Index

Note: Page numbers in *italics* refer to figures, those in **bold** refer to tables and boxes and those with suffix ‘n’ refer to footnotes

AA1000 SES stakeholder analysis 177
accountability 175
acidification 244
 animal husbandry impact 42
 life cycle assessment 48–9
adaptive capacity 63
adaptive response 63
agricultural policy 79–83
air quality, impact of dairy industry 60
ambassadors for sustainability 217
ammonia emissions 60
animal health 61
animal identification/registration 79, 80
Arla Foods 50
asset value of farm 65
authenticity 213
average cost per kg of milk 69–70

BAT/BREF (Best Available Techniques and Reference Document) Directive (EU) 164
beef production 14, 42, 44–5
Beemster cheese 192, 193
 ambassadors for sustainability 217
Beemster Sustainability Day 215–16
C2C Compass 206, 209–10
cattle feed 209
communication of sustainability 212–17
consultative body **205, 206**
continuity 197
Cow Compass 206, 208–9, 212
cow-to-cheese chain 212
employee commitment 206–7
farmers’ workshops 203, 205
free-range cows 207
from cow to cheese 195–6
future plans 211–12
Good Dairy Award 209
Happy cows 207–9
Happy farmers 203, **204, 205–7**
Happy planet 209–12
integral approach 196
life cycle analysis 210–11
price premiums 206
public relations 215–16
quality mark/label 215
sharing of sustainability programme 211–12
sustainability organisation **205**
transport 211, 214
triple H 194, 196, 200, 202–3, **204, 205–12**
see also Caring Dairy sustainability programme
Belgium, sustainable soy for dairy feed 174
Ben & Jerry’s ice cream 192, **205**
quality mark/label 215
beverages
 carbon footprint 5
NDCI index 5, 6
nutrient density 5–6
biodiversity, impact of dairy
 industry 60–1
biofuels, life cycle
 assessment 40–1
biogas production 27
biological cycle 222
closing 226
blue water 36
boiler flue gases, heat
recovery 105
boiler optimisation
 strategies 106–8
combustion efficiency 107
breakthrough technologies 245–6
 business case 248, 249
business case 163–89, 247,
 248, 249
 new technology
 implementation 248, 249
 process-driven approach
 164–6
 product-driven
 approach 166–9
success factors for creation of
 more sustainable
 processes/products 169,
 170, 171, 172, 173–5
sustainability 180–3
 implementation 175–7, 178,
 179–80
see also profitability
business environment 63

C2C® 221–41
 carbon footprint
 reduction 246–7
case study 237–8
cooperatives 232
current solar income use 223,
 224
dairy chain
 application 233–7
 innovations 233–40, 244–7
dairy industry 232–8
DairyLink cooperative design
 project 237–8
design process 227
diversity celebration 223, 224
food production design 225–7
innovations 234, 235, 236
materials flow 235–6
mutual dependability/
 partnership acceptance 235
partnership 227
plant design 236–7
principles 223–4, 227
process flow diagram 234
process optimisation 232
PROPER model 229–31
roadmap 226, 227
SMART goals 226–7
sustainability matrix 227, 228
terminology 225
time factor 235
value adding 236
waste equals food 223–4, 247
C2C Compass 206, 209–10
capital costs 182
carbon dioxide emissions 19, 20
 animal husbandry impact 41
milk processing 88
Tetra Pak reduction 153
transport 211
carbon footprint 3, 4, 244
 beverages 5
drying processes 181
milk 4, 5
production chain 171, 172,
 245
reduction
 with breakthrough
 technologies 246
 through C2C® 246–7
standardisation 4
carbon sequestering 27
Caring Dairy sustainability
 programme 192, 193, 194
ambassadors 217
application 205
communication of
 sustainability 212–17
from cow to cheese 195–6
environmental analysis 200, 202–3, 205
improvement cycle 194
integral approach 196
Konijn family 195
quality mark/label 215
sustainability indicators 198–200, 201–2, 202–3
determination 199–200
Carrefour, Consumer Goods Forum global protocol 139
carton producers, traceability of wood for paperboard 155
cattle feed 61, 209
 integrated sustainable feed 211
 sustainable soy 174
centrifugal pumps 97
chain innovations 233–40, 244–7
cheese 20, 21, 22
 environmental burden 47
 greenhouse gas emissions 88
 heat recovery in manufacture 105
 raw milk production impact allocation 46–7
China, packaging legislation 126
civil society organisations see non-governmental organisations (NGOs)
cleaning in place (CIP) 98, 99
 optimisation 102
 water use 111
 cleaning of dairy processing premises/equipment 97–9
 optimisation 102
 self-cleaning equipment 246
 water use 111
cleaning out of place (COP) 99
climate change
 animal husbandry impact 41
 greenhouse gas emissions from dairy industry 26
 life cycle assessment 48–9
 packaging impact 130–2, 133, 134
 packaging potential 143, 144–6
Climate Savers programme (WWF) 153–4
combined heat and power 108
Common Agricultural Policy (CAP) 81
Common Market Organisation (EU) 81–2
communication 5–6
 authenticity 213
 collaboration between company and NGO 180
 companies with stakeholders 179–80
 company CEO 171, 173, 175
 external by companies 175, 180
 future strategies 247
 integrated 214
 negative 167
 reporting 215
 stakeholders 244
 by companies 179–80
 sustainability 212–17
 sustainable message 213–14
companies
 accountability 175
 capital costs 182
 communication
 by CEO 171, 173, 175
 with stakeholders 179–80
 cooperation with NGOs 173
 corporate image 198
 cost savings 183
 customer loyalty 181–2, 183
 employee motivation/productivity 181
 entering new markets 182
 external communication 175
 financial risk costs 182
 innovation 182
 management role 175, 176
 policy adoption 183, 187–9
 policy influence by stakeholders/NGOs 176–7, 178
 practical evidence building 175–6
 role within society 184–5
 scientific back-up for sustainability 174–5
 stakeholders
companies (cont’d)
demands 196–7
policy influence 176–7, 178
response to
preferences 197–8
strategy adoption 183, 187–9
support generation 175–6
sustainability
commitment 171, 173
implementation 175–7, 178, 179–80
scientific back-up for 174–5
trend towards 183–4
transparency 175
value creation 180–3

Compassion in World Farming, Good Dairy Award 216

competitiveness 67–70
definition 70
diamond framework 68
EU dairy sector 75, 77
indicators 69–70
producer’s perspective 68
profitability indicator 68–9
total economic costs 69
total operating costs 77
compressed air systems 99, 100, 101, 103–4
condensed milk 22
Cono Kaasmakers dairy cooperative 192, 193
consumer expectations
packaging 124
sustainability 198
Consumer Goods Forum 129
member engagement with commercial partners 146
packaging sustainability protocol 139, 140–1, 141, 142–3, 143, 144–6
cooling of milk 87–8, 99–101
cooling water 36
cooperatives 177, 183
C2C® 232
Cono Kaasmakers 192, 193
continuity 197
green sustainability 197
corporate image 198
corporate social responsibility (CSR) 173, 187–9
motivations 196–8
costs
absolute 70
average per kg of milk 69–70
capital 182
damage 41
depreciation 67
financial risk 182
fixed 58
milk production 75, 76, 77
savings 181, 183
total economic 69
total operating 77
Cow Compass 206, 208–9, 212
cows, free-range 207
Cradle to Cradle see C2C®
cream, raw milk production
impact allocation 46–7
critical milk price 72–5
customer loyalty 181–2, 183
dairy plant
design 236–7
milk processing 20, 21
dairy processing 87–91, 92, 93, 94, 95–115, 116
automated production units 246
boiler optimisation strategies 106–8
chain 233–7
cleaning of premises/equipment 97–9
optimisation 102
self-cleaning equipment 246
water use 111
cooling of milk 87–8, 99–101
drying of milk 95–6
breakthrough technology 246
condensate use 111
cost savings 181
high solids evaporation 115, 116
water recovery 238
energy pinch 104–6
evaporation of milk 93, 95, 115
greenhouse gas emissions 88
heat recovery/reuse 104–6
heat treatment of milk 91, 92, 93, 94
optimisation 101–2
membrane filtration 96–7
optimisation 101–14
plant design 236–7
pre-treatment of milk 89–90
product loss reduction 103–4
refrigeration 99–101
storage of milk 89, 99
time factor 235
utilities 99–101
waste stream valorisation 112–14, 246
see also energy use; water use
dairy production
change in absolute costs 70
European Union 58–9
fixed cost structure 58
food safety 79, 80
livestock asset 56
management capabilities 61
model-based 114–15
negative effects 56, 58
payback periods 165–6
process improvement 165, 168–9
process manageability 166
resilience 58–9
sustainability 58–75, 76, 77, 78, 79–84
traceability 79, 80
transparency 79, 80
world 56, 57
see also global dairy production
dairy products 20, 21
allocation 42, 44–8, 45, 46
allocation factor 45
beef co-production 42, 44–5
benchmarking 247
chain of manufacture 164–5
co-products 42, 44–5, 46
life cycle separation 47–8
dairy processing stage 46
dry-matter allocation 46–7
dry-matter content 46
environmental efficiency 43–4
environmental impacts 41–2, 46–7
EU exports 82
feed conversion 45
generic allocation matrix 48
life cycle assessment 41–9, 88
lifestyle change
response 123–4
milk yield per animal 43
processed 41–2
resource limitations 51
stable price level in EU 81
success factors for creation of more sustainable 169, 170, 171, 172, 173–5
upstream effects 51
waste processes 47
dairy sector effects 59–60
DairyLink cooperative design project 237–8
Dean Foods sustainability policy/strategy 189
depreciation costs 67
dessication 36
developing countries, packaging 158–9
digestibility of animal rations, milk production 18
disinvestment 66
diversity celebration 223, 224
driving efficiency 211
drum drying 96
drying of milk 95–6
breakthrough technology 246
condensate use 111
cost savings 181
high solids evaporation 115, 116
water recovery 238
eartags, animal identification 79, 80
eco-efficiency 232
life cycle assessment 49
Eco-indicator 99 34
eco-indicator 99
ecology impact of dairy industry 60
economic indicators, packaging 139n
economic sustainability 71–5, 76, 77

economics
maximisation approach 66n
resilience of firm 62–3
sustainability link 61, 62–70

ecosystems, sustainability
matrix 228

employee motivation/productivity 181

endowments of farm household 62–3

energy
green energy generation 211
sustainability matrix 228
energy pinch 104–6
energy use 3

boiler optimisation strategies 106–8

cleaning of dairy processing premises/equipment 98–9
combined heat and power 108
compressed air systems 103–4
cooling of milk 87–8, 99–101
drum drying 96
drying of milk 95–6
high solids evaporation 115, 116
evaporation of milk 93, 95, 115, 116
fluid bed drying 96
food production design 225, 226
heat recovery/reuse 104–6
heat treatment of milk 91, 92, 93, 94
homogenisation of milk 90
life cycle assessment 48–9
membrane filtration 97
milk powder production 95–6, 105–6
milk standardisation 89
optimisation 103–8, 232
pasteurisation of milk 91, 92, 93, 94

process-driven approach 165
product loss reduction 103–4
product-driven approach 163
refrigeration of milk 99–101, 103
solar source 224
spray drying 95–6
steam 99, 100, 103
sterilisation of milk 92, 93, 94
storage of milk 89, 99
thermisation of milk 91
UHT 92, 93, 94

energy-corrected milk (ECM) 41

environmental indicator, packaging 142–3, 144–6, 148
environmental groups, packaging focus 126–8
environmental impact 59–61, 244
cheese production 47
dairy industry intensification 17
dairy products 41–2, 46–7
food/drink industry 2
packaging 123, 130–2, 133, 134
challenges 129
material types 134, 137–9
reduction 137–9, 147, 151–5
environmental information, trust by European citizens 179
environmental licences 164
environmental protection (ISO 14001) 166, 167
environmental regulation, packaging 125, 126
environmental sustainability 77, 78, 79
EPS 2000 34
equipment cleaning 97–9
self-cleaning 246

European Union
Common Market Organisation 81–2
competitiveness of dairy sector 75, 77
dairy farmer compensation 83
dairy industry 58–9
dairy product exports 82
environmental impact of supply management scheme 82
market environment 80–1
market stabilisation 81
member states 71n
milk price decline 83
milk quota system 82–3
Nitrate Vulnerable Zones 77
packaging environmental standards 152
packaging recycling rate 156
policy on sustainable production/consumption 166
price support 81
production costs of milk 75, 76, 77
regulations 164
safeguard system 83
safety net provisions 72n
supply management scheme 82
sustainability evaluation of dairy sector 71–5, 76, 77, 78, 79
tarification 83
eutrophication 244
animal husbandry impact 42
life cycle assessment 48–9
evaporation of milk 93, 95, 115
heat recovery 105–6
evapotranspiration 36
extended producer responsibility (EPR) 125
external environment 63

falling-film evaporators 93
family farms 63
asset value 65
characteristics 65
disinvestment 66
enough income 66–7
in-kind income 65
pension provision 65
profitability 65–7
self-exploitation 67n

farm(s)
endowments of household 62–3
life cycle 66
profitability of specialised dairy farms 71, 72
sustainability role 245
farm management capabilities 61
farming systems 18
fat and protein corrected milk (FPCM) 12, 41
greenhouse gas emissions 19
per cow per year 17–18
fermented milk 20, 21, 22
greenhouse gas emissions 88
financial risk costs 182
fixed costs 58
fluid bed drying 96
heat recovery 105–6
Fonterra 50
Greenpeace pressures 168
food
prices 158
quality 169
safety 79, 80
security 158, 244, 247
waste 158–9
waste equals food 223–4, 247
food industry
environmental impact 2
green annual reports 2
food production
design 225–7
food products, nutrient density 5–6, 247
forage area management 61
Forest Stewardship Council (FSC) paperboard certification 154, 155
fossil fuels, life cycle assessment 40–1
fouling reduction 101–2
France
life cycle analysis for packaging 127n
packaging legislation 126
France (cont’d)
 packaging life cycle
 assessment 134, 135
FrieslandCampina 50, 232
 sustainability policy/
 strategy 189
 sustainable soy for dairy
 feed 174
function diversity 63

Germany
 Nature and Biodiversity
 Conservation Union 127–8
 packaging legislation 125, 126
 packaging life cycle
 assessment 134, 136
Global Dairy Agenda for
 Action on Climate
 Change 146, 151
 progress measurement 146–7
 Tetra Pak support 157
global dairy production
 environmental impact 17
 greenhouse gas
 emissions 9–15, 16, 17–21,
 22, 23–4, 25, 26–7
 accuracy 23–4
 allocation criteria 12–13
 contribution to climate
 change 26
 dairy sector total
 emissions 14–15, 16,
 17–21, 22, 23–4, 25, 26
 database/data sources 14
 efficiency of combined milk/
 meat production 26–7
 global warming potential for
 a 100-year period 13
 mitigation options 27
 model 13–14
 post-farm-gate 20–1, 22, 23
 sensitivity analysis 23, 24
 system boundary 11, 12
 total 15
 of total anthropogenic
 emissions 15, 16
 validation 24, 25, 26
 intensification 15, 17–19, 20
 meat production 14, 15
 milk production 15
 per cow 17–18
 regional trends 15, 17–19, 20
 global population 243–4, 247
 global warming
 packaging potential 143, 144–6
 see also climate change
 global warming potential for
 a 100-year period
 (GWP100) 13
 good agricultural practice
 (GAP) 61–2
 Good Dairy Award (Compassion
 in World Farming) 216
 grassland
 carbon sequestering 27
 degradation 60
 grazing
 free-range cows 207
 grassland degradation 60
 green purchasing scheme, Prorail
 (Netherlands) 50
 Green Saint Nicholas
 campaign 199
 green shopping basket
 award 128
 green water 36
 greenhouse gas emissions 2
 beverage production 5
 calculation methods 11–14
 cows 232
 dairy processing 88
 dairy production proportion
 of anthropogenic
 emissions 15, 16
 functional unit 12
 global effects 35
 impacts 36n
 life cycle assessment 35
 livestock sector 10, 60
 local effects 35
 milk processing 88
 variability 21, 23
 milk production 171, 172
 mitigation options 27
Index

packaging 134
reduction 138
per kg of FPCM 19
post-farm-gate 131, 132
regional effects 35
Tetrapak measures for capping 152–4
US dairy industry 131–2, 133
see also carbon dioxide emissions; global dairy production, greenhouse gas emissions; methane emissions; nitrous oxide emissions
Greenpeace 168, 177
greenwashing 168
grey water 36
Groupe Danone, sustainability policy/strategy 188
Guide to Food Dairy Farming Practice (International Dairy Federation) 61–2

heat recovery/reuse 104–6
heat treatment of milk 91, 92, 93, 94
optimisation 101–2
herd size indicator 69–70
homogenisation of milk 90
hot water
boiler optimisation strategies 106–8
units 107–8
household utility optimisation 65
households, relationship with firm/farm 63
human capital, sustainability matrix 228
hydrological balance 36–7
income
enough 66–7
in-kind 65
innovations
breakthrough technologies 245–6
C2C® 234, 235, 236
chain 233–40, 244–7
integrated communication 214
Integrated Product Policy (European Commission) 50–1
integrated product-based policy 164
integrated sustainable feed 211
intensification of dairy production 15, 17–19, 20
intensity indicator 69–70
International Dairy Federation footprint standard 45
Guide to Food Dairy Farming Practice 61–2
IPPC (Integrated Pollution, Prevention and Control) Directive (EU) 164
ISO 9000 (food quality system) 169
ISO 14001 (environmental protection) 166, 167
land management 61
land use
animal husbandry impact 42
global effects 35
LCA impacts 34, 48–9
local effects 35
regional effects 35
landscape impact of dairy industry 60
leadership 171, 173
legislation, packaging 123, 125–6
life cycle assessment (LCA) 10, 11, 31–7, 38–9, 40–51
acidification 48–9
allocation 44–8
application 37, 38–9, 40–1
Beemster cheese 210–11
caracterisation factors 32
comparisons 37
consumption impact 50–1
contradictory results 40
co-products 44–5
current 32–7
life cycle assessment (LCA) 41–9
dairy products 41–9
damage cost approach 41
life cycle assessment
 eco-efficiency 49
economic activity impacts 50–1
 efficiency of systems 49
end-point categories 33
energy use 48–9
eutrophication 48–9
footprinting 37
generic allocation matrix 48
 global effects 35–6
 global warming 48–9
goal and scope definition 33, 37, 38
 greenhouse gas emissions 35
impact assessment 37, 39
interpretation phase 33–4, 37, 39, 39
inventory analysis 37, 38–9
ISO standards 33
land use 48–9
land use-associated
 impacts 34, 35
local effects 35–6
mid-point categories 32–3
packaging 127, 134, 135–6, 137
phases 33, 37
policy support/evaluation 37, 40, 50–1
product design 40, 50–1
production chain 171, 172
regional effects 35–6
resource limitations 51
results 48–9
single product 37, 40
strategy 50–1
substitution 45
sustainability
 measurement 244
system boundaries 11, 12
 target-based weighting 41
 Tetra Pak 151–2
water use 36–7
weighting 40–1, 49
life cycle impact assessment
 (LCIA) 32
life cycle inventory (LCI) 32
life cycle management
 (LCM) 31, 50
life cycle thinking (LCT) 31
livestock grazing
 free-range cows 207
 grassland degradation 60
 livestock sector, greenhouse
gas emissions 10
livestock systems 42
maintenance requirements, milk
 production 18
manure, anaerobic digestion for
 biogas 27
market environment 68, 80–1
 stabilisation by EU 81
marketing sustainability 191–218
 ambassadors 217
 awards 216
 four Ps 212–13
 future strategies 247
 means 214–17
 opportunities 197–8
 partnerships 214
 personal contact 216
 place 213
 press contacts 217
 price 212–13
 product 212
 promotion 213
 public relations 215–16
 quality mark/label 215
 reporting 215
 social media 216–17
 transparency 215
 website 216
markets, entry into new 182
materials
 flow from cow to
 consumer 235–6
packaging
 environmental impact 134, 137–9
types 131
sustainability matrix 228
Tetra Pak
 composition 152–3
 traceability of wood for
 paperboard 155
 use optimisation 152
meat production 14, 42, 44–5
mechanical vapour
 recompression (MVR)
 evaporator 93, 95
heat recovery 105, 106
media contacts 217
methane emissions 19, 20
 animal husbandry impact 41
 cow metabolism 245
 enteric fermentation 43, 44
 enteric/kg of milk 27, 44
 milk yield per animal 43
 validation 24
microfiltration 97
milk
 carbon footprint 4, 5
 fresh 20, 21, 22
 NDCI index 6
 price decline 83
 private consumption 73, 74
 solids 46
 stable price level in EU 81
 yield per animal 17
 see also fermented milk
milk powder 20, 21, 22
 heat recovery from
 production 105–6
 pre-concentration 93
milk processing 87–91, 92, 93, 94,
 95–115, 116
 boiler optimisation
 strategies 106–8
 carbon dioxide emissions 88
 cleaning 97–9
 self-cleaning equipment 246
 water use 111
 cooling 87–8, 99–101
 dairy plant 20, 21
 drying 95–6
 breakthrough
 technology 246
 condensate use 111
 cost savings 181
 high solids evaporation 115,
 116
 water recovery 238
 energy pinch 104–6
 evaporation 93, 95, 115
 greenhouse gas emissions 88
 variability 21, 23
 heat recovery/reuse 104–6
 heat treatment 91, 92, 93, 94
 optimisation 101–2
 heating 87–8
 homogenisation 90
 membrane filtration 96–7
 optimisation 101–14
 pre-treatment 89–90
 product loss reduction 103–4
 regional variation in end-
 products 22
 standardisation 89
 storage 89, 99
 utilities 99–101
 waste stream valorisation
 112–14, 246
 see also energy use; water use
milk production 12–13
 allocation criteria 12
 average cost per kg of
 milk 69–70
 costs in EU 75, 76, 77
 digestibility of animal
 rations 18
 global 14, 15
 greenhouse gas emissions 171,
 172
 impact allocation to
 co-products 46
 inputs/outputs 42
 life cycle impacts 41–2
 maintenance requirements 18
 per cow 17–18
 processing 20, 21
 protein content 12
 transport 20, 21
 milk quota system (EU) 82–3
 milking hygiene 61
mission 171, 173
modularity 63
nanofiltration 97
Nature and Biodiversity Conservation Union (NABU) 127–8
Netherlands consumers 198
critical milk price 73, 74–5
efficiency of dairy production system 49
energy consumption reduction for production processes 166
Green Saint Nicholas campaign 199
life-cycle-based policy 50–1
private consumption of milk 73, 74
sustainable soy for dairy feed 174
see also Beemster cheese
networks 63
New Zealand, efficiency of dairy production system 49
nitrate application legislation 77, 78, 79
Nitrate Vulnerable Zones (EU) 77
nitrous oxide emissions 19, 20
animal husbandry impact 41
extensive system emissions 27
NIZO PREMIC optimisation model 114–15
non-governmental organisations (NGOs)
blaming and shaming 168
company cooperation 173
company policy influencing role 176–7, 178
packaging focus 126–8
stakeholder role 173
sustainability issues 199
sustainable soy for dairy feed 174
theme analysis 170, 171
normal profits 64
Nutrient Density to Climate Impact (NDCI) index 5–6
nutrients 5–6, 247
OHSAS 18001 (occupational health and safety) 166, 167
OptiCIP monitoring 102, 115
Organisation for Economic Co-operation and Development (OECD) 56n
Oxfam Novib 199
packaging 119–59
climate change impact 130–2, 133, 134
consumer expectations 124
dairy value chain 120, 121
developing countries 158–9
economic indicators 139n
efficiency 137
evironment indicator 142–3, 144–6, 148
environmental groups focus 126–8
environmental impact 130–2, 133, 134
reduction 137–9, 147, 151–5
environmental performance 123
challenges 129
environmental regulations 125, 126
environmental standards 158
filling process 137
global alignment of requirements 139, 140–1, 141, 142–3, 143, 144–6,
146–7, 148, 150
global metrics 149
benefits 147, 150
implications 146
global warming potential 143, 144–6
greenhouse gas emissions 134
reduction 138
industry leadership 150
legislation 123
legislative pressures 125–6
life cycle assessment 127, 134, 135–6, 137
life cycle environmental performance 134, 135–6, 137
material types 131
environmental impact 134, 137–9
NGO focus 126–8
optimised 122–3
optimum 121
post-farm-gate emissions 131, 132
product protection 120, 121
production of materials 132
recovery rate 142–3
recycling 3, 124
increase 155–7
resource use 120
retailer role 128–9
role 120, 123
self-regulation 150
social indicators 139n
supply chain greening 157
sustainability 123–5, 246
contribution 130–2, 133, 134, 135, 136, 137–9
economic pillars 158–9
protocol 139, 140–1, 141, 142–3, 143, 144–6
social pillars 158–9
sustainability indicators 139, 140–1, 141, 142–3, 143, 144–6, 149
sustainable sourcing 154–5
systems 122
Tetra Pak response 150–7
traceability of wood for paperboard 155
under-packaging risks 120, 122
weight reduction 120
palm oil, sustainable production 177
partnerships 227
acceptance in C2C® 235
marketing 214
pasteurisation of milk 91, 92, 93, 94
heat recovery 104
payback periods, dairy production 165–6
personal relationships 63
pesticides, emission impacts 35
plant design 236–7
population growth 2, 243–4, 247
potentially disappeared fraction 34
premises, cleaning see cleaning of dairy processing premises/equipment
press contacts 217
price support, EU 81
pricing power 181
process-driven approach 164–6
processes
product relationship 167–8
success factors for creation of more sustainable 169, 170, 171, 172, 173–5
producer behaviour, micro-economic theory 64
product(s)
life cycle assessment 31–2
loss reduction 103–4
process relationship 167–8
product design, life cycle assessment 40, 50–1
product-driven approach 166–9
production chain, carbon footprint 171, 172, 245
production line optimisation 245–6
productivity indicator 69–70
profitability 64–7, 247, 249
critical milk price 73, 74–5
definition 64
depreciation costs 67
economist perspective 66
EU dairy sector 71–5, 76, 77
farmer perspective 66
gross margin evolution 72, 73
indicator 68–9
larger farms 72n
profits, maximum 66
PROPER model 229–31
Prorail (Netherlands), green purchasing scheme 50
public relations 215–16
quality mark/label 215
quality systems 169
record keeping 61–2, 79, 80
recycling, packaging 3, 124
increase 155–7
redundancy in system 62–3
refrigeration of milk 99–101
research, scientific back-up for sustainability 174–5
resilience
dairy production 58–9
firm 62–3
resource and environmental profile analysis (REPA) 32
resources
limitations 51
scarcity 3
use 2
packaging 120
retailers
packaging 128–9
sustainability role 128–9, 158
reverse osmosis 97
scale indicator 69–70
scientific back-up for sustainability 174–5
Shell decommissioning of Brent Spar oil storage buoy 177
social indicators 139n
social media 216–17
social sustainability 79, 80
society, role of companies within 184–5
soil, impact of dairy industry 60
solar income, use of current 223, 224
soy, sustainable for dairy feed 174, 177
species extinction 34
spray drying 95–6
heat recovery 105–6
high dry solids 115, 116
stakeholder analysis 177, 178
stakeholders
communication with 244
by companies 179–80
company policy influencing role 176–7, 178
company response to preferences 197–8
dialogue with 173, 174
interactions with 179–80
personal contact 216
steam condensate returns 108
steam use 99, 100, 103
boiler optimisation strategies 106–8
system maintenance 108
sterilisation of milk 92, 93, 94
storage of milk 89, 99
sugar, sustainable production 177
supply chain organisation 167
sustainability in dairy production 2–3, 58–75, 76, 77, 78, 79–84
awards 216
business case 180–3, 247, 248, 249
implementation 175–7, 178, 179–80
commitment by companies 171, 173
communication 212–17
competitiveness 67–70
concept 59
definition 130, 193–4
economics 61, 62–70
environmental 77, 78, 79
EU dairy sector evaluation 71–5, 76, 77, 78, 79
false claims 168
farm role 245
implementation by companies 175–7, 178, 179–80
marketing 191–218
measurement 244–5
motivations 196–8
packaging 123–5, 246
 contribution 130–2, 133, 134, 135, 136, 137–9
economic pillars 158–9
 protocol 139, 140–1, 141, 142–3, 143, 144–6
social pillars 158–9
profitability 64–7
retailer role 128–9, 158
scientific back-up 174–5
social 79, 80
stages in process 169, 170, 171, 172, 173–5
strategies 198–200, 201–2, 202–3
trend towards 183–4
sustainability indicators 244
Caring Dairy sustainability programme 198–200, 201–2, 202–3
determination 199–200
packaging 139, 140–1, 141, 142–3, 143, 144–6, 149
sustainability matrix for C2C® 227, 228
Sweden, packaging life cycle assessment 134, 135
technical cycle 222
closing 226
Tesco, Consumer Goods Forum global protocol 139
Tetra Pak 150–7
 2020 climate goal 152, 154
 2020 recycling goal 156–7
carbon dioxide emission reduction 153
environmental impact reduction 151–5
Forest Stewardship Council
paperboard certification 154, 155
greenhouse gas emissions measures for
capping 152–4
life cycle analysis 151–2
materials
 composition 152–3
 traceability of wood for paperboard 155
use optimisation 152
packaging supply chain greening 157
recycling increase 155–7
stakeholder engagement 157
sustainable sourcing 154–5, 157
traceability of wood for paperboard 155
theme analysis 170, 171
thermal processing optimisation 101–2
thermal vapour recompression (TVR) evaporator 93, 95
thermisation of milk 91
traceability 79, 80
transparency 79, 80, 175, 215
transport
 Beemster cheese 211, 214
 food production design 225
 milk production 20
UHT, energy use 92, 93, 94
ultrafiltration 97
ultra-heat treatment see UHT
Unilever 50
 sustainability policy/strategy 187
 sustainable soy for dairy feed 174
unique selling points (USP) 198
United States, greenhouse gas emissions of dairy industry 131–2, 133
value adding 198, 236
value creation 180–3
vehicle efficiency 211
Vion, sustainable soy for dairy feed 174
vision 171, 173

Walmart, Consumer Goods Forum global protocol 139
waste equals food 223–4, 247
waste reduction 232
waste stream valorisation 112–14, 246
wastewater treatment 103
regeneration/recycling 112
water
blue 36
contaminated 227, 228
green 36
grey 36
impact of dairy industry 60
products 183
quality 60
recovery from drying processes 238
reduction assessment programme 110
requirements 60, 61
sustainability matrix 228
water footprinting 36–7, 244
water pinch analysis 111–12
water stress index 88
water use 3, 88
cleaning of dairy processing premises/equipment 98, 99, 111
dairy processing 88
life cycle assessment 36–7
milk processing 88
milk standardisation 89–90
optimisation 109–14
process-driven approach 165
reduction 110–11
reuse 109–11, 112
waste minimisation 110
wastewater treatment 103
water pinch analysis 111–12
waterways, water quality 60
websites 216
welfare of animals 61
whey 20, 21
fractionation 113
greenhouse gas emissions 88
heat recovery 105
raw milk production impact allocation 46–7
waste stream valorisation 113–14
world dairy production 56, 57
WWF Climate Savers programme 153–4, 157