Abutment, 291
ACI (American Concrete Institute),
 2, 8
Code, 2
Accuracy of computations, 5
Admixture, 18
Aggregates, concrete, 15, 16
Air-entraining cement, 18
Anchorage, 142
Approximate analysis of structures, 78
design factors for concrete beams,
 157, 376
Approximate design of tied concrete columns, 195
Areas of:
 slab reinforcement, 119
 steel reinforcing bars, 25
ASCE (American Society of Civil Engineers), 2
ASCE 2002, 2
Balanced reinforcement, strength
design, 91
Balanced section, 91
Bars, reinforcing, see Reinforcement
Basement wall, 226
Beams:
 analysis of, 63, 88
 balanced section, 91
 bending in, 64
 cantilever, 67
 concentrated load, 67, 69
 concrete, 88
 continuous, 69
Beams (Continued)
deflection, 122
depth, 122, 165
diagrams, typical loadings, 67, 69
doubly-reinforced, 102, 110
effective depth of concrete beam, 90
fixed-end, 66
indeterminate, 69, 78, 155
internal resisting moment, 88
investigation of, 63, 69, 90, 155
joists, 167
moment capacity, 89
moment diagram, 67
moment in, 67
multiple span, 68
neutral axis, 89
reactions, 67
rectangular stress block, 90
resisting moment in, 88
restrained, 66
shape of, 163
shear diagram, 67
shear in, 104, 126
simple, 66
statically indeterminate, 69, 78, 155
strength design of, 90
stresses in, 89
T-beam, 102, 104
tabular data for, 67
types of, 66
under-reinforced, 93
width, concrete, 96, 164
with compression reinforcement, 102, 110

Bearing:
on concrete wall, 223
on pedestal, 265
wall, 184, 223

Bending:
action in beams, 88
in concrete beams, 88
of reinforcement, 58, 146
resistance, 88

Bending moment, in beam, 88
diagrams, 67
Bent, column and beam, 80, 211, 388
Bond stress, 142
Bracing of framed structures, 214
Building code requirements, 301
Building construction, choice of, 296

Caissons, 273
Cantilever:
 beam, 66
 retaining wall, 281, 323
 rigid frame, 72
Captive column, 220
Cast-in-place concrete, 11
Cement, 15
Choice of building construction, 296
CMU (concrete masonry unit), 48, 207, 231, 348, 353, 368
Cold joint, 51

Columns:
 combined axial load and moment, 187
design of, 194
eccentrically loaded, 195
footing for, 249, 257
general requirements, 186
interaction, axial load plus moment, 187
investigation, 63
multistory, 151, 192, 383
P-delta effect, 79, 188
pedestal for, 259
rectangular, 198
reinforced concrete, 182
round, concrete, 184, 202
shape, 189
slenderness, 204
spiral, concrete, 184
tied, concrete, 184, 195

Combined axial force and moment, 187
INDEX

Composite construction, 176
Compression:
 in columns, 180
 reinforcement in concrete beams, 110
Compression elements, 206
 columns, 180
 combined compression and bending, 187
 confined material, 182
 containment of, 182
 cracked section, 188
 interaction, 187
 P-delta effect, 79, 188
 vertical, 206
Computations, 5
Concrete:
 finishing, 36
 forms for, 11, 35
 heavyweight, 31
 insulating, 32
 lightweight, 31
 masonry, 48, 207
 mix, 30
 precast, 11, 42
 prestressed, 2, 26
 superstrength, 32
 weight, 17
Construction joint, 51
Containment, 182
Continuous action of:
 beams, 69, 374
 slabs, 156, 374
Conversion factors for units, 5
Core bracing, 366
Cost of construction, 313
Cover, of reinforcement, 24
Cracked section, 188
Cracks, 55
Creep, 20
CRSI (Concrete Reinforcing Steel Institute), 9, 99
Cutting, of site, 235

Dead load, of building construction, 298
Deep foundations, 270
 caisson, 273
 pier, 273
 pile, 272
Deflection, of concrete beams and slabs, 122
Design methods, 62, 86
 strength, 62, 86
Development:
 in columns, 151
 length for reinforcement, 142, 150
 of resisting moment, concrete beam, 88
Diaphragm, horizontal, 360, 337
Doubly reinforced beams, 102, 110
Dowels, in footings, 151, 250
Drift, 308
Dual bracing, 217
Ductility, 23

Earthquake, also see Seismic, 309
Eccentric load:
 on column, 195
 on footing, 285
Economics of building construction, 313
Effective:
 width of column in bearing wall, 223
 width of concrete T-beam flange, 104
Elastic stress-strain response, 88
Equivalent eccentric load, 195
Factored load, 310
Fiber-reinforced concrete, 18, 26
Fill, on site, 235
Fire resistance, 17, 21
Fixed end beam, 67
Flat-spanning systems, 154, 374, 398
Flat slab, 174, 398
Flexure, in beams, 88
Floor-ceiling space, in multilevel buildings, 165
Footings:
 column, 249, 257
 moment-resistive, 285
 wall, 240, 243
Foundations, 233
 column footing, 249, 257
 deep, 270
 design, 356, 396
 design criteria, 237
 framed floor on grade, 280, 324
 grade beam, 266
 moment-resistive, 285
 pedestal, 184, 205, 259
 retaining wall, 281
 selection, 235
 shallow bearing, 238
 site design, 235
 site exploration, 234
 soil conditions, 235
 for stud walls, 238
 wall, 240, 266
 wall footing, 240, 243
Framed floor on grade, 280, 324
Frames:
 cantilever, 72
 indeterminate, 78, 387
 investigation of, 72
 moment-resistive, 72, 387
 rigid, 72, 210

Grade of reinforcing bars, 22
Grade beam, 266
Heavyweight concrete, 31
Hook in concrete, 146
 equivalent development length of, 146
Horizontal:
 diaphragm, 337, 360
 reinforcement in walls, 222

Indeterminate structures, 69, 78, 374, 387
Inelastic behavior, 23, 89
Installation of reinforcement, 41, 380
Insulating concrete, 32
Interaction:
 of building systems, 313
 of compression and bending in columns, 187
Internal forces:
 in beams, 87
 in rigid frames, 72
Internal resisting moment, 87
Investigation of:
 basement wall, 226
 beams, 64, 87
 bearing wall, 223
 columns, 63
 footings, 240, 249
 frames, 72, 388
 retaining wall, 281
 slabs, 117, 156

Joist construction:
 one-way, 167
 two-way (waffle), 169
Lapped splice, 149
Lateral:
 bracing of buildings, 366, 371, 387
 load, 306, 329, 359
Lateral resistive structures:
 horizontal diaphragm, 337, 360
 moment-resistive frame, 366, 387
 perimeter:
 bent, 366, 387
 shear wall, 366
 rigid frame, 388
 shear wall, 366, 371
 types of, 366
Lightweight concrete, 31
Limit state (failure), 83
Live load:
 element factor, K_{LL}, 303
 for floors, 303
 reduction, 305, 377
 for roofs, 304
Load:
 building code, 301
 combinations, 310
 dead (DL), 298
 design, 84, 298
 determination, 310, 326
 earthquake, 309
 eccentric, 195
 equivalent eccentric, 195
 factored, 310
 floor, live, 305
 lateral, 306, 329, 359, 371
 live, 303
 periphery, 310
 roof, 304
 seismic, 309
 service, 61
 wind, 306, 333, 391
Load sharing, 215
LRFD (load and resistance factor design), 63, 83

Masonry, concrete (CMU), 48, 207, 348, 353, 368
 wall, 231, 348, 353, 368
Materials, weight of, 299
Measurement, units of, 3
Metric units, 4
MIA (Masonry Institute of America), 9
Mill construction, 348
Minimum:
 depth of concrete beam, 122
 dimensions for concrete members, 53, 122, 164
 reinforcement, 24, 56, 98
 size of concrete members, 53, 122, 164
 thickness of concrete slab, 122
 width of concrete beams, 164
Mix, concrete, 30
Mix, concrete, 30
Moment:
 in beams, 64
 diagram for beam, 67, 69
 internal bending moment, 88
 overturning, 287, 308, 337
 restoring, 287, 337
 stabilizing, 337
 Moment-resisting frame, 72, 210, 388
 Moment-resistive foundation, 308
 Multistory rigid frame, 388
Neutral axis, 89
Nomenclature, 6
Notation, standard, 6

One-way slab, 117, 156
Overturning moment, 308
 on retaining wall, 287
 on shear wall, 337
Paving slab, 277
PCA (Portland Cement Association), 9
PCI (Prestressed Concrete Institute), 9
P-delta effect, 79, 188
Pedestal, concrete, 184, 205, 259
Perimeter bracing, see Peripheral
Peripheral:
 area, 310
 bracing, 389
 load, 310
 rigid frame, 389
 shear in concrete footing, 253
Periphery, load, 310
Permanent set, 23
Pier, 205, 273
Pile, 272
Portland cement, 10, 15
Precast concrete, 11, 177, 230
Prestressed Concrete, 2, 26
Pressure:
in soils, 237
wind, 307
Properties of:
balanced sections, 91
reinforcing bars, 23
Proportional stiffness of:
column/beam bents, 213
individual bent members, 218
shear walls, 371
Punching shear, 253
Rectangular:
beam in concrete, 88
column, 145
footing, 258
stress block, strength method, 90
Reduction of live load, 304, 305, 377
Reference Sources, 8, 419
Reinforced concrete, 2, 11
general requirements, 50
investigation, 59
practical considerations, 51
Reinforcement, 22
anchorage of, 24
areas of, in slabs, 119
balanced, 91
bars, 22, 25
bending of, 58, 146
for columns, 184
compressive, 102, 110
cover for in concrete, 24, 57
development of, 104, 142
fiber, 18, 26
general requirements, 56
grade of, 23
hook, 146
installation, 41, 380
masonry, 209
minimum, 24, 56, 98
properties of, 23
shrinkage, 57
spaced, areas, 119
spacing of, 24, 57, 119
splice, 149
standard bars, 25
strength of, 23
temperature, 57
Resistance factor, 85
Resisting moment in beams, 88
Restoring moment, 287, 337
Retaining wall, 281
cantilever, 281, 323
overturn, 287
Rigid frame, 1
approximate analysis, 78
cantilever, 72
crincess, 191
determinate, 72
indeterminate, 80, 387
for lateral force resistance, 388
multi story, 210, 388
single span, bent, 80
three-dimensional, 212
two-dimensional, 211, 388
Roof load, live, 304
Round columns, concrete, 184, 202
Safe load tables for:
beams, 99
columns, 195
column footings, 257
wall footings, 243
Segregation, 34
Seismic effects, 309
Service load, 61
Set, permanent, 23
Shallow bearing foundations, 238
Shear:
beam, 67, 69, 126
diagram for beam, 67, 69
peripheral, 253
punching, 253
reinforcement, 127
Shear in:
beams, 67, 69, 126
column footing, 249
concrete beams, 126
concrete structures, 125
footings, 244, 249
Shear reinforcement, 127
Shear wall, 230, 329, 354, 371
overturn, 337
Shop drawings, 41
Shrinkage reinforcement, 59
Sidesway of rigid frame, 79
Site:
design, 235
development, 320
exploration, 234
Sitecast concrete, 11, 35, 101
Slab and beam structure, 155, 374
Slabs:
flat, 174, 398
on grade, framed, 318
one-way spanning, 117, 156
paving, 277
reinforcement for, 119
thickness of, minimum, 165, 319
two-way spanning, 173
Slenderness of columns, 204
Slump test, 40
Soil:
conditions, 235
pressure, 237
presumptive design values, 238
Spaced reinforcement, area of, 119
Spacing of:
bars in concrete, 24, 57, 119
stirrups, 135
Specified compressive strength of
concrete, \(f'_c \), 19
Spiral column, concrete, 184
Splices in reinforcement, 149
Stability of:
retaining wall, 281
shear wall, 337
Stabilizing moment of building
weight, 337
Standard notation, 6
Standards for structural design, 2, 8
Statically indeterminate:
beams, 69, 78, 155, 374
frames, 78, 387
Steel:
ductility of, 23
reinforcing bars, 25
yield strength of, 23
Stiffness:
proportional, 371
relative, 19
Stirrups, 127
spacing of, 135
Strength:
of concrete, 19
design method, 62, 86
reduction factor, 85
ultimate, 23
yield, 23
Stress:
in beams, 89
bearing, 223, 265
bending, 89
bond, 142
flexural, 89
inelastic, 23, 89
method, design, 62
in soils, 235
yield, 23
Stress-strain:
diagram, 23
ductility, 23
modulus of elasticity, \(E \), 19
proportional limit, 19
yield stress, 23
Structural:
alternatives, 366
analysis, 5
computations, 5
concrete, 10, 14, 34, 59
design, 2, 84, 297
investigation, 59
planning, 312
safety, 49
subbase for pavement, 279
Superstrength concrete, 32
Symbols, 6

T-beams, concrete, 102, 104
Temperature reinforcement, 59
Tests, 40
Tied concrete column, 184
approximate design, 195
Tilt-up wall, 178, 340
Tributary area, 306 (see also Peripheral area)
Two-way spanning structures, 169, 174

UBC (Uniform Building Code), 2
Ultimate strength design, 62, 86
Underbalanced section, 93
Under-reinforced concrete beam, 93
Units, of measurement, 3, 4
conversion, 5
Uplift, 308
U. S. units, 3

Vertical reinforcement in walls, 222

Waffle construction, 169, 344
Wall:
basement, 226
bearing, 223
footing, 240, 243
foundation, 240, 266
grade beam, 240, 266
masonry, 231, 348, 353, 368
precast concrete, 230
retaining, 281
shear, 230, 329, 354, 371
sitecast, 221
tilt-up, 178, 340
Water-cement ratio, 30
Water tightness of concrete, 21
Weight of:
building construction, 299
concrete, 17
Wind, 306
basic wind speed, 306
building code requirements for, 307
design wind pressure, 307
load determination, 306, 333, 371
overturning moment, 308
pressure variation with height
above ground, 371
uplift, 308
Workability of wet concrete, 20
Working stress method, 62
Yield, strength, 23
stress, 23