INDEX

Absorption into liquids, 122
mass transfer enhancement, 123–124
with chemical reaction, 123
D’Alembert’s paradox, 17
Analogy between momentum and heat transfer, 156–157, 235
Martenelli’s, 235
Prandtl’s improvement, 157
Rayleigh’s assessment, 157
Anisotropic conduction, 97–99
Annulus
flow in, 26–27
mass transfer in, 145
with one reactive wall, 145
Arnold correction, 120–122
Artificial viscosity, 36
Attractor, 6–7, 80, 208
Autocatalytic decomposition, 129–130
Autocorrelation, 68, 75
Fourier transform, 76
integral timescale, 75
Axial dispersion, 150–151
in airlift reactors, 233
Bernoulli’s equation, 15
Bessel’s differential equation, 241–244
orthogonality, 242–243
Bifurcation, 5, 66
Biharmonic equation, 38, 205
Biot number (modulus), 90
for cylinders, 90
for spheres, 94
Blasius flat plate solution, 47–50
Boltzmann transformation, 123
Bond number, 175
Boundary layer theory, 47
adverse pressure gradient, 50
applied to wakes, 56–57

flat plate, 47–49
in entrance flows, 37
wedge (Falkner-Skan) flows, 52–53
Boussinesq approximation, 110
eddy viscosity, 69
Bubble oscillations, 177–180
Burgers model, 214

Carbon dioxide
catalyst regeneration, 134
diffusion in water, 123, 229
Catalyst pellet, 127, 228
nonisothermal operation, 132
regeneration of, 134
Cauchy-Riemann equations, 16
Challenger, 218–219
Chaos, 5–7
deterministic, 208
Circular fin, 96–97, 221–222
Circulation, 21–22
Closure, 69, 80
Coagulation, 183
collision mechanisms, 183–186
collision efficiency factor, 183
collision rate correction factor, 183
Collision integral, 119
Collocation, 196, 260–264
Columbia, 219–220
Complex numbers, 16
Complex potential, 16–19
Composite spheres, 99–100
Concentration distributions
flow past a flat plate, 142–143
fully developed tube flow, 143
in Loschmidt cell, 228
in membranes with edge effects, 230–231
in oscillating flows, 148–149

Transport Phenomena: An Introduction to Advanced Topics, By Larry A. Glasgow
Copyright © 2010 John Wiley & Sons, Inc.
Concentration distributions (Continued)
in reactors with dispersion, 150–151, 233–234
near a sphere, 146–147
near a catalytic wall, 141
thin film, 140
with gas absorption, 227
Conduction, 83–100
with variable conductivity, 217
in cylinders, 88–92
in slabs, 84–88
in spheres, 92–95
Conformal mapping, 16
Constraint on time-averaging, 69
Continuity equation
compressible fluid, 9
for binary systems with diffusion, 117
for binary systems with flow, 139–140
incompressible fluid, 16
Controlled release, 136–137
Convection roll, 112–115
Copper wire, 221
Correlation coefficients, 68, 75–77
spatial, 213
Couette flow, 29–31, 201
Courant number, 5, 33
Creeping fluid motion, 38
Debye length, 184
Decaying turbulence, 189
Density, 9, 110
Differential equations, 3–12
elliptic partial differential equations, 245–248
hyperbolic partial differential equations, 7–8
parabolic partial differential equations, 249–252
stiff, 179
uniqueness, 196
Diffusion, 117–137
advancing velocity, 124
in catalyst cylinders, 228
in cylinders, 127
in porous media, 135
in plane sheets, 122
in quiescent liquids, 122–123
in spheres, 130–132
with moving boundaries, 133–134
Diffusion coefficients, 118–120
concentration dependent, 124–125, 226
discontinuity in, 134
Dimensional reasoning, 75
Dirichlet
condition, 8
problem, 85
Displacement thickness, 62
Dissipation
electrical, 221
rate, 71–72, 75
Taylor’s inviscid estimate, 75
viscous, 101, 103–104
Divergence of a vector, 9
DNS, 80
prospects of, 80
Drag on a flat plate, 50, 56
Driven pendulum, 197
Droplet breakage, 180–183
Taylor’s four-roller apparatus, 180
Dynamic head, 17
Eddy diffusivity, 157, 235
heat, 156–157
mass, 160
momentum, 73, 156–157, 235
Eddy viscosity, 69
Edmund Fitzgerald, 199
Effective diffusivity, 126–128
Elliptic partial differential equations, 7, 245–248
in fluid flow, 27, 31
in heat transfer (Laplace equation), 85
in potential flow (Laplace equation), 16, 20–22
End effects
conduction in cylinders, 88
diffusion in cylinders, 128
in controlled release, 137
Energy cascade, 74, 79
Energy equation, 71–72
Energy spectrum, 77–79
frequency spectrum, 76
wave number spectrum, 77–78
Entrance length, 36–37
Entrance region, 36–38
Eotvos number, 174
Error function, 253–254
Evaporation of volatile liquid, 120–122, 226
Even functions, 27
Extended surface heat transfer, 95–97
circular fins, 96–97, 221–222
rectangular fins, 95–96
wedge-shaped fins, 97
Euler equations, 15
as setback to fluid mechanics, 17
Falkner-Skan problem, 52–53, 204
Feigenbaum number, 5
Finite differences, 238–240
Finite difference method (FDM), 8,
consequences of, 35–36
Finite element method (FEM), 8
Flow
laminar, 24–58, 59
turbulent, 59–82
Flow net, 16
Fokker-Planck equation, 165–167
Forced convection
in ducts, 102–109
on flat plates, 106–107
Form drag, 17, 50
Fourier, 83–84
series, 86, 196, 203, 215
transform, 76–77, 210–212
Friction factors in ducts, 28
Friction (shear) velocity, 70
Froude number, 41

Gamma function, 255–256
Gauss-Seidel, 20
Global warming, 215, 229
Gradient, 8–9
Graetz problem, 108–109
Grashof number, 111

Hagen-Poiseuille flow, 24–26
Heat transfer
 coefficient, 8
 from plate to moving fluid, 106–107
 in annulus, 222
 in cylinders, 88–92
 in entrance region, 225–226
 in extended surfaces, 95–97
 in slabs, 84–87
 in spheres, 93
 vertical heated plate, 22–223
Heaviside, O., 95
Hiemenz stagnation flow, 55–56
Homogeneous reaction in laminar flow, 146
Hot wire anemometry, 62, 68, 210
Hyperbolic partial differential equation, 7–8

Immiscible liquids, 41–42
Inertial forces, 11, 24
Inertial subrange, 78–79
Integral momentum equation, 54–55
Intensity of turbulence, 68
Invariants, 11
Inviscid flow, 15–23
Irrotational flow, 15–16

Jacobi elliptic functions, 4
Jet impingement, 221
Joukowski transformation, 19

k–ϵ model, 73–74
k–ω model, 74
Kolmogorov microscales, 75
Knudsen number, 41
Kutta condition, 21–22

Laminar flows in ducts and enclosures
 pressure driven (Poiseuille flows)
 annulus, 26
 cylindrical tube, 24–26
 rectangular duct, 27
 triangular duct, 28
 shear driven (Couette flows)
 concentric cylinders, 29–31
 rectangular enclosure, 31–32
Laminar jet, 228

“Laminar” sublayer, 70
Laplace equation, 20, 85
 for bubbles, 174
Laplacian operator, 85
Lennard-Jones potential, 119
Leveque approximation, 104–105, 141, 256
Lewis number, 153
Linear differential equation, 3
Linearized stability theory, 60–63
 applied to Blasius flow, 61–62
 applied to Couette flow, 64–66
 applied to Hagen-Poiseuille flow, 61, 66
 applied to wedge flows, 63
Logarithmic equation, 70
Logistic equation, 5
Lorenz model, 208
Loschmidt cell, 228
Lyapunov exponent, 7, 213

MacCormack’s method, 57–58
Magnus effect, 18
Manning roughness, 41

Mass transfer
 between flat plate and moving fluid, 142–143
 enhancement with absorption-reaction, 123–124
 enhancement with flow oscillation, 147–149, 234
 in CVD, 149–150
 in cylinders, 126–130
 in spheres, 139
 through membranes, 125–126, 230
 with edge effects, 129
Microfluidics, 38–41
 electrokinetic effects, 39–40
 slip, 203
Mixing length, 69
Molecular transport, 4
Momentum deficit, 56
Momentum equation, 209
Momentum transfer
 in generalized ducts, 28
 in stagnation flow, 56
 in tubes, 24
 on flat plates, 49
Morton number, 174

Natural convection, 110–115
Navier, 12–13
Navier-Stokes equations, 10, 12–13
Neumann condition, 8
Newton, 13–14
Newtonian fluid and Stokes derivation, 10
Normal stress, 9–11
 relation to pressure, 9, 10
North Atlantic current, 213
Nusselt number, 221–223
 for developing flow in a tube, 109
 for flow between planes, 103
Nusselt number (Continued)
 for fully-developed flow in a tube, 107–109
 for sphere, 102

Odd functions, 31
Orthogonality, 94
 Bessel functions, 242–243
Orr-Sommerfeld equation, 61
Oseen’s correction, 147, 206
Ostwald-de Waele model, 196
Outflow boundary conditions, 33–35

P-51 “laminar flow” wing, 46–47
Parabolic partial differential equations, 249–252
Partial differential equations, solution of
 by collocation, 263–264
 explicit, 250–251
 extrapolated Liebmann or SOR, 246–247
 implicit, ADI, 251–252
 iterative, 217, 245–247
 Gauss-Seidel, 245
Pdf modeling, 165–168
Peclet number, 105, 150–151
Point source, 17, 232–233
Poiseuille flow, 24–29
Potential flow, 16
 around cylinder, 16
 around cylinder with circulation, 17–18
Prandtl analogy, 157
Prandtl and boundary-layer theory, 47
Prandtl number, 115, 236
Prandtl’s mixing length, 69
Pressure distribution, 32
 on cylinders, 17–18
Production of thermal energy, 101, 103–104
Rayleigh-Benard problem, 114–115, 223
Rayleigh equation, 63–64
Rayleigh number, 111–113
Rayleigh-Plesset equation, 178, 236
Regular perturbation, 257–259
Relative turbulence intensity, 68
Reynolds
 analogy, 156–157
 decomposition, 69
 number, 24, 50–52, 59–62
 observations on flow stability, 59–60
RMS velocity fluctuations, 71
Robin’s type boundary condition, 8, 240
Rossler model, 6–7
Rotation, 9

Scalars, 9, 165, 167
Scalar transport
 with two equation model of turbulence, 161–162
Schmidt number, 139, 143
Schlichting’s empirical equation, 209
Separation, 50
Separation of variables (product method), 85, 86, 88, 89, 93, 122,
 125, 126, 130, 247, 249
Shear stress, 9, 24, 29, 49, 56, 59
Sherwood number, 139, 145
Shrinking core model, 134, 231
Similarity transformation, 48, 52–53
SIMPLE, 43–44, 162
Soluble wall with variable diffusivity, 234
Solute uptake from solution, 126, 230
Spectrum, 76
 three-dimensional wave number spectrum of turbulent energy,
 77–78
Spectrum, dynamic equation for, 78–79
 Kraichnan’s theory, 79
Spheres
 conduction in, 93–95
 flow around, 206
 mass transfer in, 130–133
Stability of laminar flow, 60–63, 64–66
 Blasius flow, 61–63
 Couette flow, 64–66
 Hagen-Poiseuille flow, 66–67
 wedge (Falkner-Skan) flow, 63
Stagnation point, 17, 21–22
Stanton, and Reynolds analogy, 157
Steady-state multiplicity, 132
Stefan-Maxwell equations, 189–190, 237
Stokes, 12–13
 hypothesis, 11
 paradox, 205–206
Strain, 10
Stream function, 16
Strouhal number, 51–52
Substantial time derivative, 11
Sulfur dioxide, 233
Surface tension, 174, 177–178
Surface waves, 22, 199
Tacoma Narrows, 50
Taylor
 number, 65
 supercritical, 66
 vortices, 66
Taylor’s
 hypothesis, 75
 inviscid estimate, 161, 185
 microscale, 75
Temperature distributions
 in anisotropic materials, 97–99
 in cylinders, 88–92
 in entrance region, 225–226
 in fins, 95–97
 in slabs, 85–87
 in spheres, 92–95, 99
 near vertical heated plates, 110–111
 with flow in tubes, 107–109
 with flow past plates, 106–107
 with flow through ducts, 102–105
Tensor, 8
Thermal boundary layer, 109
Thermal energy production, 71–72
Thermal entrance region, 104
Thermal expansion, 110
Time series data
 for aeroelastic oscillations, 211
 in aerated jets, 211–212
 in decaying turbulence, 210
Transition, 66–67
 in Couette flows, 64–66
 catastrophic, 65
 evolutionary, 29
Tridiagonal pattern, 252
Turbulence, 67–80
 decaying, 210
Turbulent
 energy production, 71–72
 flow in tubes, 69–71
 inertia tensor, 69
Turbulent flow characteristics, 67–68
Turbulent kinetic energy, 72–74, 162
Vapor pressure, 118, 120–122
Vector, 195
Velocity
 defect, 56
 potential, 15
Velocity distributions
 between concentric cylinders, 201–202
 in annulus, 26–27, 201
 in ducts, 27–29, 32–35, 200
 in entrance region, 36–37
 in open channels, 41–42
 with immiscible fluids, 42
 in tubes, 24–27
 half-filled, 200
 in triangular ducts, 200
 in very small channels, 38–41, 203
 stagnation flow, 55–56
 with immiscible fluids, 203
Vertical heated plate, 110–111
Viscous dissipation, 11, 101
Viscosity
 effect of pressure, 39
 effect of temperature, 102, 224
Von Karman and integral momentum equation, 54–55
Von Karman vortex street, 18, 206–207
Vortex, 18–19, 50–52, 208
Vortex shedding, 50–52
Vortex stretching, 74
Vorticity, 9, 32–33, 113–114
Vorticity transport equation, 32, 223
Wake
 cylinder in potential flow, 17–18
 flat plate, 56
 vortex, 206–207
 vortex street, 19, 51
Whitehead, 147