CONTENTS

Contributors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td></td>
</tr>
</tbody>
</table>

Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1 Nitrogen Assimilation and its Relevance to Crop Improvement
Peter J. Lea and Ben J. Miflin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.2 The assimilation of ammonia</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Crop improvement through manipulating genes for nitrogen metabolism</td>
<td>23</td>
</tr>
<tr>
<td>1.4 Conclusions</td>
<td>28</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
</tbody>
</table>

2 Transcriptional Profiling Approaches for Studying Nitrogen Use Efficiency
Malcolm J. Hawkesford and Jonathan R. Howarth

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 N-responsive genes</td>
<td>42</td>
</tr>
<tr>
<td>2.2 Nitrogen and crop production</td>
<td>46</td>
</tr>
<tr>
<td>2.3 Targeting NUtE processes in crop plants</td>
<td>49</td>
</tr>
<tr>
<td>2.4 Validating candidate genes by correlating gene expression with complex traits</td>
<td>53</td>
</tr>
<tr>
<td>2.5 Prospects</td>
<td>58</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>60</td>
</tr>
</tbody>
</table>

3 Energetics of Nitrogen Acquisition
Arnold J. Bloom

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Availability of nitrogen in the environment</td>
<td>64</td>
</tr>
<tr>
<td>3.2 Curiosities</td>
<td>66</td>
</tr>
<tr>
<td>3.3 Mineral nitrogen</td>
<td>67</td>
</tr>
<tr>
<td>3.4 Plant growth and development</td>
<td>72</td>
</tr>
<tr>
<td>3.5 Future of plant nitrogen</td>
<td>75</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
</tr>
</tbody>
</table>

4 Transport Systems for NO$_3^-$ and NH$_4^+$
Mathilde Orsel and Anthony J. Miller

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Nitrogen forms available to plants</td>
<td>83</td>
</tr>
<tr>
<td>References</td>
<td>83</td>
</tr>
</tbody>
</table>
viii Contents

4.2 Nitrogen transport steps and mechanisms 84
4.3 *Arabidopsis* as a model 86
4.4 Ammonium transporters 86
4.5 Nitrate transporters 89
4.6 Plastid transport 95
4.7 Conclusions and future 96

Acknowledgements 97
References 97

5 Nitric Oxide Synthase-Like Activities in Plants 103
Hideo Yamasaki, Ryuuichi D. Itoh, Josée N. Bouchard, Ata Allah Dghim, Khurshida K. Hussain, Sushma Gurung and Michael F. Cohen

5.1 Introduction 103
5.2 Lifetime of nitric oxide 105
5.3 An overview of NO-dependent signalling systems 106
5.4 Mammalian-type NOS – ghost enzymes in plants 108
5.5 Comparative NO-related signalling 110
5.6 Algal nitric oxide synthesis – an echo from water 113
5.7 Nitric oxide synthase in plant-associated bacteria: its occurrence and functions 114
5.8 Prospects for NO-dependent signal transduction systems in plants 115
5.9 Concluding remarks 117

Acknowledgements 119
References 119

6 Nitrate Reductase and Nitric Oxide 127
Werner M. Kaiser, Elisabeth Planchet and Stefan Rümer

6.1 Introduction 127
6.2 Structure, basic functions and regulation of NR 128
6.3 NR-dependent NO formation *in vivo*, measured as NO emission 130
6.4 NO production by NR *in vitro* 135
6.5 Physiological effects of NR-derived NO 136
6.6 Conclusions and open questions 141

Acknowledgements 141
References 141

7 Nitric Oxide Signalling in Plants: Cross-Talk With Ca$^{2+}$, Protein Kinases and Reactive Oxygen Species 147
Jérémy Astier, Angélique Besson-Bard, Izabela Wawer, Claire Parent, Sumaira Rasul, Sylvain Jeandroz, James Dat and David Wendehenne

7.1 Basic concepts of NO signalling in animals 148
7.2 NO signalling in plants 152
7.3 Interplays between NO and ROS 158
7.4 Conclusion 162
Acknowledgements 163
References 163

8 Theanine: Its Occurrence and Metabolism in Tea 171
Ning Li and Jacquie de Silva
8.1 Introduction 171
8.2 Physiological benefits of theanine 172
8.3 Chemical properties and characteristics of theanine in tea 173
8.4 Role of theanine in tea 174
8.5 Metabolism of theanine in tea 175
8.6 Theanine synthase 175
8.7 Theanine hydrolase 176
8.8 The site of synthesis and transport of theanine in tea 177
8.9 Other enzymes capable of synthesizing theanine 178
8.10 Nitrogen uptake and transport 179
8.11 Nitrate transporters 180
8.12 Ammonium transporters 182
8.13 Nitrogen assimilation by GS (glutamine synthetase) – GOGAT (glutamate synthase) 184
8.14 Biochemical properties of glutamine synthetase in plants 185
8.15 Gene families of glutamine synthetase 186
8.16 Regulation of plant glutamine synthetase 187
8.17 Glutamate synthase (GOGAT) in plants 189
8.18 Glutamate dehydrogenase in plants 191
8.19 Regulation of theanine – genotypic factors 193
8.20 Regulation of theanine – agronomic factors 194
8.21 Summary 195
Acknowledgements 198
References 198

9 Legume Nitrogen Fixation and Soil Abiotic Stress: From Physiology to Genomics and Beyond 207
Alex J. Valentine, Vagner A. Benedito and Yun Kang
9.1 Introduction 208
9.2 Legume nitrogen fixation under drought stress 213
9.3 Soil acidity 222
9.4 Phosphate deficiency 227
9.5 Legume biology is taking off 232
9.6 Beyond genomics: prospects for legume genetic breeding 233
References 236
x ■ Contents

10 Metabolomics Approaches to Advance Understanding of Nitrogen Assimilation and Carbon–Nitrogen Interactions 249
Aaron Fait, Agata Sienkiewicz-Porzucek and Alisdair R. Fernie
10.1 Introduction 250
10.2 Methods for analysing the plant metabolome 251
10.3 Uptake and assimilation of nitrate and ammonium 255
10.4 Cross-talk between N and secondary metabolism 258
10.5 Summary 261
References 262

11 Morphological Adaptations of Arabidopsis Roots to Nitrogen Supply 269
Hanma Zhang and David J. Pilbeam
11.1 Introduction 269
11.2 N-related morphological adaptations in Arabidopsis roots 270
11.3 The developmental context of N-related morphological adaptations in Arabidopsis roots 274
11.4 Mechanisms of N-related morphological adaptations in Arabidopsis roots 275
11.5 Role of NO\textsubscript{3} transporters in N-related morphological adaptations 280
11.6 Biological significance of the localized stimulatory effect 281
11.7 Concluding remarks 282
References 283

12 Mitochondrial Redox State, Nitrogen Metabolism and Signalling 287
Christine H. Foyer
12.1 Introduction 288
12.2 The Nicotiana sylvestris mitochondrial cytoplasmic male sterile II mutant 289
12.3 Metabolite profiling in CMSII leaves reveals an N-rich phenotype 290
12.4 Mitochondrial redox cycling is a key player in determining the rate of nitrate assimilation 293
12.5 Regulation of pyridine nucleotide metabolism in CMSII leaves 294
12.6 CMSII is a N-sensing/signalling mutant 295
12.7 Regulation of gibberellin metabolism and signalling in the CMSII mutant 297
12.8 Concluding remarks 299
References 299
Contents

13 The Utilization of Nitrogen by Plants: A Whole Plant Perspective 305
 David J. Pilbeam
 13.1 Introduction 306
 13.2 Nitrogen and plant growth 306
 13.3 Nitrogen, biomass partitioning and yield 312
 13.4 Partitioning of nitrogen into metabolites 324
 13.5 Acquisition of nitrogen by plants 326
 13.6 Plants, nitrogen and environment 335
 13.7 Conclusions 340
 References 341

Index 353