active pharmaceutical ingredient (API) development, 105, 114
DOE for, 112
influencing parameter, 110–111
adulterated drug, 353
American Society for Testing and Methodology (ASTM), 4
aseptic processing, 228
and absence of microorganisms, 253
advances in, 229–230
Agalloco–Akers (A–A) method, 234–235
aseptic operator, 239
culture-based microbial test methods, 265–268
environmental controls, 237
equipment and utensils, sterilization of, 237–238
facilities for, 237
factors influencing, 236
FDA guidance, 231–232
FMEA, 231
future trends, 270–271
hazards in, 254–259
hierarchical relationship of risk and hazards, 260–263
history of, 229–230
ISO 14644-7 continuum, 230
microbial contamination in, 230, 263–265
microbiological monitoring methods, 230–231
model for microbial ingress, 259
Monte Carlo estimation in, 233
number of microbes deposited on a product, calculation, 231
and patient risk, 244–246
PDA monitoring methods, 228–230
quantitative risk assessment, 268–270
risk assessment and management in, 246–254
risk mitigation in, 236–239
risk models for, 235
risks and human assessment, 231–235
risks associated with, 229
sterility (safety) by design, 239–240
sterilized products, delivering, 238
Aseptic Processing Guidance, 228
asymmetry of risk knowledge, 67
automated real-time risk calculation (ARC), 270
The Basics of FMEA 2nd Edition, 28
biases management, 70
bioburden ingress, risk of, 257, 264
Biologic License Applications (BLAs), 335

Risk Management Applications in Pharmaceutical and Biopharmaceutical Manufacturing,
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
biopharmaceutical manufacturing process
application of risk management tools to, 359–364
approach to QRM, 325–326
cell bank construction strategy, 332–335
critical quality attributes and critical process parameters, 326–329
distribution and cold chain supply, 355–357
downstream processing, 340–342
excipient control, 349–351
extractables and leachables, impact of, 353–355
extraction and purification process, 342–345
fermentation/cell culture, 336–340
packaging, 351–353
raw material management, 329–332
risk acceptability definitions, 358
scale-up of production process, 345–349
summary table of, 358
cause-and-effect relationship, 84–85

diagrams (fishbone or Ishikawa diagrams), see Ishikawa diagram
cell banking, 332–335
bacterial endotoxins, presence of, 335
cell banking, 332–335
characterization and testing of cell banks, 333–335
construction strategy, 332–333
documentation of proper control procedures, 335
QRM for, 333–335
risk of contamination, 333–335
storage of cell banks, 335
tests for master cells banks (MCBs), 334
tests for working cells banks (WCBS), 334
21 CFR 211.100 of U.S. CGMPs, 1
change control process, 368–371
control charts, 43
cell culture-based microbial test methods, 265–268
Current Good Manufacturing Practices (CGMPs), 1, 256
continued process verification, 214–217
dual-process theory, 63
dual-process theory, 63
design of experiments (DOE), 92, 110–113
decision making, 3
design space, 91, 95–97
distribution processes for biopharmaceutical products, 355–357
downstream processing
endotoxin contamination, risk of, 345
inefficient harvest/recovery conditions, 342–344
overview, 340–342
purification conditions, 344
dual-process theory, 63
purification of biotechnology-derived products, 340
QRM, 342–345
ultrafiltration/diafiltration (UF/DF) for, 344
viral contamination, risk of, 344–345
early-stage trials, risk management for, 114
endotoxins, risk of, 258–259, 345
*Enterobacter* sp., 266
*Escherichia coli,* 266
event tree analysis (ETA), 37–38
excipient control
overview, 349–350
QRM of, 350–351
extractables and leachables considerations, 354
QRM of, 355
risks associated with, 353
testing for, 353–354
extrinsic hazards in aseptic processing, 256–258
failure mode effects analysis (FMEA), 92–93, 221, 328, 372–374
in aseptic processing, 231
benefits, 28
description, 25–27
elements of, 25–27
examples, 28–29
fitting into risk management program, 27
limitations, 28
10-point quantitative, 164–165
for pre-phase 3 manufacture and control, 123
risk ranking, 39
failure modes, effects, and criticality analysis (FMECA), 92–93
benefits, 28
description, 25–27
elements of, 25–27
examples, 28–29
fitting into risk management program, 27
limitations, 28
fault tree analysis (FTA), 92
benefits, 28
description, 25–27
elements of, 25–27
examples, 28–29
fitting into risk management program, 27
limitations, 28
hazard operability analysis (HAZOP), 92
benefits, 28
definition, 28
description, 29–31
fitting into risk management program, 30
verification activities, 308–309
hazards in aseptic processing, 254–259
extrinsic, 256–258
intrinsic, 254–256
ISO14971:2007(E) specification, 254
flow-cytometric-based measurement platforms, 265
gel permeation chromatography (GPC), 341
global healthcare industry, 227
go/no go parameter, 108
Good Manufacturing Practice (GMP)—QRM, 54–55
harm, defined, 45
harvested cell culture fluid (HCCF), 341
hazard, defined, 45
hazard analysis and critical control point (HACCP), 2
aim of, 295
benefits, 33, 295–310
critical control points (CCPs), 300–308
decision tree analysis process, 303–306
description for product and raw materials, 297
documentation and record keeping, 309–310
establishing critical levels, 306–307
test trees, 34–35, 37
fitting into risk management program, 36
hazard analysis chart, 300–301
history of, 295
identification of corrective actions, 308–309
limitations, 35
monitoring activities, 308
phases for analysis, 298–299
preventive measures, 299–300
principles, 296
process flow diagram, 297–298
steps in, 33
team members for, 296–297
verification activities, 308–309
floors to aseptic processing, 254–259
extrinsic, 256–258
intrinsic, 254–256
ISO14971:2007(E) specification, 254
risk of endotoxins, 258–259
health hazard evaluation (HHE), 41
heuristics, 64
histograms (bar charts), 43
hydrophobic interaction columns (HIC), 341
ICH (International Conference for Harmonization)
Q8, 276
ICH (International Conference for Harmonization) (Continued)
Q9, 114, 182, 325
Q10, 96–97, 103
Q6A, 103
Q9 (guidance on quality risk management), 3, 10, 65–66
Q8R1, 104
Q8R2, 90, 94–96
industry guides
Facilities Baseline Guides: Commissioning and Qualification, 4
Guidance for Industry on the General Principles of Process Validation, 4
ISPE Guide: Science and Risk-Based Approach for the Delivery of Facilities, Systems, and Equipment, 4
Technical Report No. 44, 4
integration of risk management, 67–70
training, 69–70
interlukin-6 (IL-6), 258
International Society of Pharmaceutical Engineering (ISPE), 4
intrinsic hazards in aseptic processing, 254–256
intuition, 63
ion exchange column (IEC), 341
Ishikawa diagram, 42, 161
for analytical method development, 112
for risk assessment, 108, 110
in tablet manufacturing, 107
ISO 14971 Medical Devices—Application of risk Management to Medical Devices, 66
joint probability, 82
Keynes, John Maynard, 76
Klebsiella pneumonia, 266
layer of protection analysis (LOPA), 37
lay-expert bias, 63
legal speed limit, 62
life cycle, 91, 97–98
lipopolysaccharide, 258–259
lipoteichoic acid, 258–259
luck, 76
mammalian products, 341–342
manmade disasters, 83
Maximin Principle, 66
MHRA, 54
QRM FAQs, 57–59
microbial contamination, 263–265
at environmental levels, 264
quantification of, 264–265
microbial ingress, model for, 259
microbial products, 341
microbiological control in nonsterile manufacturing, case study, 293–310
Monte Carlo simulation of contamination, 233, 269
6M’s (Man, Machines, Measurement, Materials, Methods, and Management), 107–108
multidisciplinary team, 107
National Aeronautics and Space Administration (NASA), 45
occurrence rate, 86–87
out-of-tolerance parameter, 328
over-the-counter (OTC) oral dosage products, 3
packaging for biopharmaceuticals
overview, 351–352
QRM of, 352–353
Paradigm Change in Manufacturing Operations (PCMO*SM), 98
Parenteral Drug Association (PDA), 3
aseptic processing monitoring methods, 228–229
Technical Report No. 15, 347
Technical Report No. 44, 4
Pareto analysis, 43
patient safety, 3
peptidoglycan, 259
perception in risk, 65
perspectivism, theory of, 65
pharmaceutical and biopharmaceutical industries financial pressures, 2
Pharmaceutical cGMPs for the 21st Century—A Risk-Based Approach, 2
initiatives and recommendations, 2
pharmaceutical product manufacturing processes, see also biopharmaceutical manufacturing process
active pharmaceutical ingredients and excipients, management of, 281
branding, 285
cleaning program, 287–289, 291
compression process, 284–285
dispensing operation, 282–283
drying step, 283–284
effective risk management, 276–277
equipments and instruments, 290–292
facilities, 287–289
film coating, 285
INDEX

finishing process, 284–287
fishbone diagram, 278
formulating a product, 282
granulation process, 283
level of environmental control, 289–290
list of potential risks, 313–320
maintenance and calibration practices, 291–292
material management, 287
mixing/blending process, 284
packaging, 285–287
people interactions, assessment of risks, 293
personal hygiene, 292
process flow chart, 279
protective clothing and gear, 292–293
raw material management, 280
risk assessment, 277–293
storage conditions, 291
supplier management, 281–282
training programs for personnel, 293
validation activities, 292
pharmaceutical products under development, basic rules, 102
Poisson distribution, 83–84
precautionary principle of risk, 65–67
preliminary hazards analysis (PHA), 92
approach to risk mitigation, 106–107
benefits, 22
description, 22
example, 24
fitting into risk management program, 25
limitations, 22–24
with stability data input, 106
probability
addition rule, 79
cautions, 78–79
conditional, 81–82
definitions, 77
estimating, 85–87
joint, 82
luck and, 76–77
multiplication rule, 81–82
numerator and denominator in calculation, 78
risk and, 79–82
rules of, 77–78
process analytical technology (PAT), 90, 244
process capability analysis, 92
process design, validation of, 187–207
cause/effect process parameter, 199–201
critical material attributes (CMAs) and, 189
critical process parameters (CPP), 191–196
existing product, 192
in-process hold stability studies, 203–205
mixing process for solutions, example, 198–203
new product, 192
normal operating range (NOR), 193–195
processing steps, 192–193
proven acceptable range (PAR), 193–195
quality by design (QbD) principles and, 189
risk-based approaches, 189–191
risk prioritization for commercial-scale
experimental design, 205–207
scaled-down models, 187
tablet compression/coating process, example, 197
process mapping, 41
process parameter, 90–91, 95, see also critical
process parameters (CPPs)
process performance qualification
in multiproduct manufacturing, 212–214
technology transfer activities, 209–211
process validation (PV)
challenges in, 186–187
general considerations, 183–186
life cycle approach, 187–188
of process design, 187–207
risk-based life cycle approach, 180
tools, 182–183
process validation (PV), guidance for, 130–131
ASTM E2500 Standard Guide, 132–133
FDA, 130–132
for quality risk management, 181–182
product control strategy, 109–110
product isolation, 340
product polishing, 340
product purification, 340
Product Quality Lifecycle Implementation
(PQLI®), 98
product realization, defined, 101
product specification file, 124–126
proven acceptable range (PAR), 112
qualification program, effective
commissioning, role of, 134–136
quality assurance, 133
regulatory requirements, 130–132
risk-based qualification, 133–136
and risk management, 137–139
quality assurance, European Directive
2003/94/EC for, 102–103
quality by design (QbD), 244
in aseptic processing, 239
background, 89–90
development of products using, 91–93
quality by design (QbD) (Continued)
examples of approaches, 98
steps in product development using, 94–98
quality risk management (QRM), 6, 49, see also
biopharmaceutical manufacturing process
agency-observed deficiencies, 51
analysis of resin inhibitor (FTA), case study, 383–385
auditing process, 55–61
benefits, 371–372
changing magnesium stearate from bovine to
vegetable-based, case study, 379–381
equipment change, case study, 381–383
general system expectations, 51–52
integrating into change control system,
367–368
keys to successful implementation of, 374
primary component change for a sterile
product, case study, 381
problems of subjectivity and uncertainty,
61–67
regulatory expectations, 50–61
regulatory expectations and practical
considerations, 53–54
risk communication and reporting, 52–54
risk registers (risk master plan), 54–55
quality system requirement (QSR)s Design
History File, 125
quality target product profile (QTPP), 94,
104–109, 112
example, 104
in R&D, 105
The Quality Toolbox Second Edition, 28
quality vision of pharmaceutical development,
101–104
risk assessment, defined, 45
risk-based approaches, 2
life cycle approach, 180
process design, validation of, 189–191
qualification, 133–136
risk-based decision-making, 4–5
risk-based qualification plan, implementation of
component-level impact assessments, 158–160
computer system qualification, 171–172
contamination control process, 173–174
correlation between process steps and product
quality attributes, 153–154
criticality analysis, 161–163
critical process parameters and operating
conditions, analysis of, 169
design review, 168–169
fault tree analysis, 160
FMEA assessment, 163–165
impact assessment, 154–157
installation qualification, 169–170
Ishikawa analysis, 161
level of qualification, 160
notes, 168
objective of plan, 153
operational qualification, 170–171
qualification tests, 154
requalification, 172–173
requirements, 152
risk ranking, 163–164
sequence, 155
system-level impact assessments, 157–159
system risk determination, 162
test functions and acceptance criteria, 164–168
tree point qualitative risk priority rank
determination, 167
risk-based qualification planning
information management for, 151–152
program-level alignment, 142–143
project control system, 140–141
project description, 139–140
project performance metrics, 141
qualification-related information, 146–151
schedules, 141–142
system boundaries, 143–145
risk communication, 109
risk control, 20–21
risk control, defined, 45
risk evaluation, 20
risk evaluation, defined, 46
risk identification, 18–19
risk information, 18
sources, 44–45
risk management, 3
components of risk, 8
INDEX

defined, 46
ICH Q9 recommendations, 10
maturity, 69
of pharmaceutical manufacturing processes, 5–8
practical guide to, 8–11
process, 18–21
use of, 14
risk perception
heuristics, 70
influence factors, 64
risk prioritization and rationale, 111
risk prioritization number (RPN), 124
risk ranking and filtering, 92
risk ranking and filtering (RRF), 38, 40
benefits, 35
description, 35
examples, 35
limitations, 35
risk reduction, 20
risk registers (risk master plan), 54–55
risk review/communication, 21
risk training, 69–70
safety by design (SbD), 239–240
scale-up of production process
bioreactor operations, 346
cell culture and fermentation processes, 346
centrifugation, 347
chromatography, 347–348
harvest operations, 346
inappropriate facilities or equipment, risk of, 349
inoculum expansion, 346
medium preparation, 345–346
membrane/filtration operations, 347
overview, 345
purification techniques/process design, risk of, 348
QRM of, 348–349
viral contamination, risk of, 348
screening risk assessment, see preliminary hazards analysis (PHA)
Six Sigma programs, 83
social responsibility of a pharmaceutical manufacturer, 50
societal response, 66
societal trigger level, 66
statistical risk, 82
sterility assurance level (SAL), 227–228
sterility tests, 265–267
subject matter experts (SMEs), 168
t distribution, 87
tissue/cell culture, 336–337, 346
facilities and equipment for, 340
provision of oxygen enrichment, 339
quality and composition of culture media, 339
scale-up considerations, 340
sterilizing medium, 339–340
strain stability, 339
suitable environment for, 337–339
tools for risk management, 42
advanced, 23–24
applicability, 17–18
comparison, 43–44
preliminary hazards analysis (PHA), 22–25
total organic carbon (TOC) testing, 114
t-tests, 78–79
type II error (false negatives), 265
type II (two) error, 82
type I (one) error, 82
uncertainty, 76
unintended consequence of risk regulation, 67
U.S. Food and Drug Administration (FDA) regulations, 1, 3
Guidance for Industry on the General Principles of Process Validation, 4
Venn diagram, 79–80
what-if analysis, 41
5 why analysis, 43
Whyte, Dr., 232–233