Index

a
absorbing aerosols 511
absorption opacity 250
accumulation mode particles 499, 551
acid drainage dust 674
Acidithiobacillus ferrooxidans 677
acid-mine drainage (AMD) 677, 678
acid-rock drainage (ARD) 677–678
acid-rock generation (ARG) 677
activated carbon 355, 366, 489
activated sludge process 367
adiabatic lapse rate 514
Administrative Law and Rulemaking Procedure 47–48
adsorption 176, 366
advection 174
advection–dispersion–reaction equation (ADRE) 615
aeolian dust 493
aerodynamic particle diameter 498, 501
AERONET 504
aerosol(s) 551
aging processes 501–502
chemical composition 506–508
climate 511–513
definition 493
density 498
diameter growth factor 509
emission control technology 513–514
formation 501–502
hygroscopic diameter growth factor 511
hygroscopicity 508–512
light extinction properties 511
meteorology 511–513
optical properties 502–506, 509
particle affinity for water 510
physical properties 509
sampling concerns 501
size distribution 499–502
volcanic eruptions 493
water-containing 498
aerosol chemical speciation monitor (ACSM) 508
aerosol mass spectrometry (AMS) 508
Agency for Toxic Substances and Disease Registry (ATSDR) 596
agitated tank leaching systems 677
agricultural reuse, of reclaimed wastewater advantages 388
constituents of concern emerging of 389
macronutrients and micronutrients 389
salinity 389
design considerations compatibility and reliability 395
salinity 395
seasonal demand, variations in 395
impoundments artificial snowmaking 395
contact-and noncontact-type impoundment 396
design considerations 397
nutrient 396
pathogens 396
recreational impoundments 395
treatment objectives 396–398
treatment technologies 396
treatment objectives food crops 389–392
nonfood crops 390, 393–394
treatment technologies 390
advanced treatment 395
disinfection 395
Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) 260–261
airborne sensors
AirMOSS 260–261
E-SAR/F-SAR/PLMR2, 261–262
and features 260
HyMap 259–260
unmanned aerial systems 262–263
unmanned aerial vehicles (UAVs) 259
air-cooled slag 680
air cyclones, solid waste 652, 653
air pollution control
Air Pollution Control Act 453
Clean Air Act 453
collection of particulates baghouse 470–476
collection devices efficiency of 460
cyclones 461–465
electrostatic precipitators 465–470
mechanical collectors 460–461
emissions of particulates
aerodynamic behavior of particles 458
characteristics of 457–458
cost of control devices 457
chemical and physical characteristics 453
cost of control technologies 455–456
air pollution control
Air Pollution Control Act 453
Clean Air Act 453
collection of particulates baghouse 470–476
collection devices efficiency of 460
cyclones 461–465
electrostatic precipitators 465–470
mechanical collectors 460–461
emissions of particulates
aerodynamic behavior of particles 458
characteristics of 457–458
cost of control devices 457
chemical and physical characteristics 453
cost of control technologies 455–456
Index

a
absorbing aerosols 511
absorption opacity 250
accumulation mode particles 499, 551
acid drainage dust 674
Acidithiobacillus ferrooxidans 677
acid-mine drainage (AMD) 677, 678
acid-rock drainage (ARD) 677–678
acid-rock generation (ARG) 677
activated carbon 355, 366, 489
activated sludge process 367
adiabatic lapse rate 514
Administrative Law and Rulemaking Procedure 47–48
adsorption 176, 366
advection 174
advection–dispersion–reaction equation (ADRE) 615
aeolian dust 493
aerodynamic particle diameter 498, 501
AERONET 504
aerosol(s) 551
aging processes 501–502
chemical composition 506–508
climate 511–513
definition 493
density 498
diameter growth factor 509
equation control technology 513–514
formation 501–502
hygroscopic diameter growth factor 511
hygroscopicity 508–512
light extinction properties 511
meteorology 511–513
optical properties 502–506, 509
particle affinity for water 510
physical properties 509
sampling concerns 501
size distribution 499–502
volcanic eruptions 493
water-containing 498
aerosol chemical speciation monitor (ACSM) 508
aerosol mass spectrometry (AMS) 508
Agency for Toxic Substances and Disease Registry (ATSDR) 596
agitated tank leaching systems 677
agricultural reuse, of reclaimed wastewater advantages 388
constituents of concern emerging of 389
macronutrients and micronutrients 389
salinity 389
design considerations compatibility and reliability 395
salinity 395
seasonal demand, variations in 395
impoundments artificial snowmaking 395
contact-and noncontact-type impoundment 396
design considerations 397
nutrient 396
pathogens 396
recreational impoundments 395
treatment objectives 396–398
treatment technologies 396
treatment objectives food crops 389–392
nonfood crops 390, 393–394
treatment technologies 390
advanced treatment 395
disinfection 395
Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) 260–261
airborne sensors
AirMOSS 260–261
E-SAR/F-SAR/PLMR2, 261–262
and features 260
HyMap 259–260
unmanned aerial systems 262–263
unmanned aerial vehicles (UAVs) 259
air-cooled slag 680
air cyclones, solid waste 652, 653
air pollution control
Air Pollution Control Act 453
Clean Air Act 453
collection of particulates baghouse 470–476
collection devices efficiency of 460
cyclones 461–465
electrostatic precipitators 465–470
mechanical collectors 460–461
emissions of particulates
aerodynamic behavior of particles 458
characteristics of 457–458
cost of control devices 457
chemical and physical characteristics 453
cost of control technologies 455–456

aerodynamic diameter 498
terminal settling velocity 497–498
particulate matter 493
atmospheric deposition 495
atmospheric radiation measurement (ARM) 508
atmospheric visibility 495
attenuation engineered 579–580
natural 580
processes 593
audit exercise plan
audit program development 716
checklists 716
reporting procedures 716
timing and frequency 716
upcoming audit program 716–717
waste audit scope 715–716
audit team formation 714–715
b
Background site, Bosque del Apache, New Mexico 506
backscatter 251
baghouse fabric selection 472–473
preformed spray towers 474
pulse-jet baghouse 472
reverse air cleaning 471
shaker-type fabric filters 470–471
venturi scrubbers 474–476
wet collectors 473–474
balanced scope, definition 716
baler 664–665
ballistic separation 660–662
basic oxygen furnace (BOF) 679, 680
Beer-Lambert Law 23, 504
bench-scale laboratory development 694
beta-attenuation monitor mass concentrations 496
bioaerosols 497
control of 554–555
indoor 553–554
sampling 554
biogas 418
biogeochemical processes 72–73
bioreaching, of ores 676
biological aerated filters 369
biological agents 546
biomass burning source testing 510
biomass smoke aerosols 494, 502, 510
black acid 685
blister copper 681
boiler water makeup 403
boundary layer parameterization 72
boundary layer turbulence 71–72
briquettes/cubes 661–663
Brownian diffusion 497
Brownian motion 552
Buckingham–Darcy Equation
steady-state evaporation and infiltration 160–162
transient infiltration 162–163
calcium oxide (CaO) 482, 602–603
California bearing ratio (CBR) 602–605
California Gold Rush 674
carbonaceous aerosols 510
carbon dioxide (CO₂) 544, 681, 682
carbon monoxide (CO) 521, 545–546
Caro’s acid 675
casting sands 680
Central Pollution Control Board (CPCB) 578
CEQ regulations 50–51
CERCLA cleanup standards 62
liability 61–62
national priorities list and cleanup process 62
CerOx process 365
Chapter 62-610 of the Florida Administrative Code for Reuse of Reclaimed Water and Land Application 380
chemical metallurgy wastes
hydrometallurgical wastes
electrorefining/electrowinning
pickling liquors 686
precipitation 682–685
principal methods 678
pyrometallurgical wastes
gaseous wastes 680–682
solid wastes 679–680
chemical oxygen demand (COD) 720
chemical precipitation 682–685
chemical process design 698
chlorine residual 398
circular economy 629
Clean Air Act 453, 494, 681
motor vehicles and fuels 54
National Ambient Air Quality Standards and State Implementation Plans 52–53
National Emissions Standards for Stationary Sources 53–54
prevention of significant deterioration (PSD) requirements 53
Regulation of Greenhouse Gases 54–55
clean air delivery rate (CADR) 529
cleaner production 689, 690
Clean Water Act 351
National Pollutant Discharge Elimination System Permits 56
Technology-Based Effluent Limitations 56–57
Water Quality Standards 57–58
Clean Water Act and the National Pretreatment Program (40 CFR 403) 371
climate change 51–52, 541
climate change impact analysis
anthropogenic hazards
air pollution 89
deforestation and desertification 89
automated land cover stratification, of Alpine Environments 111–114
climate data
data sources and collaborations 96
filling spatial data gaps 97
filling temporal data gaps 96–97
modeling data 95–96
observational data 95
climate hazards
cryosphere 89–90
flooding 89
sea level rise 90
wildfire 89
critical zone concept
critical zone observatories 86–87
definition 84
life-sustaining resources 84
long-term processes and impacts 85
physical, chemical, and biological processes 85
short-term processes and impacts 85
societal adaptations 85
soil erosion, rates of 85
soil profile 85
spatial and temporal scales 85
surface and nearsurface systems 83
terrestrial life 85
water resource 85
geomorphometry research and applications 99–100
software package evaluation 100–102
geophysical hazards
earthquakes 88
landslide 89
volcanic eruptions 88–89
modeling glacier change 106–111
risk control artificial intelligence 91–92
mitigation 93
radar technology 91
rivers basins, in San Juan Mountains, Colorado
river channel extraction 106
scale characterization 103–104
terrain analysis 104–106
statistics in climatology
geostatistics 97–98
linear regression analysis and significance test 97
PCA (EOF) and wavelet analysis 98
time and space analysis
climate data and climatic skills 94–95
integration of 95
urbanization and greenhouse gas emission 94
in United States 83
climate downscaling 76–77
climate modeling
atmosphere-ocean-land system 67
boundary conditions and vertical coordinate 70
centennial time scales, multimodal to 76
climate downscaling 76–77
components 73
computer code generation 67
developmental cycle 67
discretization and numerical methods 68–70
historical development
coupled atmosphere-ocean models 68
earth system model (ESM) 68
weather forecasting 67–68
interannual-to-decadal time scales, climate prediction on 75–76
physical and subgrid-scale parameterization
biogeochemical processes 72–73
boundary layer turbulence 71–72
gravity wave drag 72
land surface processes 72
moist processes and cloud physics 71
radiative processes 71
research on 67
statistical model 77
validation of model 67
validations of models 73–74
cloud microphysics 71
CLTs see column leach tests (CLTs)
coal combustion products (CCPs) 599
coarse mode particles 499, 551
Code of Federal Regulation (CFR) 583, 590, 595
Coke 681
colloidal particles 684
color sorting 643–644
column leach tests (CLTs) 611, 612
combustion aerosols 493
combustion, outdoor air 521–522
Common Law 48–50
common sense approach 718
community noise pollution 577–579
compaction/baling 663–665
completely mixed flow reactor (CMFR)
conservation of mass law 522
constant coefficients 523–524
material balance 522
quantity of material per time 523
complex waste minimization audit 720
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 589
Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) 597
conceptual design 693
condensation particle counter (CPC) 496–497, 500
Conditionally Exempt Small Quantity Generators (CESQG) 595
conservation of mass law 522
constant-head flow method 170
constant head test 435
constant injection method 538
construction and demolition (C&D) 599
continental drift 94
convective parameterization 71
cooling water systems 402
copper hydroxide (Cu(OH)₂) 682, 683, 685
corrugated cardboard (OCC) 638
cost-benefit analysis (CBA) 11
coulter counter method 142
coupled model intercomparison project (CMIP) 74
critical zone concept
critical zone observatories 86–87
definition 84
life-sustaining resources 84
long-term processes and impacts 85
physical, chemical, and biological processes 85
short-term processes and impacts 85
soil adaptations 85
soil erosion, rates of 85
soil profile 85
spatial and temporal scales 85
surface and nearsurface systems 83
terrestrial life 85
water resource 85
cubed sphere method 70
cyclones
multicyclones 462
performance of separators 462–464
pressure drop 464–465
spiral motion 461
vane-axial cyclones 461
dissolved organic carbon (DOC) 378
dissolved oxygen depletion
nitrification 339
redox sequence 339–341
double-ring infiltration method 172
Douglas’s hierarchical procedure 704
drift velocity 531
dripper method 173
dry and wet sieving methods 140–141
dual energy X-ray transmission (DE-XRT) 645
dump leaching 677
DuPont’s 10-step method of Engineering Evaluations for Pollution Prevention 698, 699
dust
solid wastes 680
vs. urban-industrial pollution aerosols 510
dynamical downscaling 76
e
Earth’s surface 499
Earth system model (ESM) 68
Eddy-current separation 657–659
effective curve number (ECN) 427
electrical mobility sizing techniques 499
electric arc furnaces (EAF) 679–681
electrochemical process 365
electrokinetic (EK) treatment 209
amendments 210
bioremediation and biotreatment 210
chelating agents 210
chemical surfactants 210
crude oil recovery
field evidence of oil 234–235
laboratory evidence 232–234
direct electric current in soils 210
and electrochemical remediation methods 210
electrochemical transformations 219–222
electrodialysis 210
electrokinetic extraction
ammonium, NH₄ + extraction 224
containment 232
cyanide and fluoride extraction 224–225
and extraction 222–223
hexavalent chromium extraction 225
NaCl extraction/separation 223
perchlorate, ClO₄⁻ extraction 223–224
stabilization and immobilization 228–232
sulfate, nitrate and chloride extraction 225–226
unsaturated soils 226–227
VOCs, PAHs, and organic acids 227–228
electromigration 211–212
electroosmosis
EO efficiency coefficient 214
Helmholtz-Smoluchowski (H–S) theory 212
ionic conductance 213
Lehigh EK test cell assembly 214
nonlinearity and nonuniformity 213
parallel resistances models 213
ζ potential 213
mathematical modeling of transport 216–219
nonpolar compounds 210
pH fronts and hydrogen and chlorine gas 210
porosity and biodiversity 210
redox reactions 211
electrometallurgy 679
electrorefining (ER) 679, 685–686
electrostatic precipitators (ESPs) 514
design parameters 469–470
dry and wet systems 465
particle charging 466–468
particle filtration 530–531
wet ESP 468–469
electrowinning (EW) 679, 685–686
Emergency Planning and Community Right-to-Know Act (EPCRA) 589
emission control technology, aerosols 513–514
emissions 557–559
endocrine disrupting compounds (EDCs) 379
end-of-pipe treatment 709, 710
energy balance methods 272
energy efficiency retrofits 541–542
energy-induced waste minimization networks (EIWAMINs) 706
energy minimization program 714
enforcement and liability
monitoring compliance and violence 64–65
penalties, for violating environmental laws 63–64
environmental audits 594–596
environmental fluid mechanics advection-diffusion equations 313–314
nonuniform and turbulent mixing 317
pure diffusion 314–316
steady downstream concentration field 317
stream-wise advection 317
groundwater flow
Darcy's law 311
hydraulic head and hydraulic conductivity 310–311
saturated/unsaturated zones 310
solute transport, in aquifers 312–313
unconfined aquifers 310
wells, in aquifers 311–312
open-channel flow
gradually varied flow 305–307
specific energy 304–305
uniform flow 304
unsteady flow equations 307–308
surface waves
linear wave theory 309–310
spatial and temporal scales 308
Stokes wave theory 309
2D regular surface gravity waves 309
wind-generated waves 308
turbulent buoyant plumes
bent-over plumes 322–323
chemically reacting plumes 324–325
confined and semiconfined plumes 325–326
round turbulent plumes 321–322
in stratified ambient 324
turbulent fountains 325
turbulent line plumes 322
unsteady source conditions 325
turbulent jets
in crossflow 319–320
pollutant transport 320
in quiescent flow 318–319
environmental impact statements (EIS) 50
environmental law, for engineers
Administrative Law and Rulemaking Procedure 47–48
CERCLA cleanup standards 62
liability 61–62
national priorities list and cleanup process 62
Clean Air Act
motor vehicles and fuels 54
National Ambient Air Quality Standards and State Implementation Plans 52–53
National Emissions Standards for Stationary Sources 53–54
prevention of significant deterioration (PSD) requirements 53
Regulation of Greenhouse Gases 54–55
Clean Water Act
National Pollutant Discharge Elimination System Permits 56
Technology-Based Effluent Limitations 56–57
Water Quality Standards 57–58
Common Law 48–50
enforcement and liability
monitoring compliance and violence 64–65
penalties, for violating environmental laws 63–64
environmental statutes 46
Judicial Review 48
National Environmental Policy Act 50–52
Resource Conservation and Recovery Act
hazardous waste management 59–60
identification and classification wastes 58–59
environmental law, for engineers (cont’d)
land disposal restrictions 60
nonhazardous waste management 59
waste incineration 60–61
source of law 45
US Federal System 46–47
environmental noise pollution
ambient noise measurement
community noise 577–579
roadside noise 575–577
definition of 565–566
engineered attenuation 579–580
human health effects on 566–567
level of 573–574
natural attenuation 580
noise guidelines 578
nuisance of 578
sound characteristics of 569–570
propagation 567–569
tinnitus 566
urban areas 565–566
environmental process design 705
environmental remediation
clean up process 597
HRS 596–597
NPL 596
PA/SI 596
RI/FS 597
environmental reuse, of reclaimed wastewater
constituents of concern
chlorine residual 398
nutrients 398
organic matter 398
total dissolved solids 398
design considerations
stream flow augmentation 400
wetland 400
treatment objectives
stream augmentation 399, 401–402
wetlands 398–399
treatment technologies 399
environmental sampling approaches
grid or systematic sampling 22
hypothetical composite sampling grid 20
judgmental sampling 22
non-composite sampling 18
random sampling 22
stratified random sampling 22
stratified sampling 22
uncertainty and contributing errors 21
environmental systems analysis
cost-benefit analysis 11
energy and exergy analysis 1–2
environmental input-output analysis 5
environmental management systems 4–5
environmental risk assessment 3–4
life cycle assessment 5–9
life cycle costing 7
material flow analysis (MFA) 2–3
social life cycle assessment 7, 9–11
substance flow analysis 3
European automobile manufacturers 673
eutrophication 341
evaporation method 172
evapotranspiration
empirical methods, vegetation indices 286–287
hybrid methods, FVC-LST Space 287
surface energy balance (SEB) models
SEBS algorithm 285–286
S–SEBI algorithm 286
exclusion 176–177
Experimental Synthetic Aperture Radar (E-SAR) 261
flooding 359–360
flowsheet analysis 701–702
qualitative methods 702–703
quantitative methods 703–706
fly ash
ASTM C618, 601
calcium oxide (CaO) 602–603
freeze-dry cycles 606–608
geotechnical performance 602–604
leachate
chemical analysis 608–614
groundwater numerical modeling 614–616
MSWI 611
recycled waste materials 600
stabilizing agent and soil amendment 601–602
food crops 389–392
formaldehyde 544
formaldehyde (HCHO) 541
forward scatter 251
Freundlich model 366
froth flotation 661
g

gaseous emissions 721
gaseous wastes 680–682
gases filter 551–553
adsorption processes 531–532
evaluating performance 529–530
Gaussian dispersion modeling 502
geometrical spreading see sound divergence
GIS data 17
gold ores 674, 678
gravity separation see density/gravity separation
gravity wave drag 72
green chemistry, principles of 693, 694
green economy 629
grid/systematic sampling 22
ground granular blast furnace slag (GBFBS) 680
groundwater flow
Darcy's law 311
gravity currents
anatomy of 327–328
inertial propagation 328
viscous propagation 328–329
hydraulic head and hydraulic conductivity 310–311
saturated/unsaturated zones 310
solute transport, in aquifers 312–313
unconfined aquifers 310
wells, in aquifers 311–312
groundwater numerical modeling 614–616
groundwater recharge, of reclaimed wastewater
algae blooms, reduce of 407
constituents of concern
organic carbon and nutrients 407–408
pathogens 408
redox potential 408
suspended solids 407
design considerations 410
direct injection systems 407
nonpotable water source 406
recharge basins 407
surface spreading 407
treatment objectives 408–4011
treatment technologies 409
vadose zone injection 407
group contribution theory 706

h
haloacetic acid (HAA) compounds 378
hammer mill 631–632
hand-sorting line 640–642
hazard and operability (HAZOP) 703
hazardous waste management 59–60
classifications for 583, 585
definition of 583
environmental audits 594–596
fate and transport 591–593
petroleum oil spill impact 583–584
RCRA 585–586
imports/exports 587
injection well 587
land disposal 587
mixed wastes 586–587
permitting program 588
solid waste 589
TSDFs 589–590
unit 590–591
universal wastes 586
USTs 589
waste oil 586
remediation clean up process 597
investigation/feasibility study 597
NPL 596–597
PA/SI 596
toxicology 593–594
Hazard Ranking System (HRS) 596–597
hazards
anthropogenic hazards
air pollution 89
deforestation and desertification 89
climate hazards
cryosphere 89–90
flooding 89
sea level rise 90
wildfire 89
global physical hazards
earthquakes 88
landslide 89
volcanic eruptions 88–89
interdisciplinary thinking
approach, in critical zone 90–91
health effects, pollutants
asbestos 545
biological agents 546
carbon dioxide 544
carbon monoxide 545–546
formaldehyde 544
nitrogen dioxide 543
ozone 543
radon 543
smoking 544–545
VOCs 543
heat leaching 677
heat exchange network (HEN)
synthesis 705
heat exchanger network synthesis (HENS) 703
heat-induced waste minimization networks (HIWAMINs) 706
heating, ventilation, and air-conditioning (HVAC) 529
heavy media separators 652–653
Helmholtz-Smoluchowski (H–S) theory 212
high efficiency particle air (HEPA) 529
High Park Fire 502
biomass 496
northern Colorado 494
high-time resolution PM$_{2.5}$ chemical composition 508
humidity ratio 540
hydraulic head and hydraulic conductivity 310–311
hydrometallurgical wastes 676–677
electrorefining/
electrowinning 685–686
pickling liquors 686
precipitation 682–685
hydrometallurgy 679
hydroxide precipitation 682
HYDRUS-2D 615
hygroscopic tandem differential mobility analyzer (HTDMA) 510
Hyperspectral Mapper (HyMap™) 259–260
hypothetical composite sampling grid 20

i
icosahedral grid 69
impactor 631
impoundments 675–676
IMPROVE monitoring network 506–507
incinerators 590
indoor air quality (IAQ)
bioaerosols 553–555
CMFR model 522–524
combustion 521–522
deposition velocity 524–526
emissions characterization 557–559
energy efficiency retrofits 541–542
health effects of (see health effects, pollutants)
indoor radon control of 550–551
sources of 548–550
odors 559–560
outdoor air 521–522
particles and gases filter 551–553
evaluating performance 529–530
gas adsorption 531–532
particle filtration 530–531
pollutants 521
psychrometrics 540–541
radon 546–548
thermal comfort 539–540
UVGI 527–528
indoor air quality (IAQ) (cont’d)
ventilation and infiltration
air age 536
air exchange effectiveness 536
airflow through openings 534–535
air leakage measurement 535–536
driving mechanisms 532–533
large building ventilation practices 534
residential ventilation practices 533–534
ventilation efficiency 536
ventilation measurements
air velocity measurements 538–539
fan pressurization 539
tracer gas techniques 536–538
VOC 555–557
industrial ecology 700
industrial reuse, of reclaimed wastewater
constituents of concern
boiler water makeup 403
cooling water systems 402
design considerations 406
toilet flushing and on-site irrigation 401
treatment objectives 403–405
treatment technologies 403, 406
industrial waste auditing assessment phase
material balance 719–722
process flow diagrams 719
unit operations 719
preassessment phase
baseline information
collection 717
implementable options 718
plant walk-through 718
preparatory work phase
audit exercise plan 715–716
audit team formation 714–715
management groups 712–714
synthesis and preliminary analysis
economical evaluation 724
prioritizing waste reduction options 724
screening and selecting options (see weighted sum method)
technical evaluation 723–724

waste minimization cycle 711–712
waste minimization programs 710–711
Industrial Waste Management Evaluation Model (IWEM) 615
inertial propagation 328
infiltration 532
infiltration test 435
initial-value-problem approach 75
injection well 587, 591
inorganic toxicants
heavy metals 347–348
radionuclides 348
in situ leaching of ores 677
in situ light scattering by particles 506 see also light scattering
in situ PM2.5 mass measurement 496
in situ soil and sediment remediation bioremediation and biotreatment 210

crude oil recovery
field evidence of oil 234–235
laboratory evidence 232–234
direct electric current electrochemical transformations 219–222
electromigration 211–212
electroosmosis 212–216
mathematical modeling of transport 216–219
electrochemical techniques 210
electrokinetic extraction ammonium, NH4+ extraction 224
containment 232
cyanide and fluoride extraction 224–225
hexavalent chromium extraction 225
NaCl extraction/separation 223
perchlorate, ClO4 extraction 223–224
stabilization and immobilization 228–232
sulfate, nitrate and chloride extraction 225–226
unsaturated soils 226–227
VOCs, PAHs, and organic acids 227–228
electrokinetic (EK) treatment 209
oil transformation displacement 237–239
laboratory evidence of 235–237
pump-and-treat methods 210
transformation reactions 210
integrated steel plants 679
intensive sampling 14
internal drainage method 173
International Electrotechnical Committee (IEC) 574
International Network for Acid Prevention (INAP) 678
Intertropical convergence zone (ITCZ) 74
inverse square law 572
irrigation method 395
isokinetic sampling 501

j
judgmental sampling 22
Judicial Review 48

k
Kelvin equation 511
Kirchhoff’s law 250
Kozeny–Carman equation 431
Kubelka–Munk radiative transfer equation 288

l
land disposal 60, 587
landfill mining 628
landfills 590–591
land surface processes 72
land treatment units 591
Large Quantity Generators (LQGs) 596
laser diffractometry 142–143
laser-induced breakdown spectroscopy (LIBS) 646
LCA see life cycle assessment (LCA)
leachate
CLTs 611, 612
Cr(hydro)oxides 608, 610
groundwater numerical modeling 614–616
MSWI 611
pH conditions 609, 611
water leach tests 608

lead 681
Lehigh EK test cell assembly 214
LIDAR 14
life cycle assessment (LCA) 700–701
light detection and ranging (LIDAR) methods 506
light scattering 504–505
lime kiln dust (LKD) 602, 603
linear absorption coefficient 250
Linearized Richards’ Equation 166–167
linear wave theory 309–310
liquid wastes 675
low-level mixed waste (LLMW) 586

m
macronutrients 389
macroscale P2 approaches
 industrial ecology 700
 life cycle assessment 700–701
magnetic drum 655
magnetic head pulley 654
magnetic induction (MI) sorting 646–647
magnetic separation
 ferromagnetic materials 653
 magnetic drum 655
 magnetic head pulley 654
 plate/block magnet 657
 standard-intensity 654
 suspended/overbelt 655–656
manual/hand sorting 638–640
marine aerosols 500
mass exchange network (MEN) synthesis 705, 706
mass integration 703, 704
material balance
 algorithm for textile industry 722
 constructive material balance 720–722
 definition 719
 evaluating and refining 721–722
 sheet 719
 sources of information 720
 tie compounds 720
 unit operations 720
material flow analysis 702
material flow analysis (MFA) 2–3
materials recycling 629
maximum contaminant levels (MCL) 618
mean free path 552
measurement methods
 contaminants of concern 27–31
 data quality objectives (DQOs) definition 14
 feasibility 16
 geographic area 15–16
 quantitative DQOs 15
 sampling and analysis plan 15
 direct measurement 13
 environmental sampling approaches 14
 grid or systematic sampling 22
 hypothetical composite sampling grid 20
 judgmental sampling 22
 non-composite sampling 18
 random sampling 22
 stratified random sampling 22
 stratified sampling 22
 uncertainty and contributing errors 21
 indirect measurement 13–14
 laboratory analysis extraction 22–23
 separation science 23–24
 LIDAR 14
 measurements and models 27
 monitoring plan 16
 monitoring site selection process 16–18
 monitoring technologies 13
 MSAT concentrations 16
 sources of uncertainty 25–26
 mechanical collectors 460–461
 mechanical design/production design 695
 mechanical ventilation 532
 membrane bioreactors 368–369
 mesoscale P2 approaches
 flowsheet analysis 701–702
 qualitative methods 702–703
 quantitative methods 703–706
 unit operations 701, 702
 metal hydroxide formation 678
 metal recycling 673
 metals industry, waste reduction in chemical metallurgy wastes 678–679
 hydrometallurgical wastes 682–686
 pyrometallurgical wastes 679–682
 mine sites 674–675
 acid-rock drainage 677–678
 hydrometallurgical wastes 676–677
 tailings impoundments 675–676
 metal sulfide formation 678
meteorology 508
micronutrients 389
microscale P2 approaches 706–707
Milankovitch cycle 94
mineral dust aerosols 493
mineral processing techniques 675
mine sites
 acid-rock drainage 677–678
 air-borne losses 674
 environmental stewardship 674
 hydrometallurgical wastes 676–677
 metal consumption 673
 metal mining countries 673
 mineral ore deposit 674
 properties 674
 tailings impoundments 675–676
 minimum efficiency reporting value (MERV) 531
mixed wastes 586–587
Monhemius diagram 683
monitoring site selection process
 air quality monitoring site 17
 feasibility considerations 16
 GIS data 17–18
 implementation phase 16
 local businesses and residents 16
 national scale map layers, EnviroAtlas 19
 selection considerations and criteria 18
 spatial tools 17
 monoethanolamine (MEA) 682
MSWI see municipal solid waste incinerator (MSWI)
municipal solid waste (MSW) 628
municipal solid waste incinerator (MSWI) 611
n
NASA Soil Moisture Active and Passive (SMAP) 259
National Ambient Air Quality Standards (NAAQS) 495, 520, 543
National Ambient Air Quality Standards and State Implementation Plans 52–53
National Emissions Inventory (NEI) 454
National Emissions Standards for Stationary Sources 53–54
National Environmental Policy Act 50–52
and climate change 51–52
Federal Agency Planning 50–51
National Pollutant Discharge Elimination System Permits 56
National Priorities List (NPL) 596
naturallyoccurring, and/or accelerator‐produced radioactive material (NARM) 586
natural radioactivity 546–547
near infrared (NIR) sorting 644
Nernst–Planck equation 216
nested grid system 69
neutralization 361
neutral pressure level (NPL) 533
nitrogen dioxide (NO2) 521, 543
nonhazardous waste management 59
nonlinear Richards’ equation 167
nonpotable water source 406
Nuclear Regulatory Commission (NRC) 587
nucleation 499, 502, 551, 683
nutrient 396

o
octave bands 572
odors 559–560
open-channel flow gradually varied flow 305–307
specific energy 304–305
uniform flow 304
unsteady flow equations 307–308
open-pit mines 674
optical spectrometer 500
orographic gravity wave drag (GWD) 72
outdoor air 521–522
oxides of nitrogen (NOx) 476
ozone 543

p
P2 see pollution prevention (P2)
packed towers 487–488
particle filter
atmosphere size modes 551
drift velocity 531
evaluating performance 529–530
individual dynamics 552–553
single-pass efficiency 529
size distributions 551–552
type of 530
particle number concentrations 496
particle size distribution 500–501
particulate matter (PM)
air quality 496
in atmosphere 493
concentration measurements 494–495
industrial/combustion-derived smoke 493
particle size measurements 497
removal mechanisms 514
US National Ambient Air Quality Standards 496
pathogens 341–342
pavement sublayer design 616
pelletizing 661–663
percolation leaching techniques 676–677
permeability
constant head test 435
falling head test 434–435
infiltration test 435
Kozeny–Carman equation 431
vertical porosity distribution 431
pickling liquors 686
pig iron 680
pilot-plant-scale development and testing 695
pinch technology 701, 702
Planck’s radiation law 250
plant walk-through 718
plate/block magnet 657
plate reflectance 288
PM-2.5 emission 455
PM-2.5 particulates 454
PM-10 particulates 454
pneumatic jig 652
Polarimetric L-band Microwave Radiometer (PLMR) 262
pollutants 521
pollution prevention (P2)
bench-scale laboratory development 694
cost-effective solutions 692
cost evaluation 698
definition 689, 690
economics 698–699
environmental costs 698
establishing and maintaining 697
identification guidelines 693
integrated methodology 696–697
at macroscale 700–701
at mesoscale 701–706
methodology continuum 692
at microscale 706–707
potential sources 692
prevention methods 691–696
process elements for 692
process operations stage 695–696
product/process engineering stage 695
product/process synthesis 691
R&D stage 693–695
survey treatment techniques 699–707
pollution prevention assessment (PPA) 696
polydispersions 499
popcorn slag 680
porous pavement systems
construction practices
permeable interlocking concrete pavers 446
pervious concrete 445–446
porous asphalt 445
porous subbase 445
postinstallation 446
subgrade preparation 444–445
cost savings 430
driver safety 430
field study measurements 426
hydraulic behavior
flow routing 435–438
underdrains 441–442
undrained porous pavement 438–441
hydraulic conductivity 427
hydraulic properties 427
installation of 426
layout and siting 446
maintenance
clogging 447
inspection 447
mechanical sweeping 447
power washing 447
sediments 447
vacuuming 447
open-graded friction course (OGFC) 425
permeability
constant head test 435
falling head test 434–435
infiltration test 434
Kozeny–Carman equation 431
vertical porosity distribution 431
pond design tools 427
porosity
ASTM C1688/C1688M standard test method 434
ASTM C1754/C1754M-12 standard test method 432–433
ASTM D7063/D7063M-11 standard test method 432
hardened pervious concretes 430
image analysis techniques 433
nonminimal porosity 430
single-sized aggregates 431
volumetric method 432–433
rainfall retention rates 426
in road noise 430
sediment and debris 427
structural design
flexible pavements 442
interlocking concrete pavements 442
rigid pavements 442
subgrade 443
thickness design 443
traffic 443
subsurface drainage 427
tire–pavement interaction 430
in urban areas 430
water quality 428–129
water quantity 429
potable reuse, of reclaimed wastewater
constituents of concern 411
design considerations 411, 414
treatment objectives 411–413
treatment technologies 411
preassessment phase, waste auditing baseline information collection 717
implementable options 718
plant walk-through 718
precipitation 361–362 see also chemical precipitation of environmental fluxes precipitation retrieval 282–284 radiometric signatures 282 preferential flow 169–170
pregnant leach solution 676
preliminary assessment (PA) 596
preliminary material balance 721
preparatory work phase, waste auditing
audit exercise plan 715–716
audit team formation 714–715
management groups 712–714
pressure outflow experiment 171
prevention of significant deterioration (PSD) requirements 53
process energy integration/heat integration 703
process flow diagrams 719
product/process synthesis 691
prussian blue (Fe₄[Fe(CN)₆]₃) 675
psychrometrics 540–541
publicly owned treatment works (POTW) 380
pulse-jet cleaning system 470
pyrite 678
pyrometallurgical wastes
gaseous wastes 680–682
iron ore concentrates 679
solid wastes 679–680
q
quantitative data quality objectives 15
r
radiative transfer theory
radiative transfer equation (RTE) for absorption and emission 250–251
scattering 251
radiative transfer modeling
microwave domain 253–254
multiple-flux models 253–254
plate models 252–253
reflection and refraction processes 251–252
radioactive transformations 547
radioactivity 547
radon activity 547
decay chain 547
health concerns 547–548
indoor
air control techniques 550–551
Rn control 550
soil characteristics 548–549
soil gas concentration 549–550
soil production 549
transport of 549
natural radioactivity 546–547
pollutants 543
radioactive transformations 547
rainfall retention rates 426
random sampling 22
rapid small-scale column tests (RSSCTs) 366
Rayleigh scattering 251
RCAs see recycled concrete aggregates (RCAs)
RCRA see Resource Conservation and Recovery Act (RCRA)
R&D stage see research and development (R&D) stage
recharge basins 407
reclaimed asphalt materials (RPMs) 599
record of decision (ROD) 51
recreational impoundments 395
recycled concrete aggregates (RCAs) durability 617–618
environmental suitability 618–622
geotechnical performance 616–617
pavement sublayer design 616
recycled waste materials 600–601
recycled waste materials benefit of 621
fly ash 600
RCAs 600–601
recycling solid waste 668–669
redox potential 408
redox reactions 211
redox sequence 339–341
regenerative thermal oxidizer 491
Regulation of Greenhouse Gases 54–55
Remediation Investigation/Feasibility Study (RI/FS) 597
remote sensing (RS)
airborne sensors
AirMOSS 260–261
E-SAR/F-SAR/PLMR2, 261–262
and features 260
HyMap 259–260
unmanned aerial systems 262–263
unmanned aerial vehicles (UAVs) 259
environmental fluxes
Index

remote sensing (RS) (cont’d)
 evapotranspiration 285–287
 precipitation 282–284
 surface water storage and fluxes 284–285
 land surface temperature
 air temperature 272
 definition 269
 linear split-window algorithm 270–271
 nonlinear split-window algorithm 271–272
 SC methods 270
 TIR data 269
 snow cover and water equivalent
 biophysicochemical vegetation variables 279–282
 radiometric signatures 276–277
 snow cover retrieval 277–279
 soil hydrostatic properties 268–269
 soil minerals
 carbonate minerals 264
 chemical soil composition 265
 clay minerals 264
 direct characterization and quantification 264
 goethite 266
 iron minerals 264
 iron oxides 266
 sulfate minerals 264
 Vis-NIR-SWIR range 264
 soil moisture
 passive microwave retrieval 273–276
 radiometric signatures 273
 soil organic matter (SOM)
 decomposition stage 266
 quantity and quality 266
 soil reflectance 266
 soil texture 267–268
 spaceborne sensors
 GPM 259
 landsat satellites 255–256
 microwave sensors 256–257
 Moderate Resolution Imaging Spectroradiometer (MODIS) 256
 Sentinel-1, 258–259
 Sentinel-2 mission 256
 SMAP 259
 SMOS 257–258
 static soil properties
 direct measurements 263
 sampling methods 263
 research and development (R&D) stage 693–695
 Resource Conservation and Recovery Act (RCRA) 585–586, 589
 facilities 589–591
 hazardous waste management 59–60
 identification and classification wastes 58–59
 imports/exports 587
 injection well 587
 land disposal 587
 land disposal restrictions 60
 mixed wastes 586–587
 nonhazardous waste management 59
 permit 588
 solid waste 589
 universal wastes 586
 USTs 589
 waste incineration 60–61
 waste oil 586
 resource recovery 629
 Reynolds number 501
 Richards’ Equation
 diffusion form of 164–166
 Linearized Richards’ Equation 166–167
 nonlinear Richards’ equation 167
 numerical solution 167–169
 scaled forms of 169
 soil hydraulic functions 159–160
 roadside noise pollution 575–577
 road surface gravel (RSG) 602–605
 robot recycler sorting 647–649
 rock wastes 675
 rolling mills process 686
 rotary screen 637–638
 S
 Safe Drinking Water Act 587, 591
 salinity 379, 389, 395
 salts
 conventional pollutants
 irrigation 342
 road salt 342–343
 saltwater intrusion 343
 well water contamination 343
 inorganic chemical constituents 378
 sampling approaches, environmental
 grid/systematic sampling 14, 22
 hypothetical composite sampling grid 20
 intensive sampling 14
 judgmental sampling 22
 non-composite sampling 18
 random sampling 22
 stratified random sampling 22
 stratified sampling 22
 uncertainty and contributing errors 21
 saturated/unsaturated zones 310
 scanning mobility particle sizer (SMPS) 499
 sea level rise
 accommodation 121–124
 background 119
 causes 119–120
 Chesterfield Heights
 community engagement 125
 cross-disciplinary inquiry 126
 existing wetland area for storage 127
 full block raising/storage 126
 guiding principles 126
 living shoreline 126–127
 observations of conditions 125
 tidal check valves and EPA SWMM modeling 127
 water storage 127
 the Hague
 check valves 131–132
 community engagement 130
 guiding principles/cross-disciplinary inquiry/collaborators 130
 sponges 132–134
 stormwater retention 129–130
 tidal barriers 130–131
 tidal flooding 129
 impacts of 120
 structures and adaptation design
 elevating structures 120–121
 protection 120
 retreat 121
 sea-salt aerosol 499
 Seasonal Soil Compartment (SESOIL) 615
 secondary maximum contaminant levels (SMCL) 618
 sedimentation 141, 358–359
Index

Sensor Integrated Environmental Remote Research Aircraft (SIERRA) 262
sequencing batch reactors 367–368
shredders 632–635
sick building syndrome (SBS) 555–556
Simplified-Surface Energy Balance Index (S–SEBI) algorithm 285–286
single mass exchanger 705
single-pass efficiency 529
single-ring infiltration method 172–173
Site Inspection (SI) 596
size separation, solid waste
disk screen 638
rotary screen/trommel 637–638
vibrating screen 637
size/volume reduction equipment, solid waste
equipment factors 629–630
hammer mill 631–632
impactors 631
shredders
bag opener 633–635
flail mill 632–633
knife shredder 633
wood grinders 635–636
slags 673, 679–680
Small Quantity Generators (SQGs) 595
smoke particles
biomass burning 494
optical properties 494
smoking 544–545
Smoluchowski’s theory 684
social life cycle assessment 7, 9–11
soil conditions 395
soil hydraulic functions 159–160
soil physical properties and processes exploitation 137
fundamental mass-volume relationships
degree of saturation 138
dry bulk density 138
gravimetric water content 138
mean particle density 138
porosity 138
void ratio 138
volumetric water content 138
heat pulse measurements
soil heat balance and subsurface evaporation 190–192
soil thermal property fitting 189–190
soil water flux density and direction 190
heat transport
analytical solutions to 185–186
conductive heat transport 185
convective heat transport 185
heat conservation equation 185
radiant heat transport 184–185
size distribution and soil classification
coulter counter method 142
dry and wet sieving methods 140–141
indirect methods, for estimation 143–144
laser diffractometry 142–143
PSD information for textural classification 144
sedimentation methods 141
X-Ray attenuation (SediGraph) method 141–142
soil hydraulic properties
constant-head flow method 170
double-ring infiltration method 172
dripper method 173
evaporation method 172
falling-head flow method 170–171
internal drainage method 173
pressure outflow experiment 171
single-ring infiltration method 172–173
soil parameters
breakthrough curve 179–182
solute concentration measurement 182
soil temperature
direct soil contact temperature measurement 183
noncontact soil temperature measurement 183–184
soil water
characteristics 153–158
electromagnetic water content measurement techniques 148–150
energy state 150–153
Euclidean separation distance 147
flow velocity of water 146
matric potential 147
neutron scattering 147–148
solute transport processes
adsorption 176
advection 174
advection-dispersion equation and analytical solutions 178–179
diffusion 174
dispersion 174–176
exclusion 176–177
unsaturated soils 177–178
specific surface of soils
nonpolar gases, adsorption of 145
physical measurements 144
polar liquids, adsorption of 145–146
temperature effects, on biological activity 192–194
thermal properties
soil heat capacity 186–187
soil thermal conductivity 187–189
soil thermal diffusivity 189
water flow models
Buckingham–Darcy Equation 160–164
Buckingham–Darcy Law 159
Darcy’s Law 158–159
preferential flow 169–170
Richards’ Equation 159–160, 164–169
soil water
characteristics 153–158
electromagnetic water content measurement techniques 148–150
energy state 150–153
Euclidean separation distance 147
flow velocity of water 146
matric potential 147
neutron scattering 147–148
Solid Waste Disposal Act 585
solid wastes 589, 673, 674
casting sands 680
dust 680
pyrometallurgical processes 679
slags 679–680
solid waste separation and process
agglomeration (cubing and
pelletizing) 661–663
ballistic separation 660–661
compaction/baling 663–665
density/gravity separation
air cyclones 652
air separators 649–652
heavy media separators
652–653
stoners 652
economic benefits 667–668
Eddy–current separation
657–659
electrostatic separation
659–660
employment benefits 668
environmental benefits
666–667
froth flotation 661
landfill mining to circular
economy 628–629
magnetic separation 653–657
manual/hand sorting 638–642
principles of 629
recycling prospects 668–669
reuse and recycling 627–628
robot sorting 647–649
sensor-based sorting
642–647
size separation
disk screen 638
rotary screen/trommel
637–638
vibrating screen 637
size/volume reduction
equipment factors 629–630
size reduction equipment
630–635
wood grinders 635–636
solute transport, in aquifers
312–313
sound divergence 570, 573
sound frequency 570
sound intensity 570
sound level meters 574–575
Amprobe SM-20A 575
roadside noise 575–577
sound power 569
sound pressure 569, 570
vs. distance 573
vs. frequency 572–573
vs. intensity 570–572
sound propagation
direct sound path 568
environmental elements of 567
pure sound wave 567
reflected sound path 568
sound wave mathematics 569
wave fronts 568
source–sink mapping 704, 705
spaceborne sensors
GPM 259
landsat satellites 255–256
microwave sensors 256–257
Moderate Resolution Imaging
Spectroradiometer (MODIS) 256
Sentinel-1, 258–259
Sentinel-2 mission 256
SMAP 259
SMOS 257–258
spatial tools 17
speciation 346
spectral emission coefficient 250
spectral methods 69
spectral representation 69
spectral scattering coefficient 251
stack effect 533
staggered grids 69
star-shaped disk screen
638–639
starter dike 676
statistical inference 14
statistical methods 272
statistical model 77
steel production 679
Stefan–Boltzmann law 250
Stokes wave theory 309
stratified random sampling 22
stratified sampling 22
stream augmentation 399–402
substance flow analysis 3
sulfide mining 677
sulfur dioxide (SO2) 481–483, 521,
680–682
supercritical water oxidation
364–365
Superfund Amendments and
Reauthorization Act (SARA) 589
surface impoundments 591
surface spreading 407
surface waves
linear wave theory 309–310
spatial and temporal scales 308
Stokes wave theory 309
2D regular surface gravity
waves 309
wind-generated waves 308
suspended/overbelt magnet 655–656
suspended solids 407
sustainable development 627
sustainable development goal (SDG)
2015, 709
systematic waste audit 725

t
tailings impoundments 675–676
hydrometallurgical processing
wastes 682
liquid–solid separation 677
tapioca-manufacturing factory
assessment phase 726
economical evaluation 728
mass balance comparisons 728
preassessment phase
725–726
preparatory work phase 725
starch milk production 727
synthesis and preliminary
analysis 726, 728, 729
technical evaluation 728
wastewater characteristic
loading 728
tau–omega model 274–276
Technology-Based Effluent
Limitations 56–57
temperature-vegetation index (TVX)
method 272
TEOM technique 496
terminal settling velocity
497–498
thermal comfort 539–540
thermal optical reflectance
(TOR) 506
tinnitus, noise pollution 566
Title 22 of the California Code of
Regulations for Water
Recycling Criteria 380
total cost assessment (TCA) 698
total organic carbon (TOC) 378
total suspended particulate material
(TSP) 495
total volatile organic compounds
(TVOCs) 555

toxicology 593–594
toxic organics 346–347
toxic substances
aesthetics vs. health 346
inorganic toxicants 347–348
natural vs. alien 345–346
radionuclides 348
speciation 346
toxic organics 346–347
trace chemical constituents 379
tracer gas techniques 536–538
transmittance model 288
treatment, storage and disposal facilities (TSDFs) 588–590
trihalomethane (THM) compounds 378
trommel screen 637–638

U
ultraviolet germicidal irradiation (UVGI)
cooling coil 527
design considerations 528
effectiveness 528
environmental factors 528
inactivation rate 528
upper-room 527
ventilation ducts 527
uncertainty analysis
complex entities 26
contaminant assessment process 26
decision-rule uncertainty 25
exposure assessment 26
modeling uncertainties 25
Monte Carlo technique 25
numerical value uncertainties 26
uncertainty factors (UFs) 26
variability and 25
unconfined aquifers 310
Underground Injection Control (UIC) 591
underground sources of drinking water (USDW) 587
underground storage tanks (USTs) 586, 589
unit operations 719
universal wastes 586
unmanned aerial systems 262–263
unsaturated soils 177–178
upflow anaerobic sludge blanket (UASB) 370
upstream method, tailings dike construction 676
urban areas see also environmental noise pollution
human health effects 566–567
noise pollution 565–566
roadside noise 575–577
rolling noise 580
sound level meters 574
traffic noise 579
urban canopy model 72
urban mining 628–629
urban reuse, of wastewater recycling
decentralization 379
design considerations
constituent application 387
decentralized treatment and application 387
economic and technical viability 387
reliability 387
temporal water balance 387
inorganic chemical constituents 378–379
microorganisms
indicator organisms 378
municipal wastewater 377
particulate matter 377–378
pathogenic agents 377
spraying/dripping 377
waterborne diseases 376
organic constituents 378
trace chemical constituents 379
treatment objectives
restricted urban reuse 380–384
unrestricted urban reuse 380
treatment technologies
advanced oxidation 386
depth filtration 385
disinfection 386
filtration technologies 385
granular activated carbon 386
membrane filtration 385–386
natural treatment systems 386–387
surface filtration 385
urea-formaldehyde foam insulation (UFFI) 544
US automobile industry 673
U.S. Environmental Protection Agency (US EPA) 494, 583, 674, 691
average concentrations 495
chemical compatibility chart 590, 592
US National Ambient Air Quality Standards 496

V
vadose zone injection 407
vapors 673
ventilation and infiltration
air age 536
air exchange effectiveness 536
airflow through openings 534–535
air leakage measurement 535–536
driving mechanisms 532–533
large building ventilation practices 534
natural ventilation flow rates 535
residential ventilation practices 533–534
ventilation efficiency 536
ventilation measurements
air velocity measurements 538–539
fan pressurization 539
tracer gas techniques 536–538
vibrating screen 637
viscous propagation 328–329
volatile organic compounds (VOC) 488–491, 521, 543
isotherms 556–557
SBS 555–556
surface interactions 556–557
TVOC 555
volcanic activity 94

W
waste(s)
audit report 717
deepwater storage 678
end-of-pipe treatment 709
generation audits 700
impoundment design 675
management hierarchy 689, 690
of milling operation 675
at mine sites 673
recycling/reuse 712
segregation of 718
treatment cost 710
valuable materials, recovery of 710
waste auditing 712, 715–716 see also industrial waste auditing
housekeeping processes 715
inventory processes 715
methodology steps 713
packaging processes 715
production processes 715
tapioca-manufacturing factory 725–729
waste treatment processes 715
waste from electronic and electric equipment (WEEE) 652, 659
waste incineration 60–61
waste interception and allocation networks (WINs) 706
waste minimization 629, 689, 690
advantages 711
analysis phase 712
audit of target processes 715
audit phase 711
cleaner production cycle 711
development phase 712
development cycle 711–712
Douglas's hierarchical procedure 704
evaluation phase 712
implementation phase 712
inception phase 711
industrial waste auditing 710–711
waste minimization and reuse technologies
aggregates 599
benefit of 621
durability 604–608
fly ash 600–602
geotechnical performance 602–604
leachate
chemical analysis 608–614
groundwater numerical modeling 614–616
RCA
durability 617–618
environmental suitability 618–621
geotechnical performance 616–617
pavement sublayer design 616
waste materials 599–601
waste oil 586
waste piles 591
waste reduction
chemical metallurgy wastes 678–679
hydrometallurgical wastes 682–686
pyrometallurgical wastes 679–682
definition 690–691
integrated methods 705
mine sites 674–675
acid-rock drainage 677–678
hydrometallurgical wastes 676–677
tailings impoundments 675–676
operational changes 696
pollution prevention programs
economics 698–699
integrated methodology 696–697
prevention methods 691–696
survey treatment techniques 699–707
potential sources 692
waste management hierarchy 689
wastewater 721
wastewater recycling
agricultural reuse 388–395
desalination 375
energy source
anaerobic pretreatment 418
biogas 418
industrial wastewater treatment 421–422
environmental reuse 397–400
groundwater recharge 406–410
for impoundments 395–397
industrial reuse 400–406
in Israel 375
legal and regulatory issues 416, 418–420
nonpotable reclaimed wastewater 375
nutrient recovery 422–423
planning and funding 416, 417
potable reuse of 410–414
public health protection 375
public involvement and participation 418
reliability requirements
alarm systems 415
Federal Water Quality Administration 414–416
industrial pretreatment program 415–416
piping and control, flexibility of 414
power supply 414
quality assurance program 414–415
storage requirements 415
treatment systems, monitoring of 414
treatment technologies 375
urban reuse of
decentralization 379
design considerations 387
inorganic chemical constituents 378–379
microorganisms 376–378
organic constituents 378
restricted urban reuse 380, 383, 384
trace chemical constituents 379
treatment technologies 383, 385–387
unrestricted urban reuse 380–382
in U.S., 375
wastewater treatment plants
biological waste treatment
activated sludge process 367
anaerobic processes 369–370
biological aerated filters 369
membrane bioreactors 368–369
sequencing batch reactors 367–368
types 367
characteristics and requirements
categorical pretreatment standards 354
5-day biochemical oxygen demand (BOD5) 352
Effluent Guidelines and Limitations 354
industrial facility 352
local limits 354
National Pretreatment Program 351
priority pollutants 351
prohibited discharge standards 352, 355
chemical treatment
adsorption and ion exchange 365–366
chemical oxidation and reduction 362–364
electrochemical process 365
Index

neutralization 361
precipitation 361–362
wet air oxidation and supercritical water oxidation 364–365
physical unit process
air stripping 356–358
evaporation 361
filtration 359
flotation 359–360
oil and grease removal 360–361
sedimentation/clarification 358–359
water flow models
Buckingham–Darcy Equation
steady-state evaporation and infiltration 160–162
transient infiltration 162–163
Buckingham–Darcy Law 159
Darcy’s Law 158–159
preferential flow 169–170
Richards’ Equation
diffusion form of 164–166
Linearized Richards’ Equation 166–167
nonlinear Richards’ equation 167
numerical solution 167–169
scaled forms of 169
soil hydraulic functions 159–160
water leach tests (WLTs) 608, 612
water quality 428–129
acid and pH
acid rain 345
mining and acid mine drainage 345
characteristics 333
direct biological health impacts 333
dissolved oxygen depletion 339–341
emerging water pollutants 348–349
eutrophication 341
heat and temperature
biochemical reactions 343
dissolved gases 343–344
species shifts and survivability 344
historical background
ancient water sanitation 334–335
in London 335–336
industrial/technological pollution 338–339
natural/conventional pollution 337–338
pathogens 341–342
salts 342–343
suspended solids 344–345
toxic substances
aesthetics vs. health 346
inorganic toxicants 347–348
natural vs. alien 345–346
radionuclides 348
speciation 346
toxic organics 346–347
water quality limits (WQLs) 612
Water Quality Standards 57–58
water quantity 429
weatherization 541–542
weighted sum method 722–724
wells, in aquifers 311–312
wet air oxidation 364–365
wetlands 398–400
wet scrubbers
mass transfer process 484
removal efficiencies 484
types of 487
water-soluble gases 484
windblown dust 499, 674
wind-generated waves 308
WiscLEACH 615, 616
wood grinders 635–636
World Health Organization (WHO) 578
X
X-ray attenuation (SediGraph) method 141–142
X-ray fluorescence (XRF) sorting 644–645
X-ray transmission (XRT) sorting 645–646
Y
Yosemite National Park 504–505
Z
ZenRobotics Recycler (ZRR) 647
zinc 681