# CONTENTS

## PREFACE

### CHAPTER 1  INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>3</td>
</tr>
<tr>
<td>1.3 History of Power Switches and Power Converters</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Applications of Power Electronics Converters</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Summary</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>

## CHAPTER 2  POWER SWITCHES AND OVERVIEW OF BASIC POWER CONVERTERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Power Electronics Devices as Ideal Switches</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Static Characteristics</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Dynamic Characteristics</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Main Real Power Semiconductor Devices</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1 Spontaneous Conduction/Spontaneous Blocking</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Controlled Conduction/Spontaneous Blocking Devices</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3 Controlled Conduction/Controlled Blocking Devices</td>
<td>19</td>
</tr>
<tr>
<td>2.3.4 Spontaneous Conduction/Controlled Blocking Devices</td>
<td>22</td>
</tr>
<tr>
<td>2.3.5 List of Inventors of the Major Power Switches</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Basic Converters</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1 dc–dc Conversion</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 dc–ac Conversion</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3 ac–dc Conversion</td>
<td>43</td>
</tr>
<tr>
<td>2.4.4 ac–dc Conversion</td>
<td>49</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

## CHAPTER 3  POWER ELECTRONICS CONVERTERS PROCESSING ac VOLTAGE AND POWER BLOCKS GEOMETRY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Principles of Power Blocks Geometry (PBG)</td>
<td>58</td>
</tr>
<tr>
<td>3.3 Description of Power Blocks</td>
<td>62</td>
</tr>
<tr>
<td>3.4 Application of PBG in Multilevel Configurations</td>
<td>67</td>
</tr>
<tr>
<td>3.4.1 Neutral-Point-Clamped Configuration</td>
<td>68</td>
</tr>
</tbody>
</table>
CONTENTS

3.4.2 Cascade Configuration 72
3.4.3 Flying Capacitor Configuration 75
3.4.4 Other Multilevel Configurations 79

3.5 Application of PBG in ac–dc–ac Configurations 81
3.5.1 Three-Phase to Three-Phase Configurations 82
3.5.2 Single-Phase to Single-Phase Configurations 85

3.6 Summary 85
References 87

CHAPTER 4  NEUTRAL-POINT-CLAMPED CONFIGURATION 88

4.1 Introduction 88
4.2 Three-Level Configuration 89
4.3 PWM Implementation (Half-Bridge Topology) 93
4.4 Full-Bridge Topologies 95
4.5 Three-Phase NPC Converter 98
4.6 Nonconventional Arrangements by Using Three-Level Legs 101
4.7 Unbalanced Capacitor Voltage 108
4.8 Four-Level Configuration 112
4.9 PWM Implementation (Four-Level Configuration) 115
4.10 Full-Bridge and Other Circuits (Four-Level Configuration) 118
4.11 Five-Level Configuration 119
4.12 Summary 124
References 124

CHAPTER 5  CASCADE CONFIGURATION 125

5.1 Introduction 125
5.2 Single H-Bridge Converter 126
5.3 PWM Implementation of A Single H-Bridge Converter 129
5.4 Three-Phase Converter—One H-Bridge Converter Per Phase 140
5.5 Two H-Bridge Converters 144
5.6 PWM Implementation of Two Cascade H-Bridges 146
5.7 Three-Phase Converter—Two Cascade H-Bridges Per Phase 149
5.8 Two H-Bridge Converters (Seven- and Nine-Level Topologies) 162
5.9 Three H-Bridge Converters 164
5.10 Four H-Bridge Converters and Generalization 169
5.11 Summary 169
References 170

CHAPTER 6  FLYING-CAPACITOR CONFIGURATION 172

6.1 Introduction 172
6.2 Three-Level Configuration 173
6.3 PWM Implementation (Half-Bridge Topology) 177
6.4 Flying Capacitor Voltage Control 179
6.5 Full-Bridge Topology 181
6.6 Three-Phase FC Converter 183
6.7 Nonconventional FC Converters with Three-Level Legs 186
CONTENTS

9.4 Linear Control—dc Variable 279
  9.4.1 Proportional Controller: RL Load 279
  9.4.2 Proportional Controller: dc Motor Drive System 280
  9.4.3 Proportional-Integral Controller: RL Load 283
  9.4.4 Proportional-Integral Controller: dc Motor 285
  9.4.5 Proportional-Integral-Derivative Controller: dc Motor 286

9.5 Linear Control—ac Variable 288

9.6 Cascade Control Strategies 289
  9.6.1 Rectifier Circuit: Voltage-Current Control 289
  9.6.2 Motor Drive: Speed-Current Control 290

9.7 Summary 293

References 293

CHAPTER 10  SINGLE-PHASE TO SINGLE-PHASE BACK-TO-BACK CONVERTER 295

10.1 Introduction 295

10.2 Full-Bridge Converter 296
  10.2.1 Model 296
  10.2.2 PWM Strategy 297
  10.2.3 Control Approach 298
  10.2.4 Power Analysis 299
  10.2.5 dc-link Capacitor Voltage 301
  10.2.6 Capacitor Bank Design 304

10.3 Topology with Component Count Reduction 307
  10.3.1 Model 307
  10.3.2 PWM Strategy 308
  10.3.3 dc-link Voltage Requirement 309
  10.3.4 Half-Bridge Converter 310

10.4 Topologies with Increased Number of Switches (Converters in Parallel) 310
  10.4.1 Model 311
  10.4.2 PWM Strategy 315
  10.4.3 Control Strategy 316

10.5 Topologies with Increased Number of Switches (Converters in Series) 318

10.6 Summary 321

References 321

CHAPTER 11  THREE-PHASE TO THREE-PHASE AND OTHER BACK-TO-BACK CONVERTERS 324

11.1 Introduction 324

11.2 Full-Bridge Converter 325
  11.2.1 Model 325
  11.2.2 PWM Strategy 327
  11.2.3 Control Approach 328

11.3 Topology with Component Count Reduction 330
  11.3.1 Model 330
  11.3.2 PWM Strategies 331
  11.3.3 dc-link Voltage Requirement 332
  11.3.4 Half-Bridge Converter 332

References 332
11.4 Topologies with Increased Number of Switches (Converters in Parallel)  332
  11.4.1 Model  333
  11.4.2 PWM  338
  11.4.3 Control Strategies  339
11.5 Topologies with Increased Number of Switches (Converters in Series)  340
11.6 Other Back-To-Back Converters  340
11.7 Summary  344
    References  344