<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BONDING AND ELECTRON DISTRIBUTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>THE PROCESS OF BOND FORMATION</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>PROTON TRANSFER AND THE PRINCIPLES OF STABILITY</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>IMPORTANT REACTION ARCHETYPES</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>CLASSIFICATION OF ELECTRON SOURCES</td>
<td>151</td>
</tr>
<tr>
<td>6</td>
<td>CLASSIFICATION OF ELECTRON SINKS</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>THE ELECTRON FLOW PATHWAYS</td>
<td>179</td>
</tr>
<tr>
<td>8</td>
<td>INTERACTION OF ELECTRON SOURCES AND SINKS</td>
<td>213</td>
</tr>
<tr>
<td>9</td>
<td>DECISIONS, DECISIONS</td>
<td>251</td>
</tr>
<tr>
<td>10</td>
<td>CHOOSING THE MOST PROBABLE PATH</td>
<td>269</td>
</tr>
<tr>
<td>11</td>
<td>ONE-ELECTRON PROCESSES</td>
<td>326</td>
</tr>
<tr>
<td>12</td>
<td>QUALITATIVE MOLECULAR ORBITAL THEORY AND PERICYCLIC REACTIONS</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>APPENDIX</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>407</td>
</tr>
</tbody>
</table>
Contents

1 BONDING AND ELECTRON DISTRIBUTION
 1.1 The Decision-Based Approach to Organic Chemistry 2
 1.2 Ionic and Covalent Bonding 6
 1.3 Lewis Structures and Resonance Forms 8
 1.4 Curved-Arrow Notation 11
 1.5 Nomenclature and Abbreviations 16
 1.6 An Orbital View of Bonding 18
 1.7 The Shapes of Molecules 21
 1.8 Molecular Repulsions, Attractions, and Hydrogen Bonding 25
 1.9 Conjugation, Vinylogy, Aromaticity 27
 1.10 Summary 30

2 THE PROCESS OF BOND FORMATION 34
 2.1 Energetics Control Knowledge 35
 2.2 Orbital Overlap in Covalent Bond Formation 35
 2.3 Orbital Interaction Diagrams 38
 2.4 Polarizability and Hard and Soft Acid–Base Theory 41
 2.5 Thermodynamics, Position of Equilibrium 43
 2.6 Kinetics, Rate of Reaction 47
 2.7 Solvent Stabilization of Ions 53
 2.8 Enzymatic Catalysis—Lessons from Biochemistry 55
 2.9 Summary 57

3 PROTON TRANSFER AND THE PRINCIPLES OF STABILITY 61
 3.1 Introduction to Proton Transfer 62
 3.2 Ranking of Acids and Bases, the pKₐ Chart 63
 3.3 Structural Factors That Influence Acid Strength 66
 3.4 Structural Factors That Influence Base Strength 70
 3.5 Carbon Acids and Ranking of Electron-Withdrawing Groups 71
 3.6 Calculation of Kₑq for Proton Transfer 76
 3.7 Proton Transfer Mechanisms 77
 3.8 Common Errors 81
 3.9 Proton Transfer Product Predictions 82
 3.10 Proton Transfer Summary 83

4 IMPORTANT REACTION ARCHETYPES 88
 4.1 Introduction to Reaction Archetypes 89
 4.2 Nucleophilic Substitution at a Tetrahedral Center 89
 4.3 Elimination Reactions Create Pi Bonds 91
 4.4 Addition Reactions to Polarized Multiple Bonds 96
 4.5 Nucleophilic Substitution at a Trigonal Planar Center 103
 4.6 Electrophilic Substitution at a Trigonal Planar Center 108
 4.7 Rearrangements to an Electrophilic Carbon 114
 4.8 Reaction Archetype Summary 116

5 CLASSIFICATION OF ELECTRON SOURCES 151
 5.1 Generalized Ranking of Electron Sources 151
 5.2 Nonbonding Electrons 152
 5.3 Electron-Rich Sigma Bonds 154
 5.4 Electron-Rich Pi Bonds 155
 5.5 Simple Pi Bonds 156
5.6 Aromatic Rings 159
5.7 Summary of Generic Electron Sources 160

6 CLASSIFICATION OF ELECTRON SINKS 166
6.1 Generalized Ranking of Electron Sinks 166
6.2 Electron-Deficient Species 167
6.3 Weak Single Bonds 168
6.4 Polarized Multiple Bonds Without Leaving Groups 170
6.5 Polarized Multiple Bonds with Leaving Groups 172
6.6 Summary of Generic Electron Sinks 173

7 THE ELECTRON FLOW PATHWAYS 179
7.1 The Dozen Most Common Pathways 180
7.2 Six Minor Pathways 191
7.3 Common Path Combinations 197
7.4 Variations on a Theme 201
7.5 Twelve Major Paths Summary and Crosschecks 208
7.6 Six Minor Paths Summary 209

8 INTERACTION OF ELECTRON SOURCES AND SINKS 213
8.1 Source and Sink Correlation Matrix 214
8.2 H=A Sinks Reacting with Common Sources 214
8.3 Y=L Sinks Reacting with Common Sources 218
8.4 sp2 C=L Sinks Reacting with Common Sources 222
8.5 C=Y Sinks Reacting with Common Sources 227
8.6 R=C=Y Sinks Reacting with Common Sources 233
8.7 C=C=Ewgs Reacting with Common Sources 235
8.8 L=C=Y Sinks Reacting with Common Sources 237
8.9 Miscellaneous Reactions 240
8.10 Metal Ions as Electron Sinks 242
8.11 Rearrangements to an Electrophilic Center 243
8.12 Nu-L Reactions 244
8.13 Product Matrix Summary 248

9 DECISIONS, DECISIONS 251
9.1 Decision Point Recognition 252
9.2 Multiple Additions 252
9.3 Nucleophile and Stereochemistry of Enolate Formation 254
9.4 Ambident Nucleophiles 255
9.5 Substitution vs. Elimination 258
9.6 Ambident Electrophiles 262
9.7 Intramolecular vs. Intermolecular 263
9.8 To Migrate or Not to an Electrophilic Center 264
9.9 Summary 266

10 CHOOSING THE MOST PROBABLE PATH 269
10.1 Problem Solving in General 270
10.2 General Mechanistic CrossChecks 274
10.3 The Path Selection Process 276
10.4 Reaction Mechanism Strategies 278
10.5 Worked Mechanism Examples 279
11 ONE-ELECTRON PROCESSES
 11.1 Radical Structure and Stability 326
 11.2 Radical Path Initiation 329
 11.3 Major Paths for Radicals Reacting with Neutrals 330
 11.4 Unimolecular Radical Paths 332
 11.5 Termination Radical Paths 333
 11.6 Radical Path Combinations 333
 11.7 Approaches to Radical Mechanisms 336
 11.8 Single-Electron Transfer, S.E.T., and Charged Radicals 338
 11.9 Dissolving Metal Reductions 339
 11.10 Electron Transfer-Initiated Processes 340
 11.11 One-Electron Path Summary 340

12 QUALITATIVE MOLECULAR ORBITAL THEORY AND PERICYCLIC REACTIONS
 12.1 Review of Orbitals as Standing Waves 344
 12.2 Molecular Orbital Theory for Linear Pi Systems 344
 12.3 Molecular Orbital Theory for Cyclic Conjugated Pi Systems 348
 12.4 Perturbation of the HOMO And LUMO 351
 12.5 Delocalization of Sigma Electrons 352
 12.6 Concerted Pericyclic Cycloaddition Reactions 353
 12.7 Concerted Pericyclic Electrocyclic Reactions 357
 12.8 Concerted Pericyclic Sigmatropic Rearrangements 359
 12.9 Pericyclic Reactions Summary 361

APPENDIX (A COLLECTION OF IMPORTANT TOOLS)
 Bibliography 364
 Abbreviations Used in This Text 365
 Functional Group Glossary 366
 Composite pK_a Chart 369
 Bond Strength Table 372
 Generic Classification Guide 373
 Flowcharts for the Classification of Electron Sources and Sinks 375
 Pathway Summary 375
 Trends Guide 380
 Major Routes Summary 384
 Major Decisions Guide 388
 Thermodynamics and Kinetics 390
 Generation of Alternate Paths, Reaction Cubes 390
 Organic Structure Elucidation Strategies 393
 Notes on Nomenclature 399
 Hints to Selected Problems from Chapters 8, 9, and 10 404

INDEX 407