Contents

Preface XVII
List of Contributors XXI

Part One Biosensing and Diagnosis 1

1 Nanomaterials-Based Magnetic Relaxation Switch Biosensors 3
 Tom Lowery
1.1 Introduction 3
1.2 Superparamagnetic Nanoparticles 4
1.3 Agglomeration-Based Sensing 6
1.4 T2 Sensitivity of MRSW Particles 8
 1.4.1 Fundamentals of T2 Relaxation 8
 1.4.2 Detecting T2 Relaxation 11
 1.4.3 Theoretical Model for T2 and Nanoparticle Size 14
1.5 Kinetics of Magnetic Relaxation Switch Biosensors 18
1.6 Demonstrations of Magnetic Relaxation Switch Biosensors 20
 1.6.1 Detecting Nucleic Acids 21
 1.6.2 Detecting Proteins 24
 1.6.3 Detecting Enzymes 25
 1.6.4 Detecting Viruses 29
 1.6.5 Detecting Small Molecules 30
 1.6.6 Detecting Ions 32
 1.6.7 Detecting Cells 34
1.7 Methods Development 36
 1.7.1 Reagent Synthesis, Preparation, and Characterization 36
 1.7.2 Measurement and Sensitivity Enhancement Methods 38
1.8 Micro-NMR of Magnetic Relaxation Switch Biosensors 42
Acknowledgments 46
References 47
2 Multiplexed Detection with Magnetic Nanoparticles 55
 Robert Wilson
2.1 Introduction 55
2.2 Magnetism and Magnetic Particles 56
2.2.1 Separating and Mixing Magnetic Particles 58
2.3 Planar Arrays 58
2.4 Rotating Discs 63
2.5 Diagnostic Devices 64
2.6 Bio-Barcode Assays Based on Magnetic Microspheres 66
2.7 Spectrally Encoded Suspension Arrays of Magnetic Microspheres 66
2.7.1 Magnetically Encoded Suspension Arrays 70
2.8 Summary and Conclusions 72
References 72

3 Magnetophoretic Biosensing and Separation Using Magnetic Nanomaterials 77
 Joo H. Kang, Young Ki Hahn, Kyu Sung Kim, and Je-Kyun Park
3.1 Introduction 77
3.2 Theory 79
3.2.1 Magnetic Properties of a Material 79
3.2.2 Magnetophoresis 80
3.2.3 High-Gradient Magnetic Separation 81
3.3 Magnetophoresis in Microfluidic Devices 83
3.3.1 Design and Microfabrication Processes 83
3.3.2 Experimental Set-Up 85
3.3.3 Measurement and Analysis 88
3.4 Magnetophoretic Biosensing 88
3.4.1 Magnetophoretic Sandwich Immunoassay 89
3.4.2 Highly Sensitive Biosensors Using HGMS 92
3.4.3 Disease Diagnosis Using Magnetophoretic Assay Systems 93
3.4.4 Multiplexed Magnetophoretic Immunoassay 97
3.5 Magnetophoretic Separation 102
3.5.1 Cell Separation and Analysis 102
3.5.2 Separation of Nanomaterials 104
3.5.3 Isomagnetophoresis (IMP) 107
3.6 Concluding Remarks 111
Acknowledgments 112
References 112

4 Magnetic Nanomaterials as MRI Contrast Agents 119
 Yurii K. Gun’ko and Dermot F. Brougham
4.1 Introduction 119
4.2 Classification of Magnetic Nanomaterials Used for MRI Applications

4.2.1 Magnetic Oxide-Based Nanoparticles

4.2.2 Magnetic Metal- and Alloy-Based Nanoparticles as Contrast Agents

4.2.3 Rare Earth Metal-Loaded Nanoparticulate Contrast Agents

4.3 Coating and Surface Functionalization of Magnetic Nanoparticles

4.3.1 Surface Modification with Monomeric Stabilizers

4.3.2 Modification Using Polymeric Stabilizers

4.3.3 Modification Using Inorganic Coatings

4.3.4 Vectorization of Magnetic Nanomaterials for Targeted Imaging

4.4 Properties and Characterization of Magnetic Nanoparticle Suspensions

4.4.1 Characterizing the Suspensions

4.4.1.1 Nanoparticle Size: Transmission Electron Microscopy

4.4.1.2 Magnetic Properties: Magnetometry

4.4.1.3 Hydrodynamic Size: Photon Correlation Spectroscopy

4.4.1.4 Magnetic Resonance Properties: Nuclear Magnetic Resonance Dispersion

4.4.2 NMR Relaxation in the Presence of Superparamagnetic Nanoparticles

4.4.3 SPM Theory Applied to Suspensions of Nanoparticle Clusters

4.4.4 General Application of Relaxation Time Measurements

4.5 Application of Magnetic Nanomaterials in MRI

4.5.1 Current Clinical Applications

4.5.1.1 Gastrointestinal Tract and Bowel Imaging

4.5.1.2 Liver and Spleen Imaging

4.5.1.3 Lymph Node Imaging

4.5.1.4 Bone Marrow Imaging

4.5.1.5 Brain Imaging

4.5.1.6 Blood Pool Imaging and MR Angiography

4.5.1.7 Atherosclerosis Imaging

4.5.2 Potential Clinical Applications

4.5.2.1 Cellular Labeling and Tracking

4.5.2.2 Molecular Imaging

4.6 Summary and Future Outlook

4.6.1 Improved Imaging Methods

4.6.2 Improved Imaging Hardware

4.6.3 Improved Contrast Agents

References
Part Two Diagnosis and Therapy 187

5 Magnetic Nanomaterials for In Vivo and In Vitro Cancer Diagnostics 189
Kelly Y. Kim
5.1 Introduction 189
5.2 Physico-Chemical Properties of Magnetic Nanoparticles 190
5.3 Surface Coating for Improved Biocompatibility and Bioavailability 191
5.4 MRI for In Vivo Diagnostics 194
5.4.1 Principles of MRI 194
5.4.2 SPIOs as MRI Contrast Agents 195
5.4.3 Specific Targeting of Tumors for Imaging 195
5.5 MRI for the Monitoring of Treatment 196
5.6 Application of Magnetic Nanoparticles in In Vitro Diagnostics 197
5.6.1 Magnetic Nanoparticle-Based Improvements on Immunoassays 198
5.6.1.1 Electrochemical Immunoassays 198
5.6.1.2 Immunoassays Using Magnetic Luminescent Nanoparticles (MLNPs) 199
5.6.2 Magnetic Relaxation Switch (MRSw) Biosensors for Multi-Sample Analysis 199
5.6.3 DNA Sequence Detection by Brownian Relaxation Frequency Measurement 201
5.7 Detection of Circulating Tumor Cells 202
5.8 Aptamers as an Alternative to Antibodies 203
5.9 Conclusions 204
References 205

6 Magnetic Nanoparticles for Cancer Imaging and Therapy 209
Arutselvan Natarajan, Rajeswari Sundrarajan, and Sally J. DeNardo
6.1 Introduction 209
6.2 Synthesis and Surface Modifications of MNPs for Biological Applications 211
6.2.1 Fabrication of the Magnetic Nanoparticle Core 211
6.2.2 Surface Coatings and Chemistry 211
6.2.3 Physico-Chemical Characterization of MNPs 212
6.2.4 Plasma Stability and Pharmacokinetic Profile of the MNPs 212
6.3 Development of MNPs as Cancer Diagnosis and Imaging Agents 214
6.3.1 MNPs Used in MR Imaging for Cancer Diagnosis 214
6.3.2 MNPs Used in Optical Imaging for Cancer Diagnosis 219
6.3.3 Ligand-Directed MNPs for Cancer Imaging 225
6.3.3 Antibody-Directed MNPs
- 225

6.3.3.2 Antibody Fragment-Directed MNPs
- 226

6.3.4 Radioimmunonanoparticles
- 228

6.3.5 Annexin 5-Directed MNPs
- 230

6.3.6 Chemotherapeutic Drugs Loaded with MNPs for Cancer Therapy
- 230

6.3.7 Lymph Node-Targeting MNPs
- 231

6.3.8 Other Novel MNPs for Cancer Targeting
- 231

6.4 MNPs Applied to Cancer Therapy
- 232

6.4.1 MNPs Utilized in Targeted Therapy for Cancer
- 232

6.4.1.1 Brain Tumor Therapy
- 232

6.4.1.2 Breast Cancer Therapy
- 234

6.4.1.3 MNPs in Hyperthermia and Thermal Ablation
- 237

6.4.1.4 MNPs-Directed Toxicity
- 240

6.5 Summary
- 242

References
- 244

7 Core–Shell Magnetic Nanomaterials in Medical Diagnosis and Therapy
- 259

Marites P. Melancon and Chun Li

7.1 Introduction
- 259

7.2 Synthesis
- 260

7.2.1 Formation of the Magnetic Core
- 260

7.2.1.1 Coprecipitation from Solution
- 260

7.2.1.2 Thermal Decomposition
- 261

7.2.1.3 Microemulsions
- 262

7.2.1.4 Pyrolysis
- 262

7.2.2 Formation of the Core–Shell Structure
- 263

7.2.2.1 Inorganic Core with Organic Shell
- 263

7.2.2.2 Inorganic Core with Inorganic Shell
- 264

7.3 Applications: Magnetic Resonance Imaging
- 270

7.4 Applications: Hyperthermia and Thermal Ablation
- 273

7.4.1 Passive Targeting
- 275

7.4.1.1 Dextran-Coated Magnetite
- 275

7.4.1.2 Aminosilan-Coated Magnetic Particles
- 275

7.4.1.3 Magnetic Cationic Liposomes
- 276

7.4.2 Active Targeting
- 277

7.4.2.1 Antibodies
- 277

7.4.2.2 Peptides
- 277

7.4.2.3 Folic Acid
- 278

7.4.3 Laser-Induced Hyperthermia/Thermal Ablation Therapy
- 278

7.5 Application: Drug Delivery
- 279

7.6 Summary and Perspectives
- 281

Acknowledgments
- 282

References
- 282
Part Three Tissue Engineering 291

8 The Use of Magnetic Particles in Tissue Engineering 293
Sarah H. Cartmell and Jon Dobson

8.1 Introduction 293
8.1.1 Mechanotransduction 293
8.1.2 Cell Seeding: Scaffolds and 3-D Structures 296
8.2 Magnetic Particle Technology Used in Various Tissue Types 297
8.2.1 Bone and Cartilage 297
8.2.2 Blood Vessels and Cardiac Structure 299
8.2.3 Skin 300
8.2.4 Lung 301
8.2.5 Eye 301
8.2.6 Liver 302
8.2.7 Nervous Tissue 302
8.2.8 Stem Cell Targeting 303
8.2.9 Use of Magnetic Particles to Create Acellular Scaffolds 303
8.3 Summary and Concluding Remarks 303

References 304

Part Four Environmental Applications 309

9 Magnetic Nanomaterials for Environmental Applications 311
Marvin G. Warner, Cynthia L. Warner, R. Shane Addleman, and Wassana Yantasee

9.1 Introduction 311
9.1.1 The Aim of the Chapter 311
9.1.2 The Role of Nanomaterials in Environmental Detection 311
9.2 Synthesis and Functionalization of Magnetic Nanoparticles 313
9.2.1 Synthetic Strategies for Magnetic Metal Oxide Nanoparticles 313
9.2.1.1 Coprecipitation 314
9.2.1.2 Thermal Decomposition 315
9.2.1.3 Other Synthetic Methods 317
9.2.2 Functionalization of Magnetic Nanoparticles 317
9.2.2.1 Organic Ligand Modification 318
9.2.2.2 Stabilization with Polymers 319
9.2.2.3 Inorganic Stabilization with Silica or Carbon 319
9.2.2.4 Less Common Methods of Passivation 324
9.3 Magnetic Nanoparticles for the Separation and Detection of Analytes 324
9.3.1 Chemical Separations with Functionalized Magnetic Nanoparticles 324
9.3.2 High Magnetic Field Gradient Separation and Preconcentration 327
9.3.3 Electrochemical Detection Enhanced by Magnetic Nanomaterials for Preconcentration 330
9.3.4 Analyte Detection Using Magnetic Nanoparticles through Nonelectrochemical Methods 334
9.4 Summary and Future Perspective 336
Acknowledgments 337
References 337

Part Five Biofunctionalization and Characterization 345

10 Magnetic Core–Polymer Shell Nanoparticles: Synthesis and Biomedical Applications 347
Koon Gee Neoh, Lihan Tan, and En-Tang Kang
10.1 Introduction 347
10.2 Synthesis of Magnetic Nanoparticles 348
10.2.1 Primary Synthesis Methods 348
10.2.2 Effect of Synthesis Conditions on Particle Size and Surface Properties 349
10.3 Magnetic Nanoparticles with Polymeric Shell 350
10.3.1 Coating with Polymer During MNP Synthesis 350
10.3.1.1 Dextran-Coated MNPs via the Coprecipitation Method 350
10.3.1.2 Starch-Coated MNPs via the Coprecipitation Method 352
10.3.1.3 PEG-Coated MNPs via the Coprecipitation Method 353
10.3.1.4 MPEG-COOH-Coated MNPs via the High-Temperature Decomposition Method 354
10.3.1.5 Triethylene Glycol-Coated MNPs via the High-Temperature Decomposition Method 356
10.3.1.6 4-Methylcatechol-Coated MNPs via High Temperature Decomposition Method 356
10.3.2 Modification of Preformed MNPs 357
10.3.2.1 Physical Adsorption of Polymer onto Preformed MNPs 357
10.3.2.2 Grafting of Polymer on Preformed MNPs 359
10.4 Encapsulation of Magnetic Nanoparticles in a Polymeric Matrix 371
10.4.1 Nanospheres for Imaging 372
10.4.1.1 PLGA and PLLA Coating 372
10.4.1.2 PEG-PEI, Crosslinked Poly(Maleic Anhydride-alt-1-Tetradecene) and Lipid Micelles Coating 373
10.4.1.3 Iodinated Polymer Coating 374
10.4.1.4 Poly(Styrene-co-Acrylic Acid) Coating 375
10.4.2 Nanospheres with Targeting and Recognition Capability 375
10.4.2.1 Polypyrrole Coating with FA as the Targeting Ligand 376
10.4.2.2 PPYCoating with Herceptin as the Targeting Ligand 377
10.4.2.3 PLGA Coating with Arginine Peptide as the Targeting Ligand 379
10.4.2.4 Phospholipid Coating with Antibodies as the Targeting Ligand 379
10.4.2.5 Poly(MMA-co-EGDMA) Coating with BSA Surface-Imprintation 380

10.4.3 Nanospheres as Drug/Gene Delivery System 380

10.4.3.1 PLGA Loaded with Taxol 381

10.4.3.2 PLLA and PCL Loaded with Tamoxifen 381

10.4.3.3 Chitosan Loaded with Cefradine 382

10.4.3.4 PECA or PCL Loaded with Cisplatin or Gemcitabine 382

10.4.3.5 Poly(Alkylcyanoacrylate) Loaded with Tegafur or 5-Fluorouracil 384

10.4.3.6 PHDCA-PEI Loaded with Doxorubicin 386

10.4.3.7 PLGA Loaded with QDs, DOX, and Functionalized with FA 386

10.4.3.8 PEI and Transferrin-Mediated Gene Delivery 388

10.4.3.9 Polyamidoamine (PAMAM) Dendrimer-Mediated Gene Delivery 389

10.5 Future Perspectives 389

References 392

11 Magnetosomes: Bacterial Biosynthesis of Magnetic Nanoparticles and Potential Biomedical Applications 399

Sarah S. Staniland

11.1 Introduction 399

11.2 Magnetic Nanoparticles for Medical Applications 400

11.2.1 Introduction 400

11.2.2 Requirements and Specifications for Biomedical Applications 401

11.2.2.1 Safety Aspects 401

11.2.2.2 Magnetic Properties 402

11.2.2.3 Particle Size and Shape 402

11.2.2.4 Particle Coatings 402

11.2.3 General Synthetic Methods 403

11.2.3.1 Precipitation 403

11.2.3.2 Thermal Decomposition 405

11.3 What Is Biomineralization? Biogenic Inorganic Materials 405

11.4 Magnetosomes: Biomineralization in Magnetic Bacteria 407

11.4.1 Bacteria Characterization 409

11.4.2 Magnetosome Characterization 412

11.4.3 Magnetosome Formation 415

11.4.3.1 Proteomics 416

11.4.3.2 Genetics 417

11.4.3.3 Mechanism 418

11.5 Progress and Applications of Novel Biomedical Magnetosome Materials 419

11.6 The Future for Biomedical Magnetosomes 422

References 424

12 Approaches to Synthesis and Characterization of Spherical and Anisometric Metal Oxide Magnetic Nanomaterials 431

Lorenza Suber and Davide Peddis

12.1 Introduction 431
12.2 Magnetism in Nanostructured Metal Oxides 433
12.2.1 Magnetism in Condensed Matter 433
12.2.2 Magnetic Anisotropy Energy 435
12.2.3 Magnetism in Small Particles: An Experimental Approach 436
12.2.3.1 Zero Field-Cooled and Field-Cooled Magnetization 438
12.2.3.2 Thermomagnetic Magnetization 439
12.2.4 Magnetic Metal Oxides 440
12.3 Synthesis Methods for Spherical and Anisometric Iron Oxide Nanomaterials 442
12.3.1 Synthesis of Spherical and Anisometric Nanoparticles 443
12.3.1.1 Metal Salt Precipitation in Water 443
12.3.1.2 Sol–Gel 445
12.3.1.3 Microemulsions 447
12.3.1.4 Autocombustion Method 448
12.3.1.5 Surfactant-Assisted Hydrothermal Treatment 448
12.3.1.6 Surfactant-Assisted Ultrasound Irradiation 449
12.3.2 Ferrofluids 449
12.3.2.1 Surfactant-Assisted Dehydration 450
12.3.2.2 Hydrophobic–Hydrophilic Phase Transfer 450
12.3.3 Core–Shell Spherical and Anisometric Particles 451
12.3.3.1 Core–Shell Fluorescent Magnetic Iron Oxide–Silica Particles 452
12.3.3.2 Synthesis of Anisometric Iron Oxide Nanocapsules 453
12.3.4 Maghemite and Magnetite Nanotubes 455
12.3.4.1 Solid Nanotube Template 455
12.3.4.2 Soluble Nanotube Template 456
12.4 Correlations between Synthesis and Magnetic Behavior in Iron Oxide Nanomaterials 457
12.4.1 Spherical and Anisometric Iron Oxide Particles 457
12.4.1.1 Spherical Magnetite (Fe₃O₄) Nanoparticles 457
12.4.1.2 Stable Iron Oxide Spherical Nanoparticle Dispersions (Ferrofluids) 459
12.4.1.3 Surfactant Effect 461
12.4.1.4 Anisometric Maghemite (γ-Fe₂O₃) Particles 462
12.4.2 Core–Shell Nanoparticles 463
12.4.2.1 γ-Fe₂O₃/Silica Core Coated with Gold Nanoshell 464
12.4.2.2 Effect of Particle Size and Particle Size Distribution on the Magnetic Properties of Magnetite/PDMS Nanoparticles 466
12.4.3 Nanocomposites 468
12.4.3.1 Magnetic Properties of Cobalt Ferrite–Silica Nanocomposites Prepared by a Sol–Gel Autocombustion Technique 468
12.4.3.2 Ordered Mesoporous γ-Fe₂O₃/SiO₂ Nanocomposites 472
12.4.3.3 Fe₃O₄/Poly(methylmethacrylate) 473
12.4.4 Iron Oxide Nanowires and Nanotubes 474
12.4.4.1 Fe₃O₄ Nanowires 475
12.4.4.2 Fe₃O₄ Nanowires and γ-Fe₂O₃ Nanotubes 475
12.4.3 Fe₃O₄ and γ-Fe₂O₃ Tube-in-Tube Nanostructures 477
12.5 Conclusions and Perspectives 479
List of Abbreviations 480
References 480

13 Approaches to the Synthesis and Characterization of Spherical and Anisotropic Magnetic Alloy Nanomaterials 489
Matthew S. Wellons and Charles M. Lukehart
13.1 Introduction 489
13.2 Magnetic Noble Metal Alloy Nanoparticles 490
13.3 Magnetic Early Transition Metal Alloy Nanoparticles 500
13.4 Summary and Future Perspectives 502
References 502

14 Approaches to the Biofunctionalization of Spherical and Anisotropic Iron Oxide Nanomaterials 507
Christopher J. Thode and Mary Elizabeth Williams
14.1 Introduction 507
14.2 Magnetic Nanoparticle Synthesis 508
14.3 Nanoparticle Functionalization 509
14.3.1 Surface Adsorption 509
14.3.2 Ligand Exchange 511
14.3.3 Silanes and Siloxanes 513
14.3.4 Monolayer Reactions 515
14.3.5 Encapsulation 516
14.3.5.1 Encapsulation: Silica (SiO₂) 517
14.3.5.2 Encapsulation: Metallic and Semiconductor Shells 519
14.3.5.3 Encapsulation: Polymeric and Carbon Shells 522
14.3.5.4 Encapsulation: Carbon Shells 530
14.3.6 Lipids and Dendrimers 530
14.3.6.1 Lipids 530
14.3.6.2 Dendrimers 532
14.4 Conclusions 533
References 533

15 Characterization of Magnetic Nanoparticles Using Magnetic Force Microscopy 551
Gunjan Agarwal
15.1 Introduction 551
15.2 Development of MFM 551
15.3 Comparison of MFM to Other Techniques 553
15.3.1 Invasive Imaging 553
15.3.2 Noninvasive Imaging 554
15.3.3 Magnetic Resonance Force Microscopy 555
15.4 Physical Principals of MFM 555
15.4.1 Static Mode 555
15.4.2 Dynamic Mode 556
15.4.3 Forces Due to Magnetic Interaction 559
15.5 Noise in MFM 560
15.5.1 Thermal Noise 560
15.5.2 Magnetic Versus Topographic Signals 561
15.6 MFM Cantilevers and Probes 562
15.6.1 Wire Probes 563
15.6.2 Thin-Film-Coated Si Probes 563
15.6.3 FIB Probes 564
15.6.4 CNT Probes 565
15.7 Probe Calibration 565
15.7.1 Quantitative Calibration of the Magnetic Force Microscope Probe 566
15.7.2 Calibration Samples 567
15.8 Resolution in MFM 568
15.8.1 Lateral Resolution 568
15.8.2 Vertical Resolution 569
15.9 MFM for Magnetic Nanoparticles 569
15.9.1 Ferromagnetic Nanoparticles 570
15.9.2 Superparamagnetic or Paramagnetic Nanoparticles 571
15.10 The Application of MFM in the Life Sciences 576
15.11 Limitations in MFM 577
15.12 Recent Developments in MFM 578
15.12.1 Non-Optical Methods for Cantilever Detection 578
15.12.2 Application of External Magnetic Fields 579
15.12.3 Technique Developments for MFM 579
15.13 Summary and Future Perspectives 580

References 580

16 Cobalt Nanomaterials: Synthesis and Characterization 587
Zhihua Zhang, Tiejun Zhou, Meihua Lu, Allen Wei Choong Poh, and Seidikkurippu N. Piramanayagam
16.1 Introduction 587
16.2 The Characterization of Co Nanoparticles 588
16.2.1 Shape, Size, and Microstructure 588
16.2.1.1 Transmission Electron Microscopy 588
16.2.1.2 Scanning Electron Microscopy 590
16.2.2 Magnetic Properties 593
16.2.3 Morphology 594
16.2.4 Elemental and Chemical Analysis 596
16.2.4.1 Auger Electron Spectroscopy 596
16.2.4.2 X-Ray Photoelectron Spectroscopy (XPS) 596
16.2.5 Fourier Transform Infrared (FTIR) Spectroscopy 597
16.2.6 The Crystal Structure: X-Ray Diffraction (XRD) 598
16.3 Synthesis of Cobalt-Based Nanoparticles 598
 16.3.1 Introduction 598
 16.3.2 Stabilization of Nanomaterials 599
 16.3.3 Synthesis of Cobalt Nanomaterials 601
 16.3.3.1 Physical Methods 601
 16.3.3.2 Chemical Vapor Deposition 602
 16.3.3.3 Liquid-Phase Chemical Precipitation 603
 16.4 Magnetic Properties of Co Nanoparticles 612
 16.4.1 Introduction 612
 16.4.2 Finite Size Effects 613
 16.4.2.1 Size-Dependent Crystalline Structure 613
 16.4.2.2 Size-Dependent Magnetic Domain Structure and the Reversal of Co Nanoparticles 614
 16.4.2.3 Thermal-Activation Effect on the Moment and Coercivity 615
 16.4.2.4 Superparamagnetism in Co Nanoparticle System and its Direct Investigation 616
 16.4.3 Surface Effects of Co Nanoparticles 618
 16.4.3.1 Moment Enhancement of Surface Atoms 618
 16.4.3.2 Anisotropy Enhancement of Co Nanoparticles 619
 16.4.3.3 Exchange Bias Between the Core and the Oxidized Surface in Co Nanoparticles 620
 16.4.4 Summary 621
 16.5 Summary and Outlook 621
References 621

Index 633