Contents

Preface xv
About the Editor xvii
List of Contributors xix

1 Introduction to Electromagnetic Transient Analysis of Power Systems 1

Juan A. Martinez-Velasco

1.1 Overview 1
1.2 Scope of the Book 4
References 6

2 Solution Techniques for Electromagnetic Transients in Power Systems 9

Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac

2.1 Introduction 9
2.2 Application Field for the Computation of Electromagnetic Transients 10
2.3 The Main Modules 11
2.4 Graphical User Interface 11
2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12
2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13
2.5.2 State-Space Analysis 20
2.5.3 Hybrid Analysis 21
2.5.4 State-Space Groups and MANA 25
2.5.5 Integration Time-Step 27
2.6 Control Systems 28
2.7 Multiphase Load-Flow Solution and Initialization 29
2.7.1 Load-Flow Constraints 31
2.7.2 Initialization of Load-Flow Equations 33
2.7.3 Initialization from Steady-State Solution 33
2.8 Implementation 34
2.9 Conclusions 36
References 36

3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39

José L. Naredo, Jean Mahseredjian, Ilhan Kocar, José A. Gutiérrez-Robles and Juan A. Martinez-Velasco

3.1 Introduction 39
Contents

3.2 Frequency Domain Basics
- 3.2.1 Phasors and FD Representation of Signals 40
- 3.2.2 Fourier Series 43
- 3.2.3 Fourier Transform 46

3.3 Discrete-Time Frequency Analysis
- 3.3.1 Aliasing Effect 50
- 3.3.2 Sampling Theorem 51
- 3.3.3 Conservation of Information and the DFT 53
- 3.3.4 Fast Fourier Transform 54

3.4 Frequency-Domain Transient Analysis
- 3.4.1 Fourier Transforms and Transients 56
- 3.4.2 Fourier and Laplace Transforms 62
- 3.4.3 The Numerical Laplace Transform 63
- 3.4.4 Application Examples with the NLT 65
- 3.4.5 Brief History of NLT Development 65

3.5 Multirate Transient Analysis 66

3.6 Conclusions 69

Acknowledgement 70

References 70

4 Real-Time Simulation Technologies in Engineering

Christian Dufour and Jean Bélanger

4.1 Introduction 72

4.2 Model-Based Design and Real-Time Simulation 73

4.3 General Considerations about Real-Time Simulation 74
- 4.3.1 The Constraint of Real-Time 74
- 4.3.2 Stiffness Issues 75
- 4.3.3 Simulator Bandwidth Considerations 75
- 4.3.4 Simulation Bandwidth vs. Applications 75
- 4.3.5 Achieving Very Low Latency for HIL Application 76
- 4.3.6 Effective Parallel Processing for Fast EMT Simulation 77
- 4.3.7 FPGA-Based Multirate Simulators 79
- 4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79
- 4.3.9 The Need for Iterations in Real-Time 80

4.4 Phasor-Mode Real-Time Simulation 82

4.5 Modern Real-Time Simulator Requirements 82
- 4.5.1 Simulator I/O Requirements 83

4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85

4.7 Power Grid Real-Time Simulation Applications 85
- 4.7.1 Statistical Protection System Study 85
- 4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87
- 4.7.3 Modular Multilevel Converter in HVDC Applications 88
- 4.7.4 High-End Super-Large Power Grid Simulations 89

4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90
- 4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90
- 4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91

4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94

4.10 Mechatronic Real-Time Simulation Applications 95
- 4.10.1 Aircraft Flight Training Simulator 95
5 Calculation of Power System Overvoltages

Juan A. Martinez-Velasco and Francisco González-Molina

5.1 Introduction 100
5.2 Power System Overvoltages 101
 5.2.1 Temporary Overvoltages 101
 5.2.2 Slow-Front Overvoltages 102
 5.2.3 Fast-Front Overvoltages 102
 5.2.4 Very-Fast-Front Overvoltages 103
5.3 Temporary Overvoltages 103
 5.3.1 Introduction 103
 5.3.2 Modelling Guidelines for Temporary Overvoltages 103
 5.3.3 Faults to Grounds 104
 5.3.4 Load Rejection 110
 5.3.5 Harmonic Resonance 115
 5.3.6 Energization of Unloaded Transformers 120
 5.3.7 Ferroresonance 125
 5.3.8 Conclusions 133
5.4 Switching Overvoltages 135
 5.4.1 Introduction 135
 5.4.2 Modelling Guidelines 135
 5.4.3 Switching Overvoltages 139
 5.4.4 Case Studies 149
 5.4.5 Validation 154
5.5 Lightning Overvoltages 154
 5.5.1 Introduction 154
 5.5.2 Modelling Guidelines 155
 5.5.3 Case Studies 163
 5.5.4 Validation 172
5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174
 5.6.1 Introduction 174
 5.6.2 Origin of VFTO in GIS 174
 5.6.3 Propagation of VFTs in GISs 176
 5.6.4 Modelling Guidelines 180
 5.6.5 Case Study 9: VFT in a 765 kV GIS 182
 5.6.6 Statistical Calculation 183
 5.6.7 Validation 185
5.7 Conclusions 187
Acknowledgement 187
References 187

6 Analysis of FACTS Controllers and their Transient Modelling Techniques

Kalyan K. Sen

6.1 Introduction 195
6.2 Theory of Power Flow Control 199
8.5 Examples
8.5.1 Example 1: Single-Stage PV Energy System
8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System
8.6 Conclusion
References

9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters

9.1 Introduction
9.2 MMC Topology
9.3 MMC Models
9.3.1 Model 1 – Full Detailed
9.3.2 Model 2 – Detailed Equivalent
9.3.3 Model 3 – Switching Function of MMC Arm
9.3.4 Model 4 – AVM Based on Power Frequency
9.4 Control System
9.4.1 Operation Principle
9.4.2 Upper-Level Control
9.4.3 Lower-Level Control
9.4.4 Control Structure Requirement Depending on MMC Model Type
9.5 Model Comparisons
9.5.1 Step Change on Active Power Reference
9.5.2 Three-Phase AC Fault
9.5.3 Influence of MMC Levels
9.5.4 Pole-to-Pole DC Fault
9.5.5 Startup Sequence
9.5.6 Computational Performance
9.6 Real-Time Simulation of MMC Using CPU and FPGA
9.6.1 Relation between Sampling Time and N
9.6.2 Optimization of Model 2 for Real-Time Simulation
9.6.3 Real-Time Simulation Setup
9.6.4 CPU-Based Model
9.6.5 FPGA-Based Model
9.7 Conclusions
References

10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications

10.1 Introduction
10.2 Front-End Diode Rectifier System Configurations
10.3 Detailed Analysis and Modes of Operation
10.4 Dynamic Average Modelling
10.4.1 Selected Dynamic AVMs
10.4.2 Computer Implementation
10.5 Verification and Comparison of the AVMs
10.5.1 Steady-State Characteristics
10.5.2 Model Dynamic Order and Eigenvalue Analysis
References
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.3</td>
<td>Dynamic Performance Under Balanced and Unbalanced Conditions</td>
<td>377</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Input Sequence Impedances under Unbalanced Conditions</td>
<td>382</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Small-Signal Input/Output Impedances</td>
<td>383</td>
</tr>
<tr>
<td>10.6</td>
<td>Generalization to High-Pulse-Count Converters</td>
<td>386</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Detailed Analysis</td>
<td>387</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Dynamic Average Modelling</td>
<td>388</td>
</tr>
<tr>
<td>10.7</td>
<td>Generalization to PWM AC-DC Converters</td>
<td>391</td>
</tr>
<tr>
<td>10.7.1</td>
<td>PWM Voltage-Source Converters</td>
<td>391</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Dynamic Average-Value Modelling of PWM Voltage-Source Converters</td>
<td>392</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusions</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>395</td>
</tr>
</tbody>
</table>

11 Protection Systems

Juan A. Martinez-Velasco

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>398</td>
</tr>
<tr>
<td>11.2</td>
<td>Modelling Guidelines for Power System Components</td>
<td>400</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Line Models</td>
<td>400</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Insulated Cables</td>
<td>401</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Source Models</td>
<td>401</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Transformer Models</td>
<td>401</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Circuit Breaker Models</td>
<td>403</td>
</tr>
<tr>
<td>11.3</td>
<td>Models of Instrument Transformers</td>
<td>403</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Introduction</td>
<td>403</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Current Transformers</td>
<td>404</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Rogowski Coils</td>
<td>408</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Coupling Capacitor Voltage Transformers</td>
<td>410</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Voltage Transformers</td>
<td>412</td>
</tr>
<tr>
<td>11.4</td>
<td>Relay Modelling</td>
<td>412</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Introduction</td>
<td>412</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Classification of Relay Models</td>
<td>412</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Relay Models</td>
<td>413</td>
</tr>
<tr>
<td>11.5</td>
<td>Implementation of Relay Models</td>
<td>418</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Introduction</td>
<td>418</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Sources of Information for Building Relay Models</td>
<td>419</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Software Tools</td>
<td>420</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Implementation of Relay Models</td>
<td>421</td>
</tr>
<tr>
<td>11.5.5</td>
<td>Interfacing Relay Models to Recorded Data</td>
<td>422</td>
</tr>
<tr>
<td>11.5.6</td>
<td>Applications of Relay Models</td>
<td>423</td>
</tr>
<tr>
<td>11.5.7</td>
<td>Limitations of Relay Models</td>
<td>424</td>
</tr>
<tr>
<td>11.6</td>
<td>Validation of Relay Models</td>
<td>424</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Validation Procedures</td>
<td>424</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Relay Model Testing Procedures</td>
<td>425</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Accuracy Assessment</td>
<td>426</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Relay Testing Facilities</td>
<td>426</td>
</tr>
<tr>
<td>11.7</td>
<td>Case Studies</td>
<td>427</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Introduction</td>
<td>427</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Case Study 1: Simulation of an Electromechanical Distance Relay</td>
<td>428</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Case Study 2: Simulation of a Numerical Distance Relay</td>
<td>430</td>
</tr>
</tbody>
</table>
Contents

11.8 Protection of Distribution Systems 450
 11.8.1 Introduction 450
 11.8.2 Protection of Distribution Systems with Distributed Generation 451
 11.8.3 Modelling of Distribution Feeder Protective Devices 451
 11.8.4 Protection of the Interconnection of Distributed Generators 460
 11.8.5 Case Study 3 460
 11.8.6 Case Study 4 465

11.9 Conclusions 471
Acknowledgement 475
References 476

12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481
Francisco de León, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco

12.1 Introduction 481
12.2 Distribution Systems 482
 12.2.1 Radial Distribution Systems 483
 12.2.2 Networked Distribution Systems 484
12.3 Restoration and Reconfiguration of the Smart Grid 487
 12.3.1 Introduction 487
 12.3.2 Heavily Meshed Networked Distribution Systems 487
12.4 Integration of Distributed Generation 498
 12.4.1 Scope 498
 12.4.2 Radial Distribution Systems 499
 12.4.3 Heavily Meshed Networked Distribution Systems 503
12.5 Overvoltages in Distribution Networks 515
 12.5.1 Introduction 515
 12.5.2 Ferroresonant Overvoltages 516
 12.5.3 Long-Duration Overvoltages due to Backfeeding 519
12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529
 12.6.1 Introduction 529
 12.6.2 Power-Flow to EMTP-RV Translator 530
 12.6.3 Example of the Translation of a Transmission Line 533
 12.6.4 Challenges of Development 533
 12.6.5 Model Validation 535
 12.6.6 Recommendations 542
 Acknowledgement 546
 References 546

13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552
Shaahin Filizadeh

13.1 Introduction 552
13.2 Need for Interfacing 553
13.3 Interfacing Templates 554
 13.3.1 Static Interfacing 554
 13.3.2 Dynamic Interfacing and Memory Management 555
 13.3.3 Wrapper Interfaces 555
Contents

13.4 Interfacing Implementation Options: External vs Internal Interfaces
 13.4.1 External Interfaces
 13.4.2 Internal Interfaces
13.5 Multiple Interfacing
 13.5.1 Core-Type Interfacing
 13.5.2 Chain-Type Interfacing
 13.5.3 Loop Interfacing
13.6 Examples of Interfacing
 13.6.1 Interfacing to Matlab/Simulink
 13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs
13.7 Design Process Using EMT Simulation Tools
 13.7.1 Parameter Selection Techniques
 13.7.2 Uncertainty Analysis
13.8 Conclusions
References

Annex A: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks
Byrén Gustavsen
A.1 Introduction
A.2 Rational Functions
A.3 Time-Domain Simulation
A.4 Fitting Techniques
 A.4.1 Polynomial Fitting
 A.4.2 Bode’s Asymptotic Fitting
 A.4.3 Vector Fitting
A.5 Passivity
A.6 Matrix Fitting Toolbox
 A.6.1 General
 A.6.2 Overview
A.7 Example A.1: Electrical Circuit
A.8 Example 6.2: High-Frequency Transformer Modelling
 A.8.1 Measurement
 A.8.2 Rational Approximation
 A.8.3 Passivity Enforcement
 A.8.4 Time-Domain Simulation
 A.8.5 Comparison with Time-Domain Measurement
References

Annex B: Dynamic System Equivalents
Udaya D. Annakkage
B.1 Introduction
B.2 High-Frequency Equivalents
 B.2.1 Introduction
 B.2.2 Frequency-Dependent Network Equivalent (FDNE)
 B.2.3 Examples of High-Frequency FDNE
 B.2.4 Two-Layer Network Equivalent (TLNE)
 B.2.5 Modified Two-Layer Network Equivalent
References
Contents

B.2.6 Other Methods 594
B.2.7 Numerical Issues 594
B.3 Low-Frequency Equivalents 595
 B.3.1 Introduction 595
 B.3.2 Modal Methods 596
 B.3.3 Coherency Methods 596
 B.3.4 Measurement or Simulation-Based Methods 597
B.4 Wideband Equivalents 597
B.5 Conclusions 597
References 598

Index 601