absorption cycle, 321, 376, 378–96
 Log P plot, 383
 simulation, 390–6
adsorption cycle, 321, 376, 396–7
advection, 103
 advective-dominated reservoir, 68
 advection-dispersion equation, 103
air changes per hour (ach), 27–8
air conditioner, 35, 342–3
air, in piping systems, 296, 297
air separator, 297–8
air-source see heat pump, air-source
 ammonia
 heat pipe, 178
 heat pump, absorption, 378, 380, 381, 383,
 384, 389–40, 393–96
annual fuel utilization efficiency
 (AFUE), 371
antifreeze solution, 143
approach temperature, heat exchanger, 114,
 117–8, 119–21, 129, 185, 387–9, 402,
 408, 410
aquaculture, 6, 10
aquifer, 68, 71
 artesian, 72
confined, 71, 72
drawdown, 94–102
heat transport in, 103–8
hydraulic head, 86
hydraulic gradient, 86
hydraulic properties, determining, 98
hydrothermal, 72
ideal response to pumping, 93–4
leaky, 95
storativity, 87, 98
tests, 97–8
transmissivity, 87, 98
unconfined, 71
arena, Ice, 274–5, 276
atmosphere see earth, atmosphere
 balance point temperature, 31
balneology, 6, 10
base load–peak load design, 34–35,
 190–2
bedrock, 60
bessel function, incomplete, 95–7
binary rankine cycle see organic rankine
 cycle (ORC)
bleed (from wells), 15, 132–134, 177
borehole heat exchanger (BHE) definition, 139, 157
thermal resistance see thermal resistance
Brayton cycle, 318–19, 320
building energy simulation, 28, 188
California loop, 344
capillary fringe, 69
carbon dioxide
 emission factors, 441
 heat pipe, 177
 transcritical cycle, heat pump, 366–70
carnot heat
 engine, 311, 316
 pump, 312, 316
cascaded loads, 272–3
chiller, 344–5
 absorption see absorption cycle
clausius inequality, 313
clausius statement, 310
climate zones, description, 34
closed-loop system, fluid, 11, 14–16, 140, 177, 251–2, 270–1, 284, 289–99, 300–3, 318, 320
carbon dioxide
 emissions, 441
 underground mine fires, 269–70
combined heat and power, 272–3
compressor
 compression ratio, 357–8, 368
 heat pump see heat pump, compressor
 isentropic efficiency, 328
condenser, heat pump see Heat pump, condenser
condenser, power plant, 401–5
conduction heat transfer
 conductive-dominated reservoir, 68
 from pool to ground, 43, 45–6
convection coefficient
 internal flows, 159
 external, submerged pipe, 254–5
convection heat transfer
 convective-dominated reservoir, 68
 external, from concrete slab, 48–9, 51–2
 external, from water surface, 41–2, 45–6
 mantle, (earth interior) 58, 61
cooling load see loads (heating and cooling)
cooling tower, 8, 404, 410, 411, 443
costs, of geothermal energy systems, 438–440
cylinder-source model, 145, 230–1
Darcy friction factor, 159, 241, 285
Darcy, Henri, 85
Darcy’s law, 85, 86
Darcy–Weisbach equation, 284–5
dean number, 253
decision matrix, for GHX earth coupling, 77
 see also feasibility study
degree-days, 25
degree-day procedure, 29–32
 variable base, 30–2
desuperheater see heat pump, desuperheater
diffusion coefficient, 104
diffusion equation
 cartesian, groundwater flow, 87
 lakes, 248–50
 radial, flow to a well, 93–4
 radial, heat conduction, 144–5
direct-return see piping, direct-return
discount rate, 437
dispersion (in aquifers), 103–4
dispersivity (in aquifers), 104
district energy systems, 275, 277–8
downhole heat exchanger see heat exchanger, downhole
drawdown, in aquifers and wells, 94–102
drilling methods
 air hammer, 62
 air rotary, 62
 auger, 61
 cable tool, 62, 63
 mud rotary, 61
 reverse circulation, 62
 sonic, 62
duct, air, 425–6
drug
 atmosphere, 57, 63, 64
 core, 56, 57
 cross-section, 57
 crust, 56–58
 mantle, 56–58
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>earth (cont’d)</td>
<td></td>
</tr>
<tr>
<td>origin and age</td>
<td>56</td>
</tr>
<tr>
<td>structure</td>
<td>57</td>
</tr>
<tr>
<td>temperature</td>
<td>64–5</td>
</tr>
<tr>
<td>earth tubes (earth-to-air heat exchangers)</td>
<td>238</td>
</tr>
<tr>
<td>configurations</td>
<td>239</td>
</tr>
<tr>
<td>effectiveness, heat exchanger</td>
<td></td>
</tr>
<tr>
<td>see heat exchanger</td>
<td></td>
</tr>
<tr>
<td>electric circuit (piping analogy)</td>
<td>287</td>
</tr>
<tr>
<td>electric resistance heating</td>
<td>35, 46, 186, 190–2, 199, 218, 235, 349, 350, 352, 353, 372</td>
</tr>
<tr>
<td>energy</td>
<td>9, 10, 12, 441–2</td>
</tr>
<tr>
<td>generation</td>
<td>66</td>
</tr>
<tr>
<td>rate equations</td>
<td>86</td>
</tr>
<tr>
<td>renewable/clean</td>
<td>1–4</td>
</tr>
<tr>
<td>energy efficiency ratio (EER)</td>
<td>370–1</td>
</tr>
<tr>
<td>Engineering Equation Solver (EES)</td>
<td>445–6</td>
</tr>
<tr>
<td>absorption chiller simulation</td>
<td></td>
</tr>
<tr>
<td>water-lithium bromide</td>
<td>390–3</td>
</tr>
<tr>
<td>ammonia-water</td>
<td>393–6</td>
</tr>
<tr>
<td>geothermal heat pump COP analysis</td>
<td></td>
</tr>
<tr>
<td>cooling mode</td>
<td>365</td>
</tr>
<tr>
<td>heating mode</td>
<td>360–1</td>
</tr>
<tr>
<td>geothermal heat pump simulation</td>
<td></td>
</tr>
<tr>
<td>water-to-air, cooling mode</td>
<td>361–65</td>
</tr>
<tr>
<td>water-to-air, heating mode</td>
<td>358–60</td>
</tr>
<tr>
<td>Organic Rankine cycle</td>
<td>405–8</td>
</tr>
<tr>
<td>analysis</td>
<td></td>
</tr>
<tr>
<td>power plant simulation</td>
<td>411–15</td>
</tr>
<tr>
<td>Outdoor air loads calculation, example</td>
<td>428–430</td>
</tr>
<tr>
<td>refrigerant-air heat exchanger analysis</td>
<td></td>
</tr>
<tr>
<td>cooling mode</td>
<td>341–2</td>
</tr>
<tr>
<td>refrigerant-air heat exchanger analysis</td>
<td></td>
</tr>
<tr>
<td>heating mode</td>
<td>336–7</td>
</tr>
<tr>
<td>subcritical heat pump cycle analysis</td>
<td>331–3</td>
</tr>
<tr>
<td>transcritical heat pump cycle analysis</td>
<td>368–70</td>
</tr>
<tr>
<td>snow-melting loads, example calculation</td>
<td>50–2</td>
</tr>
<tr>
<td>swimming pool loads, example calculations</td>
<td>43–5, 45–6</td>
</tr>
<tr>
<td>enthalpy</td>
<td>281, 327, 400, 402 see also pressure-enthalpy diagrams</td>
</tr>
<tr>
<td>entropy, definition</td>
<td>313</td>
</tr>
<tr>
<td>entropy statement</td>
<td>310</td>
</tr>
<tr>
<td>Ericsson cycle</td>
<td>318–19, 320</td>
</tr>
<tr>
<td>evaporation mass/heat transfer</td>
<td></td>
</tr>
<tr>
<td>from water film</td>
<td>49, 51–2</td>
</tr>
<tr>
<td>from water surface</td>
<td>42–3, 45–6</td>
</tr>
<tr>
<td>excel solver</td>
<td>see Optimization</td>
</tr>
<tr>
<td>exergy</td>
<td>316</td>
</tr>
<tr>
<td>exploration, geothermal resource</td>
<td>9, 11, 67–69, 73, 74</td>
</tr>
<tr>
<td>expansion tank</td>
<td>297–8, 422</td>
</tr>
<tr>
<td>expansion valve</td>
<td>see Heat pump, expansion valve</td>
</tr>
<tr>
<td>exponential integral</td>
<td>94–5, 146</td>
</tr>
<tr>
<td>evaporator, heat pump</td>
<td>see Heat pump, evaporator</td>
</tr>
<tr>
<td>evaporator, power plant</td>
<td>401–5</td>
</tr>
<tr>
<td>Fan</td>
<td>183, 238–9, 283, 344, 347–55</td>
</tr>
<tr>
<td>affinity laws</td>
<td>202–3</td>
</tr>
<tr>
<td>coil unit</td>
<td>250, 251, 372, 425</td>
</tr>
<tr>
<td>manufacturer’s settings</td>
<td>351, 352</td>
</tr>
<tr>
<td>power</td>
<td>241</td>
</tr>
<tr>
<td>pressure</td>
<td>282, 284</td>
</tr>
<tr>
<td>feasibility study</td>
<td></td>
</tr>
<tr>
<td>preliminary, 2–4, 9, 17, 18, 76–8</td>
<td></td>
</tr>
<tr>
<td>detailed, 2–4, 9, 17, 19, 79–80</td>
<td></td>
</tr>
<tr>
<td>Fick’s law</td>
<td>86</td>
</tr>
<tr>
<td>finite difference method</td>
<td>89–90</td>
</tr>
<tr>
<td>first law of thermodynamics</td>
<td>310, 311, 316</td>
</tr>
<tr>
<td>fluid cooler</td>
<td>77, 79, 182, 209, 210</td>
</tr>
<tr>
<td>fluid power</td>
<td>281–2, 283, 292–4, 299</td>
</tr>
<tr>
<td>foundation heat exchanger</td>
<td>268</td>
</tr>
<tr>
<td>four-pipe horizontal GHX</td>
<td>220–1, 226–7</td>
</tr>
<tr>
<td>fourier’s law of heat conduction</td>
<td>73, 86</td>
</tr>
<tr>
<td>fractures, in rocks</td>
<td>70</td>
</tr>
<tr>
<td>friction factor (in pipes)</td>
<td>159, 241, 285</td>
</tr>
<tr>
<td>Furnace</td>
<td>35, 442–3</td>
</tr>
<tr>
<td>Geochemical methods</td>
<td>74</td>
</tr>
<tr>
<td>Geoexchange</td>
<td>6, 13, 14, 61, 75–8, 342</td>
</tr>
</tbody>
</table>
Geology, 59
Geoneutrinos, 63
Geophysical methods, 9, 73
Geothermal
direct uses, 5, 6, 10
energy system elements, 4
exploration, resource, 9, 11, 67–69, 73, 74
fluid disposal, 13
fluid chemical composition, 12–13
gradient, 64, 65
power plants, 7–10, 399
parasitic loads, 410
reservoir, 66
utilization, 5
goethermometer, 74–5
geyser geothermal field, 66
g-functions
Eskilson’s analytical, 147, 153–4, 174–5
Eskilson’s numerical, 147–8, 195–7, 199
groundwater, 154–5
GHX tool box (design tool found on companion website), 445
earth-tube, performance simulation, 241–4
groundwater heat exchange systems, 128–30, 131
horizontal GHX modeling, 232–5
example sizing, 235–7
hybrid vertical GHX modeling, 207–10, 211–12
hourly loads input, example sizing, 214–16
pressure drop calculation, example, 292–4
surface water heat exchanger simulation, 257–8
no building loads, example, 259–60, 261
with building loads, example, 260–5
thermal resistance calculation, examples of double u-tube BHE, 167–9
horizontal trench, 227–9
single u-tube BHE, 164–7
vertical GHX modeling, 200–1
basic peak loads input, example sizing, 201–6
hourly loads input, example sizing, 212–13
hourly loads input, example simulation, 213–14
global warming potential, 320
gravity study, 74
greenhouses, Heating, 10, 37–38
groundwater
chemical composition, 12–13, 74, 122–3
definition, 69–70
hardness, 123
heat pump systems
commercial, 124–5
groundwater flow requirement calculation, 126–8
residential, 123–4
system cop, 127
heat transport in, 103–8
heat exchange systems, 14–15
advantages of, 84
disadvantages of, 84
hydraulic head, 85–6, 87–93
hydraulic gradient, 86
major ions in, 74
materials selection for compatibility, 123
occurrence, 69–70
quality, chemical 122–3
velocity, 86
well see well (groundwater)
Groundwater-filled borehole, 139–40, 163–4
Grout, borehole, 139, 141, 156, 449
Hantush-Jacob well function, 95–7
head
hydraulic, 85–6, 87–93
loss, 282–5, 286, 292–4, 300–2
heat capacity rate, 118, 334
heat capacity ratio, 119, 334
heat engine
carnot, 311, 313
definition, 310
efficiency, 312
heat exchanger
air-to-air see heat recovery unit
approach temperature, 114, 117–8, 119–21, 129, 185, 387–9, 402, 408
heat exchanger (cont’d)
borehole see borehole heat exchanger (BHE)
downhole, 11, 68, 114, 116, 117, 140
earth-to-air see earth tubes
effectiveness
definition 118–9
equations for geothermal heat pumps, 336, 338, 340
equations for power plants, 408–9
phase change with, 334–5, 336
effectiveness—heat capacity rate product, 335, 336, 338, 340
effectiveness-NTU method of analysis, 117–19, 119–21, 253, 334
foundation, 268
LMTD method of analysis, 117–21
number of transfer units (NTU), 119
plate-type, 114–6, 125
lake, 255–6
refrigerant-air, 333–5, 336–7, 347–55
refrigerant-water, 333–5, 347–55, 356
surface water, 251–2, 253–6
UA value see UA value
heat flow studies, earth, 73
heat pipes, 177–8
heat pump
absorption cycle see absorption cycle
adsorption cycle see adsorption cycle
air-source, 342–4, 347, 349, 352
carnot, 312, 313
catalog data, 372–3
coefficient of performance, 312, 371
compressor, 327, 328, 331–3, 347–55, 367
condenser, 327, 331–3, 334–5, 347–55
definition, 310
DX geothermal, 345–7, 372
energy efficiency ratio (EER), 370–1
entering fluid temperatures (design), 194–5
evaporator, 327, 331–3, 334–5, 347–55, 367
expansion valve, 327, 331–3, 347–55, 367
ground-source, 342–3, 345–7
heating seasonal performance (HSPF), 371
hybrid system see hybrid geothermal heat pump system
manufacturers, 372
performance modeling, computer, 357–65
power requirements, 356–7
refrigerants, 320, 322, 366
reversing valve, 347–55
seasonal energy efficiency ratio (SEER), 371
selection procedure, 373
standards, 370–2
superheat, 327, 331–3
vapor compression cycle, subcritical see vapor compression cycle, heat pump
vapor compression cycle, transcritical, 355–70
water-water (liquid-liquid), 274–5, 276, 351, 354, 373, 430
water-source, 344–5, 347, 350, 353, 371, 373
heat transfer see also, advection, conduction
heat transfer, convection heat transfer, evaporation heat/mass transfer
radiation (thermal), or solar radiation
coefficient (U, UA) see UA value
latent, snow-melting, 48, 51–2
sensible, 337
sensible, snow-melting, 48, 51–2
heating load see Loads (heating and cooling)
heating seasonal performance (HSPF), 371
heat recovery unit (HRU), 426–30
hooke’s law, 86
horst-and-graben, 73
hot dry rock, 68
hot water process loads, 38–9
humidity ratio
moist air, 258–9
water surface, 259
hybrid geothermal heat pump system, 79, 199–200
hydraulic conductivity, 85
Typical values for soils and rocks, 449
hydraulic diffusivity, 87
hydraulic separator, 298, 423
hydrothermal resource, 68, 72
ice arena, 274–5, 276
iceland, 7, 10, 273
incomplete bessel function
 heat transport in groundwater, 105, 155
 line heat source, finite, 148–9
 multi-borehole arrays, 197–8
 well hydraulics, 95–7
indoor air quality (IAQ), 426
inflation, 437
internal energy, 281
isentropic efficiency
 compressor, 328
 pump, 403
 turbine, 402–3
isotope(s), 56, 63, 74
isotope analysis (in groundwater), 74
Jacob method (aquifer analysis), 98
Kalina cycle, 318–19
Karman Line, 57, 63
Kelvin-Planck statement, 310
Klamath Falls, 7, 11, 116, 140, 273
lakes, thermal patterns, 248–50
laplace equation, 89
leaky well function
 heat transport in groundwater, 105, 155
 line heat source, finite, 148–9
 multi-borehole arrays, 197–8
 well hydraulics, 95–7
line-source model (heat)
 finite, 148–9
 infinite, 145–6
 Kelvin’s, 94, 145
Lithium-bromide, absorption cycle in, 378, 383, 384, 390–93
life-cycle cost, 437
loads, (building, heating and cooling)
 annual, 28, 30, 33, 36, 186–7, 190–2
 base load–peak load design, 34–35
 equipment, 28
 greenhouse heating, 37–38
 hourly, 28
 hot water process loads, 38–9
 load duration curve, 34, 35
load factor, 12
load factor method, 32–34, 186–92
monthly, 28, 30, 33, 36, 186–7, 190–2
peak design, 26–8
simulation software (buildings), 28, 188
snow-melting see snow-melting load calculation
space, 27
swimming pool see swimming pool heating load calculation
loads (ground), 126, 184, 186–7, 188–92, 329–30
balancing (annual), 199–200
superpositioning, 152–3, 192–3
load duration curve, 34, 35
load factor, 12
load factor method, 32–34
lumped capacitance method, 248
magma, 59–61, 67, 68, 72
magnetic study, 74
mines, abandoned, 270–1
mohorovicic discontinuity (Moho), 57, 58, 63
moist air conditioning processes, 339
multipole method, 160–1
newton’s law of cooling, 86
nocturnal cooling, 210
number of transfer units, (NTU), 117–19, 119–21, 253
numerical methods
 COMSOL multiphysics, horizontal GHXs, 237–8
 duct storage model (DST), 198–9
 g-functions (Eskilson), 147–8, 195–7
 groundwater flow, 89–93
 groundwater flow and heat transport, 107–8
nusselt number
 definition, 159
 external, submerged pipe, 254–5
 internal flows, 159, 256
 vertical plates, 256
Ohm’s law, 86
oil and gas wells, 269–70, 271
open-loop system, fluid, 16, 76, 84, 111, 140, 238, 250–1, 277, 284, 301, 303
optimization, 127–8, 171, 174–5, 205, 212, 233
economic, 194, 200
excel solver, use of, 174–5, 446–7
simplex, two-variable, 212
Organic Rankine cycle (ORC), 5, 269, 318–19
components, 401, 404
engineering model, 403–5
energy balance equations, 400, 402
ideal, 400–1
non-ideal, 402–3
pressure-enthalpy diagrams see pressure-enthalpy diagrams
simulation, 410–15
working fluids, 320, 322
overall heat transfer coefficient (UA) see UA value

paleomagnetism, 56, 74
pangaea, 58
peclet number, 144
permeability, 85
pipe, piping
black iron, 140, 178, 448
carbon steel, 13, 110, 121–123
collapse, 175–6
constant temperature solution, 240–1
closed-loop, 11, 14–16, 140, 177, 251–2, 270–1, 284, 289–99, 300–3, 318, 320
direct-return, 287, 288
flow rate in (maximum recommended), 287
head loss, 283–5, 286, 292–4, 300–2
flushing, 296–7
fusion of, 14, 290, 294–5
manifold, 295–6, 297–8
minor losses, 284–6
parallel, 287–92, 293–4
PEX, 49, 117, 122, 158, 184, 295, 297, 448
pressure drop, friction, 241, 283, 290, 292–4, 300–2
pressure testing, 297
purging, 296–7
one-pipe distribution system, 424

open-loop, 16, 76, 84, 111, 140, 238, 250–1, 277, 284, 301, 303
PVC, 110, 122, 133, 158, 239, 448
reverse-return, 288–9, 289–1, 293–4
series, 287
snow melting, 46, 47, 49
system curve, 300–2, 303–5
thermal conductivity data, 448
transmission, 12, 121–2
two-pipe distribution system, 422–4
piper trilinear plot, 74
pitch (slinky), 220
plate tectonics, 56, 58, 60, 61
porosity
Definition, 70
Values, soils and rocks, 448
power plants see geothermal, power plants
prandtl number definition, 159
present value, 435
pressure
elevation, 282, 284
friction, 282, 284–6, 292–4, 300–2
static, 282, 284
velocity, 282, 284
Pressure drop see Pipe, pressure drop
Pressure-enthalpy (P-h) diagrams
description, 330
vapor compression cycle
subcritical, 330–3, 358–60, 361–5
transcritical, 367–70
rankine cycle, organic (binary), 405
pressure tank, residential groundwater systems, 124
project analysis, renewable/clean energy, 1–3
project development
direct-use geothermal, 11–13
geothermal heat pump, 17–18
geothermal power plants, 8–10
psychrometrics, 337
psychrometric chart, 339
pump
affinity laws, 302–3
circulating, 298
curve, 299, 301, 303–5
efficiency, 299–300
isentropic efficiency, 403
motor, 113, 302, 303
power, (shaft, brake), 112–13, 299–300
variable speed drives, 303–5, 423–4
well
control, well pumps, 130–2
total dynamic head (TDH), well pumps, 112
well, vertical lineshaft (vertical turbine), 111–13
well, submersible, 111–13
wire-to-water efficiency, 113
saturated zone (groundwater), 69
seasonal energy efficiency ratio (SEER), 371
second law of thermodynamics, 310, 403
efficiency, 316–17
seismic study, 73
sensible heat ratio (SHR), 338, 340
sewer heat recovery, 275, 277–8
simple payback period, 434
simulation
buildings (energy), 28, 188
earth-tube, 241–4
horizontal ghx performance, 237–8
surface water systems, 257–65
vertical GHX performance, 198–9
site suitability (for GHX), 76–8
decision matrix, 77
six-pipe horizontal GHX, 220–1, 226–7
slinky GHX, 220–1, 222
soft cost, 433
soil
hydraulic property data, 449
porous spaces in, 70
porosity values, 448
thermal property data, 449
soil temperature, 64–65
amplitude at earth surface, 39, 224
calculation of, 39, 224, 225
solar photovoltaics, 277–8
solar thermal collector
heat removal factor, 209
unglazed, 210
solar radiation
average daily per month, 25
on water surface, 41, 45–6
solar thermal recharging (of GHX), 208–9, 277–8
snow-melting, 6, 10, 178
heat transfer processes, 47
idling energy, 53
load calculation, 46, 51–2
transient considerations, 52–3
specific yield, 87
standing column well, 14–15, 76, 77, 78, 84, 132–3, 176–7
static water level (in wells), 70, 87, 94, 97, 99, 100, 112, 117, 133, 134
Stefan-Boltzmann law, 41, 49, 86, 210
step drawdown test, 78, 100–3
stirling cycle, 318–19, 320
storativity, aquifer, 87, 98
supplemental heating, 190–2
supermarket, 274–5, 276
surface water
definition, 246
direct cooling, with, 250–1
heat pump (SWHP), 246, 250–1
heat transfer processes in, 247
hybrid surface water heat pump (HSWHP), 250–1
swimming pool heating, 6, 10, 273
heating load calculation
covered pool, 45–6
uncovered pool, 43–5
heat transfer processes, 41–3
system curve see pipe, system curve

temperature
amplitude at earth surface, 39
approach, heat exchanger, 114, 117–8,
119–21, 129, 185, 387–9, 402,
408, 410
balance point, 31
bhe fluid, 149–50, 194–5
goethermal resource use, 5–6
ground (undisturbed), 143, 149–50, 184–5
heat pump entering, 194–5
lift, 329
pinch point, 410
soil, calculation of, 39
temperature-entropy (T-s) diagram
carnot heat engine cycle, 313, 401
carnot heat pump cycle, 313, 326
rankine cycle, ideal, 400–1
rankine cycle, non-ideal, 400–1
vapor compression cycle, ideal, 326
vapor compression cycle, non-ideal, 328
temperature-heat transfer (T-q) diagram,
334–5, 410
theis solution, 94–96
thermo-electric generator, 319, 321
thermostatic expansion valve (TXV) see Heat pump, expansion valve
thermal breakthrough, 93
thermal conductivity
BHE materials, values, 448
ground, 142
grout materials, values, 449
soils/rocks, values, 185–6, 449
thermal resistance
BHE, concentric (coaxial)
equations, 162–3
BHE, double u-tube equations, 161–2
BHE, from field test data, 174–5
BHE, single u-tube equations, 160–1
borehole, 142–3, 156–8
bundle spool, submerged, 253–5
calculator tool, borehole, 164
calculator tool, trench, 227
earth tube pipe, 241
ground, 146, 147, 184, 195–8, 230–1
groundwater-filled boreholes, 163–4
lake plate heat exchanger, 255–6
snow-melting pipes, 50, 53
surface water heat exchanger, 252
trench, 226–7
thermal response tests, 169
data analysis methods
graphical, 171–4
inverse modeling, 174–5
field methods, 169–70
thermodynamics
carnot cycles, 311–12, 316
definition, 309–10
first law, 310, 311, 316
irreversibilities, 98, 302, 311, 313–17, 328–9, 333
second law, 310, 316–17, 403
time scale
Borehole, 144, 150
Steady-state (Eskilson), 146, 150
transmissivity, aquifer, 87, 98
trans-critical cycle, heat pump 355–70
turbine, 400–1, 403–4
isentropic efficiency, 402–3
two-pipe horizontal GHX, 220–1, 226–7
UA value
Buildings, 27, 31
heat exchanger, 335, 408, 411, 412
plate, 119, 129
surface water, 252
underground coal fires, 269–70
unsaturated zone, 69
U-tube (or U-pipe)
definition, 133
single, 133
double, 134
vapor compression cycle, heat pump
coefficient of performance (COP), 328
components, 327
energy balance equations, 327
engineering model, 327
general use, 320, 321
ideal, 325–8
operating mechanics, 347–55
pressure-enthalpy diagrams see
pressure-enthalpy diagrams
subcritical, 324
ventilation air, 27, 426–30
volumetric heat capacity (soils and rocks), 185–6, 449
water-source see heat pump, water source
weather data
actual, 24, 26
design data, 26
hourly, typical (TMY), 24
monthly average, typical, 24, 25
well function
well hydraulics, 95
line heat source, infinite, 146–55
well (groundwater)
bleed, 15, 132–134, 177
casing, 109, 117, 133, 134, 270–1
development, 110
diameter, 109–10
doublet, 132
downhole heat exchanger (DHE), 11, 68, 114, 116, 117, 140
efficiency, hydraulic, 98–100
construction, production wells, 108–10
drawdown, 94–102
hydraulics, 93
injection, 110
pumping level, 94
pumps see pump, well
sand well, 133–4
screen, 108–10
specific capacity, 100
specific drawdown, 101
standing column see standing column well
static water level, 70, 87, 94, 97, 99, 100, 112, 117, 133, 134
test, single-well, 98–101
yield, 12
wire-to-water efficiency, 113