CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 AMNIOTIC FLUID STEM CELLS

Sean Vincent Murphy and Anthony Atala

- Introduction ... 1
- Development of Gestational Stem Cells 2
- Isolation and Characterization of Amniotic Fluid Stem Cells .. 2
- Multipotency of Amniotic Fluid Stem Cells 3
- Clinical Application of Amniotic Fluid Stem Cells .. 8
 - Conclusion .. 13
 - References .. 13

2 CORD BLOOD TRANSPLANTS: PERINATAL STEM CELLS IN CLINICAL PRACTICE

Richard L. Haspel and Karen K. Ballen

- Introduction .. 17
- Hematopoietic Stem Cell Transplants: Adult Donor Collection .. 17
- Hematopoietic Stem Cell Transplants: HLA Matching ... 18
- Collection and Processing of Cord Blood Units .. 19
- Hematopoietic Stem Cell Transplants: Recipient Issues ... 20
- Bone Marrow versus Single Cord Blood: Pediatric ... 21
- Bone Marrow versus Cord Blood: Adults 23
- Cord Blood Transplant: Advantages and Disadvantages ... 23
- Double Cord Blood Transplants: Ablative Regimens ... 24
- Double Cord Blood Transplant: Non-Myeloablative Regimens ... 26
- Are Two Cords Better Than One? 27
 - Chimerism ... 28
 - Predicting the Winner 28
 - Other Experimental Strategies 30
- Summary ... 31
- References ... 31
HEMATOPOIETIC STEM CELL DEVELOPMENT IN THE PLACENTA

Katrin E.R. Ericson, Akanksha Chhabra, and Hanna K.A. Mikkola

Introduction

The Hematopoietic System

Historical Perspective on Placental Hematopoiesis

The Development and Structure of the Mouse Placenta

Hematopoietic Activity in the Mouse Placenta

Identification of Placental HSCs

The Origin and Localization of Placental HSCs

Hematopoietic Activity in the Human Placenta

Hematopoietic Microenvironment in the Placenta

Conclusions and Perspectives

References

PERINATAL MESENCHYMAL STEM CELL BANKING FOR UMBILICAL CORD BLOOD TRANSPLANTATION AND REGENERATIVE MEDICINE

Rouzbeh R. Taghizadeh

Introduction

Hematopoiesis

Hematopoietic Transplantations

Umbilical Cord: Source of Perinatal HSCs and MSCs

Hematopoietic Transplantations of Umbilical Cord Blood

Strategies to Overcome the Transplant-Related Limitations of Umbilical Cord Blood

Umbilical Cord Tissue MSC Banking

References

MAKING ORGAN AND STEM CELL TRANSPLANTATION SAFER: THE ROLE OF MESENCHYMAL STEM CELLS

Hans Klingemann

Introduction

MSC to Prevent Rejection After Solid Organ Transplantation

MSC in the Treatment of Graft-versus-Host Disease

MSC to Support Hematopoietic Recovery of Stem Cells After Stem Cell Transplantation

References

WHARTON’S JELLY MESENCHYMAL STEM CELLS AND IMMUNE MODULATION: REGENERATIVE MEDICINE MEETS TISSUE REPAIR

Rita Anzalone, Felicia Farina, Melania Lo Iacono, Simona Corrao, Tiziana Corsello, Giovanni Zummo, and Giampiero La Rocca

Introduction

Expression of Relevant Immunomodulatory Molecules in Vitro by MSCs

Tolerance Induction by MSCs: Rediscovering the Embryo Immune Evasion Mechanisms
Therapeutic Potential of Amnion Membrane 123
Mechanisms of AEC-Enhanced Wound Repair 125
Therapeutic Potential of Amnion as Single Cells 127
Amnion Immunogenicity and Immunosuppressive Properties 127
Amnion-Derived Mesenchymal Stromal Cells 128
Umbilical Cord Mesenchymal Stromal Cells 130
Chorion MSCs 131
References 133

10 BIOMEDICAL POTENTIAL OF HUMAN PERINATAL STEM CELLS 139
Oleg V. Semenov and Christian Breymann
Role of Stem Cells in Regenerative Medicine 139
Perinatal Stem Cell Sources 140
Properties of Perinatal Mesenchymal Stem Cells 143
Properties of Perinatal Hematopoietic Stem Cells 144
Biomedical Applications of Human Perinatal Stem Cells 145
Perspectives and Obstacles 147
References 148

11 PROGENITOR CELL THERAPY FOR THE TREATMENT OF TRAUMATIC BRAIN INJURY 155
Alex Bryan Olsen, Robert A. Hetz, Supinder S. Bedi, and Charles S. Cox, Jr.
Introduction 155
Cellular Therapy for the Treatment of TBI 159
Neural Stem Progenitor Cells 159
Human Multipotent Adult Progenitor Cells 160
Mesenchymal Stem Cells 163
Umbilical Cord Blood 165
Wharton’s Jelly 166
Amniotic Fluid-Derived Stem Cells 167
The Inflammatory Reflex 168
Conclusion 170
References 171

12 THE HUMAN AMNIOTIC MEMBRANE: A TISSUE WITH MULTIFACETED PROPERTIES AND DIFFERENT POTENTIAL CLINICAL APPLICATIONS 177
Maddalena Caruso, Antonietta Silini, and Ornella Parolini
Introduction 177
Structure and Histology of the Human Amniotic Membrane 178
Preparation, Preservation, and Sterilization of the Human Amniotic Membrane 179
CONTENTS

Biological and Structural Properties of the Human Amniotic Membrane
 Generally Invoked to Explain Its Effects in Vivo 180
Established Clinical Applications of the Human Amniotic Membrane 183
Prospective Applications of the Human Amniotic Membrane:
 Lessons from Preclinical Studies 187
Conclusions and Perspectives 190
References 190

13 ADVANCES AND POSSIBLE APPLICATIONS OF HUMAN AMNION
 FOR THE MANAGEMENT OF LIVER DISEASE 197
 Fabio Marongiu, Maria Paola Serra, Marcella Sini, Ezio Laconi,
 Marc C. Hansel, Kristen J. Skvorak, Roberto Gramignoli,
 and Stephen C. Strom
Introduction 197
Human Amnion for the Management of Liver Fibrosis 198
Amnion-Derived Hepatocytes and Their Possible Applications 199
Conclusions 204
References 205

14 AMNION-DERIVED CELLS FOR STROKE RESTORATIVE THERAPY 209
 Naoki Tajiri, Loren E. Glover, and Cesar V. Borlongan
Introduction 209
Stem Cell Therapy: Beyond Stroke Neuroprotection 210
Therapeutic Potential of Adult Stem Cells 210
The Biology of Amnion-Derived Cells 211
Amnion-Derived Cells for Cell Therapy 212
Conclusion 215
References 216

15 PREGNANCY-ACQUIRED FETAL PROGENITORS
 AS NATURAL CELL THERAPY 221
 Elke Seppanen, Nicholas M. Fisk, and Kiarash Khosrotehrani
Introduction 221
Fetal Cell Microchimerism, a Widespread Phenomenon 222
The Kinetics of Fetal Cell Detection 222
Factors Modifying the Level of Microchimerism 222
Detecting FMC 223
Homing and Plasticity of FMC 224
Hematopoietic Capacity of FMC 224
Epithelial, Neuronal and Hepatic Capacity of FMC 228
Mesenchymal Capacity of FMC 228
FMC Includes Functional Endothelial Progenitor Cells that
 Contribute to Tissue Repair 229
FMC Likely Includes Cells of Placental Origin 230
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusions</td>
<td>230</td>
</tr>
<tr>
<td>References</td>
<td>231</td>
</tr>
<tr>
<td>INDUSTRY REVIEW</td>
<td>235</td>
</tr>
<tr>
<td>16 PERINATAL STEM CELLS: AN INDUSTRY PERSPECTIVE</td>
<td>237</td>
</tr>
<tr>
<td>Kyle J. Cetrulo</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>The Public Cord Blood Banking Industry</td>
<td>238</td>
</tr>
<tr>
<td>The Private Banking Industry</td>
<td>239</td>
</tr>
<tr>
<td>Research and Cord Blood Clinical Trials</td>
<td>240</td>
</tr>
<tr>
<td>The Mesenchymal Stem Cell Regenerative Medicine Industry</td>
<td>241</td>
</tr>
<tr>
<td>Wharton’s Jelly/Cord Tissue</td>
<td>242</td>
</tr>
<tr>
<td>Placental Stem Cells and Placental Tissue</td>
<td>243</td>
</tr>
<tr>
<td>Amniotic Fluid</td>
<td>244</td>
</tr>
<tr>
<td>Conclusion</td>
<td>245</td>
</tr>
<tr>
<td>References</td>
<td>245</td>
</tr>
<tr>
<td>17 PATENT PROTECTION OF STEM CELL INNOVATIONS</td>
<td>249</td>
</tr>
<tr>
<td>John R. Wetherell</td>
<td></td>
</tr>
<tr>
<td>The Role of Patents in Commercialization</td>
<td>249</td>
</tr>
<tr>
<td>Background of the Patent System</td>
<td>250</td>
</tr>
<tr>
<td>Patenable Subject Matter</td>
<td>251</td>
</tr>
<tr>
<td>Statutory Requirements for a Patent</td>
<td>252</td>
</tr>
<tr>
<td>Written Description/Enablement/Best Mode</td>
<td>254</td>
</tr>
<tr>
<td>Important Future Changes</td>
<td>256</td>
</tr>
<tr>
<td>18 INTERVIEW WITH FRANCES VERTER, FOUNDER OF PARENT’S GUIDE TO CORD BLOOD FOUNDATION</td>
<td>259</td>
</tr>
<tr>
<td>Frances Verter and Kyle J. Cetrulo</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>269</td>
</tr>
<tr>
<td>19 UMBILICAL CORD BLOOD BANKING: AN OBSTETRICIAN’S PERSPECTIVE</td>
<td>271</td>
</tr>
<tr>
<td>Jordan H. Perlow</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>277</td>
</tr>
<tr>
<td>Index</td>
<td>279</td>
</tr>
</tbody>
</table>