples
Co2+ ions, 492
FE-SEM images, 491, 492
[Fe(pyrizine)(P(CN)4)] complex, 160
photoinduced spin conversion, between LS and HS states, 160–161
spin-crossover transition, thermally induced, 160
Ferrates
Fe-O bond distances/electron density on iron, 513
isomer shift values of, 512
oxidation state (OS) of iron, 512
parameters, 510
spectroscopic characterization, 506–508
Ferrate(VI) solution, XANES spectrum, 507
Ferrimagnetic phase transition, 173
Ferritin, 327
H/L-ferritin chains, 327
Mössbauer spectroscopy, 328
properties, 327
Ferromagnetic clusters, 411
Ferry(Iv), 509
Ferryl species, formation of, 505
Fe/SiO2 catalyst, 57Fe Mössbauer parameters, 570
Fe2(SO4)3 H2O isothermal decomposition, 377
Fe2(SO4)3 room-temperature Mössbauer spectrum, 376
Field cooling (FC) modes, 525
Flow temperature (FT) value, 586
Fly ash, Mössbauer spectrum, 585
Focusing monochromator (FM), 6
Free energy, 153
Galy–Andersson’s model, 209
Gamma decay, 292
controlled spontaneous, problems of, 292
models describing process of spontaneous decay, 292
limitations and solutions, 293
Gasification–fusion furnaces, 595
Gasification process, optimization, 588
INDEX

Gasifier graphical representation of, 588
Glu amino acid residues, 344
Glutamic acid (Glu) residues, 341, 342
Glutamine synthetase (GS), 334, 343
Goethite (α-FeOOH), 418–420, 421, 423, 426, 490–495
collinear antiferromagnet, 419
crystallographic structure, 420
divalent cations, influence of, 491–493
formation, 494
hyperfine parameters, 417, 418
magnetic properties, 419
nonstoichiometric, 419
platinum group metal cations, influence of, 494–495
room temperature Mössbauer spectrum, 419
stoichiometric, 419
tetravalent cations, influence of, 494
trivalent cations, influence of, 493–494
Grazing incidence scattering geometry, 34
Healthy and diseased brain tissue, asymmetry of Mössbauer spectra, 330–331
Healthy brain tissue, Mössbauer studies, 325–327
Heavy fermion superconductors, 127
magnetic ordering and paramagnetic relaxation in, 129–133
Heisenberg uncertainty principle, 26
Hematite (Fe₂O₃), 585
Eu-for-Fe substitution, 495
oxidizing conditions, 589
Heme (iron protoporphyrin IX) proteins, 315
characterization of intermediate states, and chemical significances, 316
chemical stability and other advantages, 316
store two oxidizing equivalents, nature’s strategies, 316
Hemosiderin Mössbauer spectroscopy, 328
properties, 327
Hexamethylenetetramine (HMTA), 473
High-pressure diamond anvil cell (DAC), 44
High-resolution monochromators (HRMs), 4
High-resolution neutron diffraction studies
Cu(I)—Cu(I) distance, 400
High-T₃ superconductors, 393–401
57Co-doped Yₓ₁₋ₓPrₓBa₂Cu₃O₇₋ₓ, 57
(See 57Co-doped
Yₓ₁₋ₓPrₓBa₂Cu₃O₇₋ₓ)

highest critical temperature, 394
Mössbauer probe, 397
out-of-the-chain vibrations, 400
studies, 394–401
YBa₂Cu₃O₇₋ₓ (YBCO)
(See YBa₂Cu₃O₇₋ₓ (YBCO))
High-valent Fe intermediates., 315
HS–LS transition, 152
Hund’s rule, 152, 175
Hydrolytical products, FT-IR spectra, 477
Hyperfine magnetic field, 380

ICEMS. see Integral conversion electron Mössbauer spectroscopy (ICEMS)
Imidazole, 177
In-beam Mössbauer spectroscopy (IBMS), 58
INES program, 35
In-field Mössbauer spectroscopy, 436
spectra, nanosized
NIO.25CaO0.25ZnO3Fe₂O₄, 436
Infrared (IR) spectra of Eu malonate, 116
Instrumentation, 4
detectors, 4
isotopes, accessible at ID18, 5
monochromators, 4–5
nuclear resonance beamline, 5–6
radioactive source, 4
UHV system for in situ nuclear resonant scattering, 6–9
Integral conversion electron Mössbauer spectroscopy (ICEMS), 385, 456–458, 462–465, 467
spectra from a 5nm 57Fe film deposited by evaporation on a Si wafer, 458
Intergovernmental Panel on Climate Change (IPCC), 595
Intermediate-spin complexes, pure, 178
core modification, 178
saddled deformation, 184–189
saddled deformation, 178–182
Ir–Fe bimetal catalysts, 564
Ir–Fe/SiO₂ catalyst, PROX reaction, 573
Ir–Fe/SiO₂ catalyst, PROX reaction, 573, 574
Iron, 43, 44
concentrations, 597
in substantia nigra, 328–329
experimental Mössbauer spectroscopic results, 53–54
labile, 328, 330
possible role in neurodegeneration, 331
preliminary Mössbauer studies, 329
concentrations in control and PSP tissues, 329
present in healthy and diseased brain tissue, 328
reduced laterite samples, phase content of, 615
simplified decay scheme, 59
spin and valence states, in silicate postperovskite, 52–54
spin transition in ferropericlase, 55
states in both perovskite and postperovskite, 55
total spin momentum of 3d electrons, 55
Iron-containing soda-lime silicate (ISLS) glass, 596
COD values, 598
dissolution rate of cations, 596
network modifier (NWM), 596
room-temperature Mössbauer spectra of, 596, 597
Iron-doped La₂Sr₂Fe₁ₓCo₁₋ₓO₇₋ₓ, 411–413
case of y ≤ 0.05 iron content, 411, 412
case of y ≥ 0.15 iron content, 412, 413
emission and transmission Mössbauer study, 411–413
Iron-doped YAG microdischarge treatment, 528–531
Iron(III)–hydroxy complexes formation of, 470
Iron(III) oxide, polymorphs, 353, 381
amorphous Fe₂O₃, 369–371
crystal structures, magnetic properties, 352
α-Fe₂O₃, 353–358
β-Fe₂O₃, 358–359
e-Fe₂O₃, 364–368
γ-Fe₂O₃, 360–364
Iron(III) porphyrin complexes axial ligands for, 177
def ormation modes, 178
molecular structures of Fe(Por), 186
Mössbauer and EPR spectra, 187
properties, 177
spin-crossover triangle in, 195–198
spin state, control of, 177
Iron oxide, precipitation crystallographic systems, 471
dense β-FeOOH suspensions, 480–483
57Fe Mössbauer spectroscopy technique, 470
hydrolysis reactions, 470–480
hyperfine magnetic fields (HMFs), 474
influence of cations
goethite, 490–495
hematite, 495–496
magnetite, 496
maghemite, 496
Iron oxide, precipitation (Continued)
properties of ferrhydrite, 483–485
lepidocrocite (γ-FeOOH), 485–487
maghemite (γ-Fe₂O₃), 487–490
magnetite (Fe₃O₄), 487
Iron oxides
classification of, 352
compounds, oxidation states, 506
Iron silicate glass
prepared by recycling coal ash, 596
Iron-tetraamidomacrocyclic ligand
Iron silicate glass
Laterite–lignite mixture
Continued
iron oxide, precipitation, 617, 618
real and imaginary permittivities, 619
Laterite mineral processing, 608
conventional processing, 610–612
microwave processing, 613–619
nickel production, from lateritic/sulfidic ores, 608
pyrometallurgical processing, 609
thermal effect, 610
LIB, see Li-ion batteries (LIB)
LIESST, see Light-induced excited spin-state trapping (LIESST)
LiFePO₄, lithium deinsertion/insertion, 555
LiFeVPO₄, glass, 548
electrical conductivity, 549
Light-induced excited spin-state trapping (LIESST), 153
for Fe(II) complexes, 153–157
for Fe(III) complexes, 157–159
highest critical temperature, 160
Li-ion batteries (LIB)
anode materials
alloys/intemetallc compounds, 558–560
antimony alloys, 560–561
conversion oxides, 556–558
cathode active material, 543–544, 547–550
cathode materials, 543, 554
insertion silicate electrodes, 555–556
layered intercalation electrodes, 554
phosphate electrodes, with olivine structure, 554–555
discharge/charge capacity, 549, 550
electrochemistry of, 549
isotopes, 553
of mobile phone, 543
physicochemical behavior, 550
room-temperature Mössbauer spectra of, 550
Linear polarization, 11
Lipkin’s sum rules, 35
Liquid nitrogen temperature (LNT), 475, 492, 493
Li₂Sb signal, 561
Li–Sn intermetallics, 558
isomer shift, 559
Lithium-ion battery, nucleus/transion, 553
Ln complexes, of dicarboxylates, 116
Ln³⁺/⁴⁺ ionic radii ratio (x0026A;x00070;x00070;), 75
Lns-Mössbauer, and lattice parameter data of DF oxides, 79
¹⁵₁Eu-Mössbauer, and lattice parameter data, 79
DF-type Ce–Eu, 80
F-type U–Eu, 79–80
Hf–Eu, 80
P-type stabilized Zr–Eu, 80
Th–Eu, 80
¹⁵⁵Gd-Mössbauer, and lattice parameter data, 80–84
Lns-Mössbauer data analysis, 84–85
Lone pair stere activity, and material properties, 241–242
Low-energy electron diffraction (LEED), 6
Low-energy electrons technique, 455
Magnesium silicate perovskite, 49
Magnetic anisotropy, 362
Magnetic cluster model, 410
Magnetic dipole hyperfine interactions, 17
Magnetic force microscopy (MFM), 429
Magnetic susceptibility, and saturation moment, for ground doublet, 107
averaged powder moment, 110–113
calculated paramagnetic relaxation spectra
of Np for different fluctuation rates, 109
comparison of energy-level, 110
free ion model, 108–109
ising-type magnetic moment, 109–111
comparison of experimental and theoretical T plots, 112
experimental and theoretical magnetization curves, 112
for O=Ne-O axes collinear crystals, 112
with/without high-temperature approximation, 111–112
polycrystalline samples fast in STYCAST, 107
Magnetite/maghemite, 353, 420, 421
formation of Co²⁺ ion concentration, 496
Ni²⁺ ion concentration, 496
Zn²⁺ ion concentration, 496
hyperfine parameters, 417, 418
magnetic properties, 420
nanoparticles, 489
nonstoichiometric, 420
vers, stoichiometric, 420
stoichiometric, 420
superparamagnetic magnetite particles, 420
three sextets, 420
Verwey transition, 420, 421
Manganese, 59
Markovian diffusion, 26
Metal-inorganic-transport (MIT) family, 336
Metallicity, 395, 396
Microdischarge between carbon felts (MD/CF), 522
Microenvironment, 345
Microwave processing
bulk hematitic laterite ore x-ray pattern of, 614
drying rates, 613
heat generation, 612
hematitic nickeliferous laterite ore, 613
XRF chemical analysis, 613
laterite mineral processing, 613–619
TM₉₀ cavity system, 614
Minerals pyrite (FeS₂), 576
Manganese, 59
Na⁺ concentrations, 597
NaCl, 471
Nano-crystalline CoSn, 558
Nano-regime, properties, 429
Nanosized Al-1 at % Fe, 442–446
fractional integrated intensity of (111) peak, 443
Mössbauer field distribution of Mössbauer spectra, 442, 443
M–H curves at room temperature, 445
Mössbauer parameters, 444
properties, 442
quadrupole splitting, 444
room-temperature Mössbauer spectra, 442, 443
self-annealing effect, 444
variation of bulk magnetic parameters, with grain size, 446
variation of integrated P(H) with milling time, for various field component, 444
Nanosized Fe-Al alloys coercivity H_c, 446
hysteretic properties, ferromagnetic material, 446
calculation, 446
Nanosized Fe–Al alloys, 441–446
ball-milled samples, 445
bcc Fe grains, 445
bulk Fe-Al systems, 442
DC magnetization measurements, 445
intermetallic Fe-Al systems, 441
mechanical alloying (MA), alloy synthesis, 442
Mössbauer studies results, 445
nano-crystalline Fe-Al systems, 442
Nanosized Al-1 at % Fe, 442–446
(See Nanosized Al-1 at % Fe) unmilled samples, 445
Nanotechnology, 3
Néel P-type ferrimagnet, 366
Néel's model, 438
Néel temperature, 416, 418, 439, 494
Neutony(+1) complexes, 95
Mössbauer and magnetic study, 98–106
(NH₄)[NpO₂(O₂CH₂)₂], 98–100
[(NpO₂)₂(O₂C₂H₄H₂O)₂][–]
H₂O, 104–106
[NpO₂(O₂C₂H₄OH)(H₂O)), 100–101
[NpO₂(O₂CH)(H₂O)), 101–104
Neptunyl monocation (NpO₂•)⁺
magnetic property, 97–98
Network former (NWF), 600
Network modifier (NWM), 600
Neurodegeneration, 324–325
Neutron in-beam Mössbauer spectroscopy, 66
Nickel production from lateritic/sulfidic ores, 608
Ni-ferrihydrite, 492
N-methyl-D-aspartic acid (NMDA) receptors, 316
Nonmagnetic materials, 12
237Np Mössbauer relaxation spectra, 106–107
conditions for ferro- and paramagnetic states, 106
Kramers ion of lanthanide elements, 107
Wickman's relaxation model illustration, 107
Zeeman pattern, 106
237Np Mössbauer spectroscopy, 96–97
NTA (nanotechnology assorted) glassTM, 543, 544, 546, 547
Nuclear forward scattering (NFS), 249
Nuclear inelastic interaction, 30
Nuclear inelastic scattering, 4, 6 experiment, 33
Nuclear inelastic spectrum, 33
Nuclear resonance beamline ID18, 5–6
Nuclear resonant scattering (NRS), 3, 4, 13, 23, 28, 30, 225, 256, 269
delayed, angular dependence, 22
experimental geometry used in, 12
intensity in forward direction, 26
time spectra, 19, 20, 27
Nuclear transitions, Mössbauer spectroscopy (MS), 552
Off-placement, O(4) atoms, 399, 400
Orange II dye, 505
Orthorhombic distortion, 202
Orthorhombic europium orthoferrite (EuFeO₃), 496
Oxalato complex, 116
Oxide glass, 542
Oxidative stress, 324–325
Parallel-plate avalanche, 61
α-PbSf₄, structural determination
historical perspectives, 216–217
Mössbauer spectroscopy, 220, 224
neutron powder diffraction, 225
sample orientation, 223
sp³d⁵ hybridization, and VSEPR rules, 225
α-PbSnF₄, structural determination (Continued)
tetragonal symmetry, 225
x-ray powder diffraction, 221, 222
Peroxynitrite structure, 52, 407
binary oxides, 393
silicate, 43
strontium ferrate (SrFeO₃), 401, 402
x-ray diffraction, 523
Phase transitions, 203
PHOENIX program, 35
Phonon density, 4
Phonon DOS of Fe films, 36
PHONON program, 37
Phosphate glass, 542
Photoinduced spin crossover
phenomena, 153
LIESST for Fe(II) complexes, 153–157
LIESST for Fe(III) complexes, 157–159
Photoinduced spin transition, 153
Plastic scintillation counters, 61
Polarization, 17
Porphyrin analogues, 179–180
Potassium ferrate(VI) sample
in situ measurement, 515
Preferential CO oxidation, in H₂
catalyst preparation, 564–565
catalytic activity test, 565
Ir–Fe/SiO₂ catalyst, 567–568
calcined catalyst, 569
⁵⁷Fe Mössbauer parameters, 570
H₂ concentration, effect of, 568–569
Mössbauer spectra
characterization, 565
PtFe alloy nanoparticles catalyst,
565–567
PROX reaction
Ir–Fe/SiO₂ catalyst, 573, 574
Prussian blue (PB)
formation of, 372
hyperfine parameters, 374
Pyridine, 177
Pyrite, 579
to ferrous sulfate, conversion, 582
Pyrrhotite (FeₓS), 585
Quadrupole splitting (QS), 44, 75, 228,
261, 273, 339, 395, 484, 537,
542, 578
Quinine hydrogen sulfate (QHS), 475
Radiative decay, 15, 16, 20, 292
Raman spectroscopy, 160
Rapid spin equilibrium in solid state,
168–172
γ-Rays, 3, 58, 59
Recycled iron silicate glass
water-purifying ability of, 595–596
Recycled silicate glasses
characterization of, 596
electromagnetic property of, 601–605
Fe₂O₃ contents, 599
water-purifying ability of, 596–600
Relative absorption area (RAA), 75
Resonant scattering length, 11
Reverse-LIESST, 156
Rh³⁺ ions iron oxide samples
synthesis, 495
RI beam irradiation, 60
Room temperature Mössbauer
spectrometry (RT-MS)
Akaganeite, 416, 417
Goethite, 418
magnetite/maghemite, 420
Rust layers, 421–426
α calculation, formula, 421
classification, 421
iron oxides and oxyhydroxides,
quantitative characterization, 421
Mössbauer fraction f, 421
relative phase abundances, r, 421
ten steel, 421–426 (See also Steels)
ternary rust diagram, 421
Rutherford backscattering, 59
Shannon’s ionic radii, 75
Silicate glass, 542
recycling (See Recycled silicate glass)
Silicate postperovskite
spin and valence states of iron in, 52–54
Silicon
photomicrograph of, 586
SEM element mapping, 585
Silicate glass, 542
recycling (See Recycled silicate glass)
Silicate postperovskite
spin and valence states of iron in, 52–54
Silicon
photomicrograph of, 586
SEM element mapping, 585
Single-molecule magnet (SMM), 113
α-SnF₂, structural determination, 213
historical perspectives, 213–214
work of Bergerhoff, 214–216
Sodium ferrate decomposition
products, 517
Sodium ferrate, DPS model, spectra/
representation, 517
Sodium-ion battery (SIB), 544
Soil diazotrophic rhizobacterium A.
brasilense, 336
Sol–gel method
sample preparations, 523
YₓFe₂O₁₂ (YIG), 522
Spin–crossover phenomenon, 143, 153
in assembled complexes Fe
(NCX)₂(bpa)₂ (X=–S, Se, BH₃)
by enclathrating guest
molecules, 145–147
coordination angle of anion, 147
2D grid structure, 146
⁵⁷Fe Mössbauer spectra, 146
transition temperatures in 1D
structure, 147
x-ray structural analysis, 145
calcium distribution in Fe
(OETPP), 180
data of five-coordinate Fe carrying
anionic axial ligand, 180
involving intermediate-spin state, 189
spin crossover between S=3/2 and
S=1/2, 189–191
spin crossover between S=3/2 and
S=5/2, 192–195
Mössbauer spectrum of [Fe
(OETPP)], 181
orthalilo-meta-H signals, movements, 180
photoinduced, for [Fe(pyrazine)
(PhCN)₄] [pyrazine= C₄H₄N₂], 153
temperature dependence of effective
magnetic moments, 181
Spinel ferrites, 230–241
Cr-substituted Co–Zn ferrite
(CrₓCo₀.₅₋ₓZn₀.₅Fe₂O₄), 430
cation distributions, 431
tetrahedral A sites, 430, 431
tetrahedral B sites, 430, 431
intersublattice interactions JₐB, 430
intrahublattice interactions Jₐₐ and
Jₐₜ, 430
microstructure determination,
430–433
Mössbauer technique, 430
spectra of CrₓCo₀.₅₋ₓZn₀.₅Fe₂O₄,
with/without external field
of 5T, 434
structural parameters
calculation, 430
variations of hyperfine fields at A and
B sites in CrₓCo₀.₅₋ₓZn₀.₅Fe₂O₄, 431
nanoferries, elucidation of bulk
magnetic properties using
in-field Mössbauer
spectroscopy, 434–435
ball-milled Ni₀.₃₅Zn₀.₆₅Fe₂O₄, 435,
436
canting angle φ, calculation, 435
example, impurity-free
CrₓCo₀.₂₅Zn₀.₇₅Fe₂O₄, 434,
436
interactions among sublattice in
samples, 435
low-temperature (LT)
spectrum, 434
Mössbauer measurements, 435
real-time (RT) spectrum, 434, 435
nanoferries synthesis, coprecipitation
method, 431
average particle size (D), Scherrer formula, 432
α–Fe$_2$O$_3$ impurity, 431, 432
particle size distribution, 433
room-temperature Mössbauer spectrum, 433
TEM micrographs, 433
XRD spectra of Cr$_{0.25}$Co$_{0.25}$Zn$_{0.5}$Fe$_2$O$_4$, 432
superparamagnetic nanosystems, effect on magnetic properties, 236–241
antiferromagnetic (AFM), 339
canting effects, 436, 438
coercivity, calculation, 439
core-shell effect, 436, 437
dilute system vs. real system interparticle interactions, 236–241
exchange bias field, calculation, 439
ferromagnetic (FM), 439
H_C, coercive field plot, 440, 441
H_N, exchange bias field plot, 440, 441
low-temperature Mössbauer spectra, 437
M–H loops, 438, 439
parameters calculation, formula, 438
parameters, Mössbauer Fitting Using Core-Shell Model, 437
remanence, function of coiling field, 441
room-temperature Mössbauer spectra, 43
single-phased nanosized particles, 436
ZFC curve, blocking temperature T_B, 436, 438
Spin equilibrium, and valence fluctuation
antiferromagnetic interaction between HS state, 175
(n-C$_4$H$_9$)$_4$N[FeIIIFeIIImto]$_2$, 173
concerted phenomenon coupled with, 173
effective magnetic moment, 173, 175
57Fe Mössbauer spectra, 173, 174
ferrimagnetic phase transition, 175
inverse magnetic susceptibility, 173
schematic feature of rapid spin equilibrium in FeIIIO$_5$$_2$ site, 175
Spin-pairing transition, 51
Spin-state isomers, 177
SRPAC, see Synchrotron radiation-based perturbed angular correlations (SRPAC)
Stannous fluoride SnF$_2$, 202, 203
lead-containing phases, 203, 204
Steels
Colombian carbon steels (CS), 421–424
composition, 421
77K Mössbauer spectra total immersion tests, 423
Mössbauer spectra, room temperature
Dry-Wet cycles, 425
total immersion tests, 422
Colombian weathering steels (WS), 421–423
composition, 421
77K Mössbauer spectra hit rusts, Dry-Wet cycles, 425
scraped rust, Wet-Dry cycles, 425
total immersion tests, 423
Mössbauer spectra, room temperature
dry-wet cycles, 425
total immersion tests, 422
degradation process, chloride ions, 424
dry-wet cycles, 424–426
Japanese weathering steels (WS), 422–423
composition, 422
Lorentzian profiles, 422, 423, 425
outdoor tests, 426
total immersion tests, 421–424
adherent rust, 422
Strontium ferrate (SrFeO$_2$$_3$), 401–407
properties, 401
Sr$_{0.95}$Ca$_{0.02}$Co$_{0.5}$Fe$_{0.5}$O$_{3.3}$ vs. Sr$_{0.95}$Ca$_{0.02}$Co$_{0.5}$Fe$_{0.5}$O$_{3.7}$, 401, 402
Sr$_{0.5}$Ca$_{0.5}$Co$_{0.5}$Fe$_{0.5}$O$_{3.3}$, study, 405–407
brownmillerite-structured antiferromagnetic CaFeO$_2$$_3$, 405
CO$_2$ absorption, 407
EMS spectra, 406
microheterogeneity, 406
Mössbauer Parameters of the two major sextets, 406
TMS spectra, 406
Sr$_{0.95}$Ca$_{0.02}$Co$_{0.5}$Fe$_{0.5}$O$_{3.3}$, study, 405–407
assumptions on the basis of TMS and EMS experiments, 404
carbon dioxide absorption experiments, Mössbauer spectra, 405
CO$_2$ absorption spectra, 405
3D alternating models, 404
difference in TMS and EMS spectra, 403, 405
differing oxygen ligand environments for Fe and Co in the lattice, 402
EMS spectra, 402–404
long-range magnetic order, 404
nearest neighbor (NN) cation distribution, normal (TMS) and nucleogenic 57Fe (EMS), 403
orthorhombic microdomains, 404
perovskite lattice, 402, 404
phase-separated models, 404
quadrupole splittings difference, 403, 404
relative number of NN Fe and Co, 404
synthesis, 402
TMS spectra, 402–404
x-ray diffraction experiments studies, 402
SrFeO$_2$$_3$ brownmillerite structure, 404
Succinato (Suc) complex, 116
Surface Mössbauer studies
biomedical application, 466, 467
diagnosis, 466
Fe$_2$O$_4$, an ancient material, 466–468
ICEMS investigation, 467
ICEMS spectra
ILEEMS investigation, 467
ILEEMS surface sensitivity vs. ICEMS surface sensitivity, 467, 468
magnemistic film application, 467
Superconducting sheets, 401
Superconductor isomer shifts, 400, 401
Super iron battery, 506
Surface analysis, 455
Surface analytical technique, requirements, 455
Synchrotron Mössbauer spectroscopy (SMS), 44
extreme P–T conditions, 44
simulated time spectra, 46
spectra evaluation, 44–46
Synchrotron radiation-based Mössbauer techniques, 4, 10
brief theoretical background, 10–12
coherent elastic nuclear resonant scattering, 10
coherent quasielastic nuclear resonant scattering, 25–30
incoherent inelastic nuclear resonant scattering, 30–38
carbon resonant scattering in grazing incidence geometry, 20–24
time spectra of nuclear resonant scattering, 12–20
Synchrotron radiation-based perturbed angular correlations (SRPAC), 250
applications in bioinorganic chemistry, 258
57Fe NFS of oxidized Pd D14C Fd, 261–262
57Fe NFS of oxidized Rc FdVI, 260–261
57Fe NFS on oxidized Fe protein, 262
57Fe NFS on the resting state MoFe protein, 263–264
[4Fe–4S] ferredoxin from Pyrococcus furiosus, 259
[2Fe–2S] ferredoxin VI from Rhodobacter capsulatus, 258–259
nitrogenase, 259–260
nuclear forward scattering, 258
detectors and detection methods, 256–257
electric hyperfine interactions, 252, 254
experimental aspects of NFS and SRPAC, 255
experimental setup, general aspects, 255
experimental setup in NFS and SRPAC, differences, 257–258
magnetic hyperfine interactions, 250–252, 254–255
model complexes examined by, 264
57Fe SRPAC of Fe2(S2C3H6)(CO)6, 250, 253, 269
57Fe SRPAC of Ni ferrite, 265–267
61Ni SRPAC of Ni ferrite, 267–268
monochromators, 255–256
sample requirements, 258
as scattering variant of TDPAC, 250
technical background, 250
theoretical aspects, 252–254
theoretical aspects of NFS, 250

Tanabe–Sugano diagram, 152
TDPACs. see Time differential perturbed angular correlations (TDPACs)
Tetramethylammonium hydroxide (TMAH), 475
TG Labys-DSC system, 616
Thermal hysteresis, 152
Thermal stability, 60
Thin film multilayer systems (MLS), 446–453
DC magnetization studies, 448–450
experimental and fitted parameters of as-deposited and at high-temperature M–H Loops, 449
experimental hysteresis loops, 450
hysteresis loops of as-deposited 57Fe/Al MLS at different temperatures, 450
nonsquare loop, coercivity, 450
RT hysteresis loop, formula, 449
spin orientation, Fe film, 450
deposition process, 447
57Fe/Al MLS, 446–453
Mössbauer (CEMS) study, 451, 452
annelaing conditions, 452
annelaing effects, 452
close-lying Lorentzians, 451
complementary characterization techniques, 452
crosssectional TEM micrograph, 452
heat formation effects, 452
high-temperature study, 452
hyperfine fields, 451
magnetization studies, 451
room-temperature CEMS spectra of 57Fe/Al MLS, 451
ultrathin Fe/Al MLS, studies, 451
properties, 446, 447
structural characterization, 447, 448
electron density profile (EDP), 447
electron micrographs and SAD patterns of as-deposited and annealed Fe/Al MLS, 447, 449
ion beam sputtering (IBS) technique, 447
TEM micrograph eviews, 448
XRR measurement of 57Fe/Al MLS, 447, 448
XTEM investigations, direct observation, 447
Time differential perturbed angular correlations (TDPACs), 249, 250, 253, 269
Thin-containing alloys, barycenter position, 559
Tin electronic structure, and Mössbauer spectroscopy, 208
bonding type, and coordination, 208
chemical isomer shift δ, 212
gemetry agreement with VSEPR model, 209–211
quadrupole splitting, 212–213
Sn2+ ion, 208
spin system of 119Sn nuclide, 211–212
tin(II) covalently bonded, 208
Tin(II) fluoride SnF2, 202
covalent bonding, and polymeric structure, 205–207
crystal structures, 204
experimental aspects, for pure phases, 203
forming mixed fluorides with alkaline earth metal fluorides, 202
lead-containing phases transitions, 203
Mössbauer spectroscopy, 204
PbCl2-type structure, 207–208
α-PbSnF4 structure, 207
phase characterization and elemental analysis, 204
projection of structures, 206
pure phases, 203
react with BaCl2 2H2O in aqueous solutions, precipitate function of, 203
sample preparation, 203
spectrometer equipped with helium closed-cycle refrigerator, 205
typically ionic structure, 204–205
Transition metal ion, 152
Transmission electron microscopy (TEM), 393, 429
vs. emission Mössbauer spectroscopy (EMS), 393, 394
Transmission 57Fe Mössbauer studies, 396
L12-Tryptophan oxidation by heme-based enzymes, 316–318
chemical reaction catalyzed by MauG, 318–319
high-valent BIS-Fe(IV) intermediate in MauG, 319–320
oxidation/oxygenation of free, and protein-bound Trp, 317
utilization of two c-type hemes by MauG to perform, 317
tryptophan 2,3-dioxygenase (TDO) ligand-bound structure, 317
Tryptophan 2,3-dioxygenase (TDO), 316–318
high-valent Fe intermediate, 320–321
ligand-bound structure, 317
Two-XRD-line ferricyanide XRD pattern of, 485
Ube municipal garbage combustion plant, chemical analysis, 598
UHV system, 6–9
APD detector, 7, 8
Be windows, 7
distribution chamber, 7
Kirkpatrick–Baez focusing mirrors, 9
load-lock chamber, 8
low-energy electron diffraction, 6
manipulator, 6
NRS chamber, 8
nuclear inelastic scattering, 6
portable chambers, 8–9
preparation chamber, 6
quartz-balance monitor, 6
sample holders, 8
sample storage chamber, 7
support table, 9
Ultrahigh vacuum (UHV), conditions, 4
Ultrasonic spray pyrolysis (USP), 386
\(^{238}\text{U} \) Mössbauer spectroscopy, 123
application for, 124
heavy fermion superconductors, 127
magnetism in uranium compounds, 125
decay scheme, 124
energy spectrum of \(^{242}\text{PuO}_2 \) source for, 124–125
nuclear g-factor in excited state of \(^{238}\text{U} \) nuclei determination of, 125, 127
\(^{238}\text{U} \) NMR measurements of \(\text{UO}_2 \) in antiferromagnetic state, 125–127
UNILAC accelerator, 59
Uranium-based heavy fermion superconductors, 127–129
observed hyperfine field, 133
temperature dependence of spectra, 134
\(^{238}\text{U} \) Mössbauer spectroscopy, 133–134
Uranium dipnictides, \(^{238}\text{U} \) Mössbauer spectroscopy, 134
application to two-dimensional (2D) fermi surface system, 134–137
characteristic physical properties, 134
crystal electric field (CEF) contributions, 136
de Haas–van Alphen effect, 134
hyperfine interactions correlated with, 135–136
isomer shift, 135
Néel/Debye temperatures, 136
nuclear quadrupole interactions, 136
orbital occupancy, 134
parameters, 136
plots of hyperfine coupling constant, at uranium nuclei, 137
spectra, 135
Uranium isotopes, 124
US20 glass measurement, Mössbauer spectroscopy (MS), 599
Valence shell electron pair repulsion (VSEPR) model, 209
Vanadate glass, 548
electrically conductivity, 544–547
Variable-temperature \(^{57}\text{Fe} \) Mössbauer spectrometry (VT-MS), 415, 416
advantage, 415
corrosion experiments, 424
physical properties of iron phases, 423
Vibrating sample magnetometer (VSM), 429
iron-doped yttrium aluminum oxides, 525
magnetization measurements, 525
Vibrating sample magnetometry (VSM), 429
Vibrational entropy, 38
VICKSI accelerator, 59
Vienna ab initio simulation package (VASP), 37
VO\(_5\) pyramids, 542
VO\(_4\) tetrahedra, 544
Waste materials, recycling, 596
Waste treatment plant, 598
Water-purifying minerals, 595
Wet chemical method, 489
Wüsite, 352
XPCS spectroscopy, 7, 9
X-ray absorption fine structure (XAFS), 74, 75, 77, 90, 567, 573
iron K-edge, 485
X-ray absorption near-edge spectroscopy (XANES), 49, 472, 506, 507, 555
X-ray diffraction (XRD), 7, 10, 44, 48, 52, 73, 75, 90, 128, 145, 147, 207, 218, 232, 404, 429, 442, 480, 484, 522, 523, 535, 561, 599, 613, 616
Rietveld refinement, 52
spectrum Cr\(_{0.5}\)Fe\(_{0.5}\)O\(_{4}\), 432
X-ray emission spectroscopy (XES), 49–52, 55
X-ray photoelectron spectroscopy (XPS), 386, 429, 457, 458, 460, 464, 490
X-ray studies, for Cu(1)—Cu(1) distance, 400
YAG. Al(VI), schematic crystal structures, 524
YAG doped, Mössbauer analysis of, 526
Y\(_3\)Al\(_{0.96}\)Fe\(_{0.02}\)O\(_{12}\)
bulk magnetization, 531
Y\(_3\)Al\(_{0.8}\)Fe\(_{0.1}\)O\(_{12}\)
XRD patterns and lattice parameters, 523
YBa\(_2\)Cu\(_{3}\)O\(_{7-\delta}\) (YBCO), 393, 395–401
B to C species interconversion, 396, 398–400
critical temperature, 394
emission Mössbauer spectrum, YBCO fully oxygenated state, 396
interconversion, species B and C, 396
major species, 395
Mössbauer parameters obtained, YBCO fully oxygenated state, 395
nucleogenic Fe—O three major species, structure, 397
straightening of the Cu(1)—O(4) chain, 400, 401
structure of unit cell, 395
thermodynamic parameters, as function of Pr content of Y\(_{1-x}\)Pr\(_x\)Ba\(_2\)Cu\(_3\)(\(^{57}\text{Co})O\(_{7-\delta}\), 399
vs. Fe-doped YBCO, 396
Y\(_{0.9}\)Pr\(_{0.1}\)Ba\(_2\)Cu\(_3\)(\(^{57}\text{Co})O\(_{7-\delta}\), 399
Y\(_{0.55}\)Pr\(_{0.45}\)Ba\(_2\)Cu\(_3\)(\(^{57}\text{Co})O\(_{7-\delta}\), 399
Y\(_3\)Fe\(_2\)O\(_{12}\) (YIG)
magnetic garnet/transparent, 522
sol–gel method, 522
Yttria-stabilized zirconia (YSZ), 74
Yttrium EXAFS spectra ions, 524
radial structural functions, 524
Y\(_3\)(YAl\(_x\)Fe\(_{1-x}\))O\(_{12}\)
magnetic susceptibility, 526
magnetization, temperature dependence, 526
normalized iron EXAFS spectra, 525
Zero field cooling (ZFC), 525