CONTENTS

About the Authors .. xiii
Preface ... xv
About the Companion Website xvi

1 Introduction .. 1

1.1 What is Petroleum Engineering? 1
 1.1.1 Alternative Energy Opportunities 3
 1.1.2 Oil and Gas Units 3
 1.1.3 Production Performance Ratios 4
 1.1.4 Classification of Oil and Gas 4

1.2 Life Cycle of a Reservoir 6

1.3 Reservoir Management 9
 1.3.1 Recovery Efficiency 9

1.4 Petroleum Economics 11
 1.4.1 The Price of Oil .. 14
 1.4.2 How Does Oil Price Affect Oil Recovery? 14
 1.4.3 How High Can Oil Prices Go? 15

1.5 Petroleum and the Environment 16
 1.5.1 Anthropogenic Climate Change 16
 1.5.2 Environmental Issues 19

1.6 Activities ... 20
 1.6.1 Further Reading ... 20
 1.6.2 True/False .. 21
 1.6.3 Exercises ... 21
2 The Future of Energy

2.1 Global Oil and Gas Production and Consumption 23
2.2 Resources and Reserves 24
 2.2.1 Reserves 27
2.3 Oil and Gas Resources 29
 2.3.1 Coal Gas 29
 2.3.2 Gas Hydrates 31
 2.3.3 Tight Gas Sands, Shale Gas, and Shale Oil 31
 2.3.4 Tar Sands 33
2.4 Global Distribution of Oil and Gas Reserves 34
2.5 Peak Oil 36
 2.5.1 World Oil Production Rate Peak 37
 2.5.2 World Per Capita Oil Production Rate Peak 37
2.6 Future Energy Options 39
 2.6.1 Goldilocks Policy for Energy Transition 39
2.7 Activities 42
 2.7.1 Further Reading 42
 2.7.2 True/False 42
 2.7.3 Exercises 42

3 Properties of Reservoir Fluids

3.1 Origin 45
3.2 Classification 47
3.3 Definitions 51
3.4 Gas Properties 54
3.5 Oil Properties 55
3.6 Water Properties 60
3.7 Sources of Fluid Data 61
 3.7.1 Constant Composition Expansion 61
 3.7.2 Differential Liberation 62
 3.7.3 Separator Test 62
3.8 Applications of Fluid Properties 63
3.9 Activities 64
 3.9.1 Further Reading 64
 3.9.2 True/False 64
 3.9.3 Exercises 64

4 Properties of Reservoir Rock

4.1 Porosity 67
 4.1.1 Compressibility of Pore Volume 69
 4.1.2 Saturation 70
 4.1.3 Volumetric Analysis 71
4.2 Permeability
 4.2.1 Pressure Dependence of Permeability
 4.2.2 Superficial Velocity and Interstitial Velocity
 4.2.3 Radial Flow of Liquids
 4.2.4 Radial Flow of Gases

4.3 Reservoir Heterogeneity and Permeability
 4.3.1 Parallel Configuration
 4.3.2 Series Configuration
 4.3.3 Dykstra–Parsons Coefficient

4.4 Directional Permeability

4.5 Activities
 4.5.1 Further Reading
 4.5.2 True/False
 4.5.3 Exercises

5 Multiphase Flow

5.1 Interfacial Tension, Wettability, and Capillary Pressure
5.2 Fluid Distribution and Capillary Pressure
5.3 Relative Permeability
5.4 Mobility and Fractional Flow
5.5 One-dimensional Water-oil Displacement
5.6 Well Productivity
5.7 Activities
 5.7.1 Further Reading
 5.7.2 True/False
 5.7.3 Exercises

6 Petroleum Geology

6.1 Geologic History of the Earth
 6.1.1 Formation of the Rocky Mountains
6.2 Rocks and Formations
 6.2.1 Formations
6.3 Sedimentary Basins and Traps
 6.3.1 Traps
6.4 What Do You Need to form a Hydrocarbon Reservoir?
6.5 Volumetric Analysis, Recovery Factor, and EUR
 6.5.1 Volumetric Oil in Place
 6.5.2 Volumetric Gas in Place
 6.5.3 Recovery Factor and Estimated Ultimate Recovery
6.6 Activities
 6.6.1 Further Reading
 6.6.2 True/False
 6.6.3 Exercises
7 Reservoir Geophysics

7.1 Seismic Waves
 7.1.1 Earthquake Magnitude
7.2 Acoustic Impedance and Reflection Coefficients
7.3 Seismic Resolution
 7.3.1 Vertical Resolution
 7.3.2 Lateral Resolution
 7.3.3 Exploration Geophysics and Reservoir Geophysics
7.4 Seismic Data Acquisition, Processing, and Interpretation
 7.4.1 Data Acquisition
 7.4.2 Data Processing
 7.4.3 Data Interpretation
7.5 Petroelastic Model
 7.5.1 IFM Velocities
 7.5.2 IFM Moduli
7.6 Geomechanical Model
7.7 Activities
 7.7.1 Further Reading
 7.7.2 True/False
 7.7.3 Exercises

8 Drilling

8.1 Drilling Rights
8.2 Rotary Drilling Rigs
 8.2.1 Power Systems
 8.2.2 Hoisting System
 8.2.3 Rotation System
 8.2.4 Drill String and Bits
 8.2.5 Circulation System
 8.2.6 Well Control System
8.3 The Drilling Process
 8.3.1 Planning
 8.3.2 Site Preparation
 8.3.3 Drilling
 8.3.4 Open-Hole Logging
 8.3.5 Setting Production Casing
8.4 Types of Wells
 8.4.1 Well Spacing and Infill Drilling
 8.4.2 Directional Wells
 8.4.3 Extended Reach Drilling
8.5 Activities
 8.5.1 Further Reading
 8.5.2 True/False
 8.5.3 Exercises
9 Well Logging 161

9.1 Logging Environment 161
 9.1.1 Wellbore and Formation 162
 9.1.2 Open or Cased? 163
 9.1.3 Depth of Investigation 164

9.2 Lithology Logs 164
 9.2.1 Gamma-Ray Logs 164
 9.2.2 Spontaneous Potential Logs 165
 9.2.3 Photoelectric Log 167

9.3 Porosity Logs 167
 9.3.1 Density Logs 167
 9.3.2 Acoustic Logs 168
 9.3.3 Neutron Logs 169

9.4 Resistivity Logs 170

9.5 Other Types of Logs 174
 9.5.1 Borehole Imaging 174
 9.5.2 Spectral Gamma-Ray Logs 174
 9.5.3 Dipmeter Logs 174

9.6 Log Calibration with Formation Samples 175
 9.6.1 Mud Logs 175
 9.6.2 Whole Core 175
 9.6.3 Sidewall Core 176

9.7 Measurement While Drilling and Logging While Drilling 176

9.8 Reservoir Characterization Issues 177
 9.8.1 Well Log Legacy 177
 9.8.2 Cutoffs 177
 9.8.3 Cross-Plots 178
 9.8.4 Continuity of Formations between Wells 178
 9.8.5 Log Suites 179
 9.8.6 Scales of Reservoir Information 180

9.9 Activities 182
 9.9.1 Further Reading 182
 9.9.2 True/False 182
 9.9.3 Exercises 182

10 Well Completions 185

10.1 Skin 186
10.2 Production Casing and Liners 188
10.3 Perforating 189
10.4 Acidizing 192
10.5 Hydraulic Fracturing 193
 10.5.1 Horizontal Wells 201
10.6 Wellbore and Surface Hardware 202
10.7 Activities 203
 10.7.1 Further Reading 203
 10.7.2 True/False 203
 10.7.3 Exercises 204

11 Upstream Facilities 205
 11.1 Onshore Facilities 205
 11.2 Flash Calculation for Separators 208
 11.3 Pressure Rating for Separators 211
 11.4 Single-Phase Flow in Pipe 213
 11.5 Multiphase Flow in Pipe 216
 11.5.1 Modeling Multiphase Flow in Pipes 217
 11.6 Well Patterns 218
 11.6.1 Intelligent Wells and Intelligent Fields 219
 11.7 Offshore Facilities 221
 11.8 Urban Operations: The Barnett Shale 224
 11.9 Activities 225
 11.9.1 Further Reading 225
 11.9.2 True/False 225
 11.9.3 Exercises 225

12 Transient Well Testing 227
 12.1 Pressure Transient Testing 227
 12.1.1 Flow Regimes 228
 12.1.2 Types of Pressure Transient Tests 228
 12.2 Oil Well Pressure Transient Testing 229
 12.2.1 Pressure Buildup Test 232
 12.2.2 Interpreting Pressure Transient Tests 235
 12.2.3 Radius of Investigation of a Liquid Well 237
 12.3 Gas Well Pressure Transient Testing 237
 12.3.1 Diffusivity Equation 238
 12.3.2 Pressure Buildup Test in a Gas Well 238
 12.3.3 Radius of Investigation 239
 12.3.4 Pressure Drawdown Test and the Reservoir Limit Test 240
 12.3.5 Rate Transient Analysis 241
 12.3.6 Two-Rate Test 242
 12.4 Gas Well Deliverability 242
 12.4.1 The SBA Method 244
 12.4.2 The LIT Method 245
 12.5 Summary of Transient Well Testing 246
 12.6 Activities 246
 12.6.1 Further Reading 246
 12.6.2 True/False 246
 12.6.3 Exercises 247
13 Production Performance 249

13.1 Field Performance Data 249
 13.1.1 Bubble Mapping 250
13.2 Decline Curve Analysis 251
 13.2.1 Alternative DCA Models 253
13.3 Probabilistic DCA 254
13.4 Oil Reservoir Material Balance 256
 13.4.1 Undersaturated Oil Reservoir with Water Influx 257
 13.4.2 Schilthuis Material Balance Equation 258
13.5 Gas Reservoir Material Balance 261
 13.5.1 Depletion Drive Gas Reservoir 262
13.6 Depletion Drive Mechanisms and Recovery Efficiencies 263
13.7 Inflow Performance Relationships 266
13.8 Activities 267
 13.8.1 Further Reading 267
 13.8.2 True/False 267
 13.8.3 Exercises 268

14 Reservoir Performance 271

14.1 Reservoir Flow Simulators 271
 14.1.1 Flow Units 272
 14.1.2 Reservoir Characterization Using Flow Units 272
14.2 Reservoir Flow Modeling Workflows 274
14.3 Performance of Conventional Oil and Gas Reservoirs 276
 14.3.1 Wilmington Field, California: Immiscible Displacement by Water Flooding 277
 14.3.2 Prudhoe Bay Field, Alaska: Water Flood, Gas Cycling, and Miscible Gas Injection 278
14.4 Performance of an Unconventional Reservoir 280
 14.4.1 Barnett Shale, Texas: Shale Gas Production 280
14.5 Performance of Geothermal Reservoirs 285
14.6 Activities 287
 14.6.1 Further Reading 287
 14.6.2 True/False 287
 14.6.3 Exercises 288

15 Midstream and Downstream Operations 291

15.1 The Midstream Sector 291
15.2 The Downstream Sector: Refineries 294
 15.2.1 Separation 295
 15.2.2 Conversion 299
 15.2.3 Purification 300
 15.2.4 Refinery Maintenance 300
15.3 The Downstream Sector: Natural Gas Processing Plants 300
15.4 Sakhalin-2 Project, Sakhalin Island, Russia 301
 15.4.1 History of Sakhalin Island 302
 15.4.2 The Sakhalin-2 Project 306
15.5 Activities 310
 15.5.1 Further Reading 310
 15.5.2 True/False 310
 15.5.3 Exercises 311

Appendix Unit Conversion Factors 313
References 317
Index 327