Contents

Preface xiii
Acknowledgements xvii

1 Introductory Aspects of Electric Vehicles 1
1.1 Introduction 1
1.2 Technology Development and Commercialization 2
1.3 Vehicle Configurations 4
1.3.1 Internal Combustion Engine Vehicles (ICEV) 4
1.3.2 All Electric Vehicles (AEVs) 6
1.3.3 Hybrid Electric Vehicles (HEVs) 7
1.3.4 Fuel Cell Vehicles (FCVs) 10
1.4 Hybridization Rate 10
1.4.1 Micro HEVs 11
1.4.2 Mild HEVs 11
1.4.3 Full or Power-Assist HEVs 12
1.4.4 Plug-In HEVs (or Range-Extended Hybrids) 12
1.5 Vehicle Architecture 13
1.5.1 Series HEVs 14
1.5.2 Parallel HEVs 14
1.5.3 Parallel/Series HEVs 14
1.5.4 Complex HEVs 15
1.6 Energy Storage System 15
1.6.1 Batteries 15
1.6.2 Ultracapacitors (UCs) 17
1.6.3 Flywheels 18
1.6.4 Fuel Cells 18
1.7 Grid Connection 20
1.7.1 Charger Power Levels and Infrastructure 20
1.7.2 Conductive Charging 21
1.7.3 Inductive Charging 22
1.7.4 Smart Grid and V2G/V2H/V2X Systems 23
1.8 Sustainability, Environmental Impact and Cost Aspects 27
1.9 Vehicle Thermal Management 28
1.9.1 Radiator Circuit 29
1.9.2 Power Electronics Circuit 29
Contents

1.9.3 Drive Unit Circuit 30
1.9.4 A/C Circuit 30
1.10 Vehicle Drive Patterns and Cycles 33
1.11 Case Study 34
1.11.1 Introduction 34
1.11.2 Research Programs 34
1.11.3 Government Incentives 35
1.11.3.1 Tax Benefits 35
1.11.3.2 EV Supply Equipment and Charging Infrastructure 36
1.11.3.3 EV Developments in the Turkish Market 36
1.11.3.4 HEVs on the Road 38
1.11.3.5 Turkey’s Standing in the World 39
1.11.3.6 SWOT Analysis 43
1.12 Concluding Remarks 43

Nomenclature 44
Study Questions/Problems 44
References 45

2 Electric Vehicle Battery Technologies 49
2.1 Introduction 49
2.2 Current Battery Technologies 49
2.2.1 Lead Acid Batteries 51
2.2.2 Nickel Cadmium Batteries 52
2.2.3 Nickel Metal Hydride Batteries 52
2.2.4 Lithium-Ion Batteries 54
2.3 Battery Technologies under Development 57
2.3.1 Zinc-Air Batteries 59
2.3.2 Sodium-Air Batteries 60
2.3.3 Lithium-Sulfur Batteries 60
2.3.4 Aluminum-Air Batteries 61
2.3.5 Lithium-Air Batteries 61
2.4 Battery Characteristics 63
2.4.1 Battery Cost 63
2.4.2 Battery Environmental Impact 64
2.4.3 Battery Material Resources 68
2.4.4 Impact of Various Loads and Environmental Conditions 70
2.5 Battery Management Systems 72
2.5.1 Data Acquisition 75
2.5.2 Battery States Estimation 76
2.5.2.1 SOC Estimation Algorithm 76
2.5.2.2 SOH Estimation Algorithms 78
2.5.2.3 SOF Estimation Algorithms 78
2.5.3 Charge Equalization 78
2.5.3.1 Hierarchical Architecture Platform/Communication 80
2.5.3.2 Cell Equalization 80
2.5.4 Safety Management/Fault Diagnosis 81
2.5.5 Thermal Management 83
Contents

4 Simulation and Experimental Investigation of Battery TMSs 145
4.1 Introduction 145
4.2 Numerical Model Development for Cell and Submodules 146
4.2.1 Physical Model for Numerical Study of PCM Application 146
4.2.2 Initial and Boundary Conditions and Model Assumptions 147
4.2.3 Material Properties and Model Input Parameters 148
4.2.3.1 Li-ion Cell Properties 148
4.2.3.2 Phase Change Material (PCM) 149
4.2.3.3 Foam Material 153
4.2.3.4 Cooling Plate 153
4.2.4 Governing Equations and Constitutive Laws 153
4.2.5 Model Development for Simulations 155
4.2.5.1 Mesh Generation 156
4.2.5.2 Discretization Scheme 156
4.2.5.3 Under-Relaxation Scheme 157
4.2.5.4 Convergence Criteria 157
4.3 Cell and Module Level Experimentation Set Up and Procedure 157
4.3.1 Instrumentation of the Cell and Submodule 158
4.3.2 Instrumentation of the Heat Exchanger 159
4.3.3 Preparation of PCMs and Nano-Particle Mixtures 161
4.3.4 Improving Surface Arrangements of Particles 163
4.3.5 Setting up the Test Bench 164
4.4 Vehicle Level Experimentation Set Up and Procedure 166
4.4.1 Setting Up the Data Acquisition Hardware 166
4.4.2 Setting Up the Data Acquisition Software 168
4.5 Illustrative Example: Simulations and Experimentations on the Liquid Battery Thermal Management System Using PCMs 172
4.5.1 Simulations and Experimentations on Cell Level 174
4.5.1.1 Grid Independence Tests 175
4.5.1.2 Effect of Contact Resistance on Heat Transfer Rate 176
4.5.1.3 Simulation Results For Li-ion cell Without PCM in Steady State and Transient Response 177
4.5.1.4 Simulation Results For PCM in Steady-State and Transient Conditions 180
4.5.1.5 Cooling Effectiveness In the Cell 185
4.5.2 Simulation and Experimentations Between the Cells in the Submodule 186
4.5.2.1 Effective Properties of Soaked Foam 187
4.5.2.2 Steady State Response of the Cells in the Submodule 188
4.5.2.3 Transient Response of the Submodule 189
4.5.2.4 Submodule with Dry and Wet Foam at Higher Heat Generation Rates 191
4.5.3 Simulations and Experimentations on a Submodule Level 192
4.5.3.1 Steady-State Response of the Submodule Without PCMs 193
4.5.3.2 Steady-State Results of the Submodule with PCMs 196
4.5.3.3 Transient Response of the Submodule 197
4.5.3.4 Quasi-Steady Response of the Submodule 198
4.5.3.5 Model Validation 201
4.5.4 Optical Observations 203
4.5.4.1 Thermal Conductivity Enhancement by Nanoparticles 203
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.5 Enhanced Exergoeconomic Analysis</td>
<td>293</td>
</tr>
<tr>
<td>6.2.6 Enviroeconomic (Environmental Cost) Analysis</td>
<td>294</td>
</tr>
<tr>
<td>6.3 Exergoenvironmental Analysis</td>
<td>295</td>
</tr>
<tr>
<td>6.3.1 Environmental Impact Balance Equations</td>
<td>295</td>
</tr>
<tr>
<td>6.3.2 Environmental Impact Correlations</td>
<td>296</td>
</tr>
<tr>
<td>6.3.3 LCA of the Electric Battery</td>
<td>297</td>
</tr>
<tr>
<td>6.3.4 Environmental Impact Accounting</td>
<td>299</td>
</tr>
<tr>
<td>6.3.5 Exergoenvironmental Evaluation</td>
<td>300</td>
</tr>
<tr>
<td>6.4 Optimization Methodology</td>
<td>301</td>
</tr>
<tr>
<td>6.4.1 Objective Functions</td>
<td>301</td>
</tr>
<tr>
<td>6.4.2 Decision Variables and Constraints</td>
<td>302</td>
</tr>
<tr>
<td>6.4.3 Genetic Algorithm</td>
<td>303</td>
</tr>
<tr>
<td>6.5 Illustrative Example: Liquid Battery Thermal Management Systems</td>
<td>306</td>
</tr>
<tr>
<td>6.5.1 Conventional Exergoeconomic Analysis Results</td>
<td>307</td>
</tr>
<tr>
<td>6.5.2 Enhanced Exergoeconomic Analysis Results</td>
<td>309</td>
</tr>
<tr>
<td>6.5.3 Battery Environmental Impact Assessment</td>
<td>314</td>
</tr>
<tr>
<td>6.5.4 Exergoenvironmental Analysis Results</td>
<td>316</td>
</tr>
<tr>
<td>6.5.5 Multi-Objective Optimization Results</td>
<td>319</td>
</tr>
<tr>
<td>6.5.5.1 Case Study Conclusions</td>
<td>324</td>
</tr>
<tr>
<td>6.6 Concluding Remarks</td>
<td>325</td>
</tr>
<tr>
<td>Study Questions/Problems</td>
<td>327</td>
</tr>
<tr>
<td>References</td>
<td>328</td>
</tr>
</tbody>
</table>

7 Case Studies 329

7.1 Introduction 329

7.2 Case Study 1: Economic and Environmental Comparison of Conventional, Hybrid, Electric and Hydrogen Fuel Cell Vehicles 329

7.2.1 Introduction 329

7.2.2 Analysis 330

7.2.2.1 Economic Criteria 330

7.2.2.2 Environmental Impact Criteria 331

7.2.2.3 Normalization and General Indicator 334

7.2.3 Results and Discussion 335

7.2.4 Closing Remarks 338

7.3 Case Study 2: Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium-Ion Battery 339

7.3.1 Introduction 339

7.3.2 System Description 340

7.3.3 Analysis 341

7.3.3.1 Temperature Measurements 341

7.3.3.2 Heat Generation 342

7.3.4 Results and Discussion 342

7.3.4.1 Battery Discharge Voltage Profile 342

7.3.4.2 Battery Internal Resistance Profile 343

7.3.4.3 Effect of Discharge Rates and Operating Temperature on Battery Performance 344
Contents

7.6.4.1 Test Results of Base PCM 408
7.6.4.2 Results of Battery Cooling Tests 410
7.6.4.3 Results of Energy and Exergy Analyses on Base Clathrate 412
7.6.4.4 Results of Thermoeconomic Analysis 415
7.6.5 Closing Remarks 417
Nomenclature 419
References 423

8 Alternative Dimensions and Future Expectations 425
8.1 Introduction 425
8.2 Outstanding Challenges 425
8.2.1 Consumer Perceptions 425
8.2.2 Socio-Technical Factors 427
8.2.3 Self-Reinforcing Processes 429
8.3 Emerging EV Technologies and Trends 431
8.3.1 Active Roads 431
8.3.2 V2X and Smart Grid 432
8.3.3 Battery Swapping 433
8.3.4 Battery Second Use 435
8.4 Future BTM Technologies 437
8.4.1 Thermoelectric Materials 437
8.4.2 Magnetic Cooling 438
8.4.3 Piezoelectric Fans/Dual Cooling Jets 438
8.4.4 Other Potential BTMSs 440
8.5 Concluding Remarks 441
Nomenclature 441
Study Questions/Problems 441
References 442

Index 445