INDEX

ABI310, electrophoresis on, 156
ABI 377 slab gel system
 electrophoresis on, 267
 fluorescent SSCP on, 209–217
 sequencing with big dye terminators on,
 263–265
 setting up, 211–217
 temperature monitoring for, 214–215
ABI 3100 capillary system
 fluorescent SSCP on, 217–220
 sequencing with big dye terminators on,
 267–271
Acetonitrile, 239
Acral melanoma, 37
Acrylamide gels, 236–237t
Acrylamide stock, 40%, 201, 210
AcycloPol™ mutant DNA polymerase, 176
 licensing, 185
AcycloPrime™-FP, 175
 problems with, 184–185
AcycloPrime™-FP mix, 181–182
AcycloPrime™-FP protocol, 182
AcycloPrime™-FP SNP detection kit, 176–180
AcycloTerminator™ mix, 176, 177
AcycloTerminators™, 175, 184
Agarose gel electrophoresis, 150
Agarose gel solutions, 264–265
Aldahmesh, Mohammed A., ix, 85
Alharbi, Khalid K., ix, 85
Allele-calling software, 180
Alleles
 changes in, 131
 recognition of, 95f
Allele-specific amplification (ASA), 15
Allele-specific hybridization. See Dynamic allele-
 specific hybridization (DASH)
Allele-specific ligation, 16
Allele-specific nucleotide incorporation, 17
Allele-specific oligonucleotide (ASO)
 hybridization, 15, 79, 101, 157
Amino silane-coated slides, preparing, 305–306
Ammonium persulfate, 202, 210, 226, 265
Amplicon design, for SNP applications, 195
Amplicon-Down SNP protocol, 194, 196
Amplicon samples, 195–196
Amplification products, MPLA, 301–303
Amplification refractory mutation system
 (ARMS), 15, 148–151. See also ARMS assays
AmpliTaq Gold®, 145, 146, 171, 181
APC gene, 285–289
APOE model, 93
ARMS assays, 192-well MADGE and, 319–320.
 See also Amplification refractory mutation
 system (ARMS)
Arnold, Norbert, ix, 79
Array-CGH, 37–39, 41, 50, 305–313. See also
 Comparative genomic hybridization entries
 developing new technologies in, 41
 equipment for, 311
 materials for, 311t
 methods for, 39–40, 305–311
Array production methods, 42
Assay design
 meltMADGE, 92–93
 proper, 78
Assay protocol, in fluorescence polarization SNP
 detection, 180–183
Assays, problems with, 181
Automated dye terminator sequencing, 263–271
 with big dye terminators on the ABI 377,
 263–265
 with big dye terminators on the ABI 3100,
 267–271
 method for, 265–267
Autoradiography, 238
AxySys software, 308
Barton, David E., ix, 75
Base deletions, 11
Base excision sequence scanning (BESS-G,
 BESS-T), 21
Base insertions, 11
Base mismatch recognition, 21
Base pairs, mismatched, 68
Base-stacking, 195, 196
Base substitutions, 10
Beroud, Christophe, ix, 123
Bi-directional dideoxy fingerprinting (bi-ddF), 21
Big dye terminators, sequencing with, 263–265,
 267–271

“Binary comparison” routines, 127
Binding and wash buffer (BWB), 259
Binding-based methods, 21
Biotinylated capture oligo, 194–195
Biotinylated PCR products, 188
Blood
DNA extraction from, 135–137
lysis of, 138–139
Bonfield, James, ix, 273
BRCA1 gene, 93
BRCA1 mutation analysis, scanning methods for, 79–83
BRCA1 mutations, 96f
BRCA1/2 DGGE, 229–232. See also Denaturing gradient gel electrophoresis (DGGE)
Breast cancer genes, 7, 81. See also BRCA1 entries
Buckley, Patrick G., ix, 33, 305
Capillary electrophoresis, 156
Capillary electrophoresis fragment run, 294
Capture-Down SNP protocol, 194–195, 196
Carrier testing, 26
cDNA, 129, 145
CEL1 mismatch cleaving activity, 73
Centricon columns, PCR product purification with, 265
Centricon/Dynabead purification, 260
Charlton, Ruth, ix, 209, 263, 297
Chemical cleavage method (CCM), 21, 69–70, 257–262. See also Cleavage methods reagents for, 257–259
Chen, Xiao-he, ix, 85
Chromatin configuration, large-scale, 12
Chromatography, 56
Chromosomal mosaicism, 13
Chromosomal rearrangements, detecting, 49–50
Chromosome 22, 33–34
Chromosome 22 microarray. See High-resolution human chromosome 22 microarray
Claustres, Mireille, ix, 9
Cleavage methods, 67–74. See also Chemical cleavage method (CCM)
enzymatic, 70–72
Clinical practice, recent, 25–26
Cockburn, David, ix, 291
“Combed” DNA, 46
Common disease/common variant (CD/CV) hypothesis, 13
Community screening, 26
Comparative genomic hybridization (CGH), 35f. See also Array-CGH
Comparative genomic hybridization assays, microarray-based, 25
“Compliant mutations,” 14
Conformational changes, detection methods for, 19–21
Conformation-sensitive gel electrophoresis (CSGE), 79, 80
Congenital disorders, 25–26
Constant denaturant capillary electrophoresis (CDGE), 20
Contig Editor window, 277–281
“Conversion” approach, 25
Coomassie staining, 236, 238
Core database, versus locus-specific databases, 124–126
Cot-1 DNA, 41
Cotton, Richard G. H., ix, xiii, 67, 107, 257
cTags, 158
hybridization to, 164
Cuthbert-Heavens, Darren, ix, 153, 169
Cy3 dCTP, 42
Cy3/5 dNTP fluorescent mix, 309t
Cytosine methylation, 121
DASH assay, 172–173. See also Dynamic allele-specific hybridization (DASH)
DASH plate, reading, 173
Data analysis, in SNP genotyping, 166
Data analysis workbooks, 180
Databases. See Locus-specific databases (LSDBs); Mutation databases
Database systems, central, 111
Data interpretation, in SNP genotyping, 160–161
Data submission, criteria for, 112–113
Day, Ian N. M., x, 85, 315
dbSNP database, 109
ddNTPs, 158, 160
data for, 160t
Deletion mutations, 68, 130
Denaturation/hybridization reaction, 300
Denaturing gradient gel electrophoresis (DGGE), 19–20, 79, 80, 89, 221–232
BRCA1/2, 229–232
method for, 221–229
Denaturing gradient gels, casting, 225–226
Denaturing high-performance liquid chromatography (DHPLC), 20, 53, 80–82, 239–248
melting temperature predictions, 240–241
practical considerations for, 245
sample preparation for, 241–243
troubleshooting guide for, 245t
Denaturing high-performance liquid chromatography mutation scanning, 53–65. See also Mutation scanning materials for, 55–57
principles of, 54–55
De novo mutation detection, 89
Deoxynucleotides (dNTPs), 146, 159
de Voss, Gert, x, 221
DFSP tumor, 40
analysis of, 39
DHPLC. See Denaturing high-performance liquid chromatography (DHPLC)
DHPLC data, interpreting, 244–245
Diagnosis, DNA test to confirm, 26
Diagnostic tool, chromosome 22 array as, 37–39
Dideoxy fingerprinting (ddF, DDF) assay, 21, 79
DiGeorge critical region (DGCR), 37–39
Dimethyl sulfoxide (DMSO), dissolving DNA in, 307–308
Diploid mutants, converting to haploid mutants, 25
Direct sequencing, 22–23
Disease
chromosome 22 array in research and diagnosis of, 40–41
epigenetic modifications and, 12
Disease-causing alleles, 13
Disease-causing mutations, 13–14
Disease genes, on chromosome 22, 41
“Distribution by exons” routines, 127
“Distribution of mutations” routines, 127
DNA. See also Human DNA; Target DNA
assessing purity of, 142–144
double precipitation and dissolving in DMSO, 307–308
gel analysis of, 142–143
labeling with random priming, 308–309
MALDI analysis of, 119
DNA amplification
by phi29 polymerase, 42
problems with, 183–184
DNA chips, 17–18
DNA concentration assays, 141–142
DNA electrophoresis, 86–88
DNA extraction
guidelines for, 135
from paraffin-embedded fixed tissue blocks, 140–141
phenol-chloroform, 137–140
by salt precipitation, 135–137
from whole blood, 135–137
“DNA folding” software packages, 170
DNA methylation, 12
DNA polymerases, 145, 161, 163
DNASep® cartridge technology, 56–57
sample and eluent compatibility with, 63
DNA sequencing, availability of, 126
dNTPs, 146, 159
Dosage quotients, by semiquantitative PCR, 288t
Double-stranded DNA (dsDNA), 205
Dumanski, Jan P., x, 33, 305
Duplications, 131
Dynabead binding reaction, 260–261
Dynabead purification, 260–261
Dynamic allele-specific hybridization (DASH), 169–173. See also DASH entries
probe design in, 170
Dynamic mutations, 11
DYS271 mutation standard, 62, 63f
Eccles, Diana, x, 85
EDTA, whole blood in, 137
Electronic hybridization, 193–199
Electrophoresis. See also Agarose gel electrophoresis; Capillary electrophoresis;
Temperature-gradient capillary electrophoresis
on ABI 377, 267
gel handling after, 228
of MADGE gels, 319
in MPLA, 301–302
in protein truncation test, 237–238
thermal ramp, 85, 89–91
Electrophoresis cassette, assembly and preparation of, 222–224
Elucigene ARMS PCR Kit, 148t
Elution profiles, 243f, 245f
Endonuclease digestion, 204
Enzymatic cleavage methods, 70–72
Enzymatic mutation detection (EMD), 79, 80
Enzyme-linked immunosorbent assay (ELISA), 22
Enzyme mismatch cleavage (EMC), 21, 257, 260–262
assay protocols, 260
Epigenetic modifications, disease and, 12
Epigenotyping, 121
Ethanol clean up, sequencing reactions, 269
Ethanol precipitation, 70
Excel-based data analysis workbooks, 180
Exonic splice enhancers (ESEs), 5, 78
Exon skipping, 4
Exon splice silencers, 6
Exonuclease I and shrimp alkaline phosphatase treatment (Exo-SAP-IT™), 155, 159, 162–163, 178
Experimentally determined sequence variations, 129
Exponential rolling circle amplification (ERCA), 18
External quality assessment (EQA), 77
Fibroblast growth factor receptor (FGFR) gene family, 3–4
Filters, preparing with genomic DNA, 292–293
Fixed tissue blocks, DNA extraction from, 140–141
Flintoff, Kim, x, 285
Fluorescence polarization (FP), 175
SNP detection via, 175–185
Fluorescence polarization reader, 179
Fluorescence polarization SNP detection reagent preparation and assay protocol in, 180–183
troubleshooting in, 183–185
Fluorescence resonance energy transfer (FRET), 17
Fluorescent hybridization, 46
Fluorescent in situ hybridization (FISH), 50
Fluorescent multiplex PCR, 47–48
Fluorescent SSCP, 209–220
on ABI 377 slab gel system, 209–217
on ABI 3100 capillary system, 217–220
Fluorophore data, 160t
Fluorophores, 196
Formamide loading buffer, 202
FP-Kit catalog numbers, 176t
“Frequency of events” routines, 127
“Frequency of mutations” routines, 127
Fresh blood, lysis of, 138–139. See also Blood
Frozen blood, lysis of, 139
Functional assays, of mutants and variants, 28
Gap4 Shotgun Assembly module, 275
Gap4 software, 277–283
Gel 4
$¥$
buffer, 235
Gel analysis, 142–143
Gel casting, for automated dye terminator sequencing, 265
Gel electrophoresis. See Denaturing gradient gel electrophoresis; Electrophoresis entries
Gel fixing, in protein truncation test, 238
Gels. See also MADGE gels
handling after electrophoresis, 228
running, 226–227
Gene databases, 28
Gene deletions/duplications, 45
Gene dosage
by multiplex amplifiable probe hybridization, 291–295
by multiplex probe ligation/amplification, 297–303
by semiquantitative PCR, 285–289
GenePix 4000B scanner, 42
GenePixPro image analysis software, 42
Gene rearrangements, detecting, 46–49
GeneScan, 219–220, 294, 295
Genetic mosaicism, 13–14
Genetic testing, molecular, 26–27
Genetic variation, xiii
identifying the presence of, 58–62
Genome DataBase (GDB), 123
Genomic deletions, 76
Genomic DNA, 149, 169–170
preparing filters with, 292–293
Genomic gene imprinting, 12
Genomic hybridization, comparative, 35f
Genomic microarray construction, 36f
Genomic sequence, 129
Genomic target clones, selection and preparation of, 41–42
“Genotype-phenotype analysis” routines, 127
Genotyper, 220
Genotyper templates, 303
Genotyping, 67
high-throughput, 117–122
single nucleotide polymorphism, 101–106
by single nucleotide primer extension, 154f
Germ-line mosaicism, 13–14
G-factor calibration, 179
Glioblastoma, 37
Glycerol, 50%, 202
Glycosylase-mediated polymorphism detection assay (GMPD), 21
GOOD assay, 120–121
variations of, 121
Gradient gels, preparation of, 230–231
Gut, Ivo Glynne, x, 117
Haddad, Lema, x, 85
Haplotyping, 121
Hardware, DHPLC mutation scanning, 55–57
Harvey, John F., x, 53
Hereditary diseases, 25–26
Heredity, new insights in, 27–28
Heteroduplex analysis (HA), 20, 201
gels for, 203
Heteroduplex DNA, 239
Heteroduplexes, 62, 205, 242
formation of, 250–252, 260–261
Heteroplasmy, 12, 13
Heterozygous deletions/duplications, detection of, 45–51
Heterozygous sequence changes, detection of, 77
HETE tag, 281
HGVSYS WayStation, 111
High-density oligonucleotide arrays (DNA chips), 17–18
High-resolution human chromosome 22 microarray, 33–44. See also Array-CGH methodology
as a diagnostic tool, 37–39
future strategies for construction of, 41–42
patient samples with, 38f
preparation of, 34
in research and molecular diagnosis disease, 40–41
research applications of, 37
validation of, 36–37
High-throughput genotyping, mass spectrometry for, 117–122
High-throughput mutation typing, 17–18
High-throughput SNP genotyping, GOOD assay and, 121
High-throughput solid-phase protein truncation test (HTS-PTT), 22. See also Protein truncation test (PTT)
Homoduplex DNA, 239
Homoduplexes, 62, 205
formation of, 250–252
Homogeneous solution hybridization mutation typing methods, 16–17
Homoplasmy, 12
Homozygous detection, 306f
Homozygous mutations, 242, 243f
Horaitis, Rania, x, 107
H-PAGE gels, 93
HUGO MDI Nomenclature Working Group, 112
HUGO-Mutation Database Initiative (HUGO-MDI), 111, 124
INDEX

Human chromosome 22 microarray. See High-resolution human chromosome 22 microarray
Human DNA, classes of mutations occurring in, 9–11
Human Gene Mutation Database (HGMD), 109, 124–125
Human Genome Organization (HUGO) Mutation Detection Workshop, xiii. See also HUGO entries
Human Genome Project, xiii
Human Genome Variation Database (HGVbase), 109
Human Genome Variation Society (HGVS), 111, 124, 128
Humphries, Steve E., x, 85
Hybridization chips, 17–18
Hybridization mutation typing methods, real-time or homogeneous solution, 16–17
Hybridizations, printing of. See also Dynamic allele-specific hybridization (DASH)
Hybridization solution, 293
Hydroxylamine, 257–258
mismatched Cs, 259–260
IGLV/IGLC locus/region, 33, 36–37, 40–41
Image analysis, 42
Immobilized DNA hybridization assays, 79
Ingeny buffer system, 226–227
Ingeny gradient maker, 225, 230
INGENYphorU-2, casting a gel in, 224–226
INGENYphorU-2 cassette, 221
INGENYphorU-2x2 cassette, 221–222
INGENYphorU buffer system manual, 228–229
Insertion/deletions (indels), 131
Insertion mutations, 6, 68, 130
“Insertions and deletions analysis” routines, 127
Instrument controls, in DHPLC mutation scanning, 62
Integrated analysis tools, 127
Interpretation, in SNP genotyping, 166
Introns, mutations within, 6
Invader assay, 18
Inversions, 131
Jenkins, Lucy, x, 209
Judge, David, x, 273
Known mutations, detection of, 15–18
Laboratory control, guidelines for, 75
Large-scale chromosome abnormalities, 10
LDLR study, 93
LightCycler system, 17, 46
Liljedahl, Ulrika, x, 101
Lindroos, Katarina, x, 101
Lithium/heparin, whole blood in, 137
LNA probes, 18
Locked nucleic acid (LNA), 18
Locus-specific databases (LSDBs), 107, 110, 123–131
creating, 113–115
development of, 124
future of, 128
integrated analysis tools and, 127
structure of, 126
versus core database, 124–126
Lymphoblastoid cell lines (LCLs), 40
MADGE analysis, PCR standardization for, 316–317. See also Microplate array diagonal gel electrophoresis (MADGE)
MADGE format, 88
MADGE gels, 316
electrophoresis of, 319
preparing, 317–319
visualization and analysis of, 319
MADGE-specific software, 319
Malcolm, Sue, x, 3
MALDI detection, SNP genotyping methods using, 119–121
MassArray technology, 120
Mass spectrometry (MS), 22
for high-throughput genotyping, 117–122
Matrilineal inheritance, 12
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 16, 117–118. See also MALDI detection problems with, 119
MC4R gene, 94
mutations in, 97f
MDE gel, 210
MEDLINE, 113
Melting curves report, 58, 59f
Melting profiles, 19
meltMADGE system, 85, 89–91
analysis images with, 94f
apparatus for, 91–92
assay setup for, 92–93
examples of, 93–96
future of, 96–98
Melt profiling, 58
Melt program, 240–241
Mendelian Inheritance in Man (MIM), 108
MFOLD program, 170
Microarray-based comparative genomic hybridization (CGH) assays, 25
Microarray hybridization, 310
Microarray printing, 308
Microarray printing pins, cleaning, 308
Microarrays
hybridization to “cTags” on, 164
hybridization to tag primers on, 160
preparation of, 159–160
washing, 164–165
Microinsertions/deletions, 11
Microplate (microtiter) array diagonal gel electrophoresis (MADGE), 15, 85–99, 315–320. See also MADGE entries; meltMADGE system
principles and procedures of, 317
use in PCR checking and SNP genotyping reactions, 316
Microplates, 178–179
Microtiter 96-well plates, sequencing in, 268–271
Minisequencing, 15–16, 153–155, 157
Minisequencing chips, 18
Minisequencing primer extension, 101–104
Minisequencing primers, 159–160
Minisequencing reaction, 102, 160, 163–164
Mismatch, chemical cleavage of, 257–262
Mismatch binding proteins, 21
Mismatched base pairs, 68
Mitochondrial DNA, mutations in, 12
Mitochondrial mosaicism, 13
Mitochondrial sequence, 129
Molecular beacons, 17
Molecular diagnosis, 26, 40–41
Molecular genetic testing, 27
quality control of, 26–27
Mosaic mutations, 60
MPLA Control Mix, 300
MPLA Reaction Kit, 298–299
mRNA, absence of, 76–77
mRNA analysis, 23
Multiplex amplifiable probe hybridization (MAPH), 24–25, 48–49
gene dosage by, 291–295
Multiplex genotyping assay, 154f
Multiplex ligation-dependent probe amplification (MLPA), 25, 49
gene dosage by, 297–303
method for, 299–303
reagents for, 298–299
Multiplex PCR, 158–159, 191
Muscular dystrophy, 5
Mutants, functional assays of, 28
Mutant sequence, absence of, 76–77
MUTA tag, 281–282
“Mutational events” routines, 127
Mutation analysis, DHPCLC, 61f
Mutation calling, 58–62
Mutation Database Initiative (MDI). See HUGO-Mutation Database Initiative (HUGO-MDI)
Mutation databases, 107–115
core information for, 114
current system related to, 110–111
general, 108–109
history of, 107–108
searching, 113
types of, 108–110
using, 111–113
Mutation data processing methods, 283
Mutation detection. See also Staden package without PCR amplification, 18
peptide-level, 21–22
polymerase fidelity in, 63–64
quality in, 75–78
in rapid analysis mode, 63
Mutation detection (MDE) gel, 210
Mutation detection methods, categories of, 67
Mutations. See also Known mutations; Nonsense mutations; Refractory mutations
disease-causing 13, 14
documenting, 107
frequency and nature of, 9–31
identifying, 244
main classes of, 9–11
in mitochondrial DNA, 12
naming, 112
source of, 10
tags/annotations for, 281
Mutation scanning, 14. See also Denaturing high-performance liquid chromatography mutation scanning
very high-throughput, 85, 89–91
Mutation screening, 14
with Reveal Mutation Discovery System, 252
Mutation standards, 62
Mutation typing, high-throughput, 17–18. See also Hybridization mutation typing methods
Mut-Y repair enzyme, 73
Myelin protein zero (MPZ), 289
NanoChip Molecular Biology Workstation, running SNP protocols on, 196–199
Neutral gels, casting, 224–225
Newborn screening, 26
96-well MADGE, 316f, 318f
Nomenclature recommendations, 128–131
Nomenclature standards, 112
Nonsense mutations, 4, 10, 11
Nonsynonymous mutations, 10
Nucleated cells, 137
Nucleic acid extraction, 135–144. See also DNA extraction
Nucleotide changes, 4, 130–131
Nucleotide numbering, 129–130
Oligo6 program, 42
Oligo design, for SNP applications, 195
“Oligogenic disorders,” 27
Oligonucleotide arrays, high-density, 17–18
Oligonucleotide ligation assay (OLA), 16
Oligonucleotide microarrays, 101–104
Oligonucleotide templates, synthetic, 184
1x annealing buffer, 259
192-well MADGE, ARMS assays and, 319–320
Online Mendelian Inheritance in Man (OMIM), 108
database of, 109
Optimase™ polymerase, 64
Osmium tetroxide, 70
“Padlock” probes, 18
Paraffin-embedded fixed tissue blocks, DNA extraction from, 140–141
PCR amplification, 16
errors with, 76
mutation detection without, 18
PCR amplification protocol, in dynamic allele-specific hybridization, 171
PCR-based mutation screening, 45–46
PCR-based scanning methods, 19–23
PCR buffer, 146
PCR checking, use of MADGE in, 316
PCR Clean-Up Dilution Buffer, 178
PCR Clean-Up Reagent, 178, 181
PCR conditions, in dynamic allele-specific hybridization, 172
PCR cycling conditions, 181
PCR machines, 147
PCR pools, preparation of, 42
PCR primers
design of, 57–58
in dynamic allele-specific hybridization, 170
“tagged,” 103
PCR products
analyzing, 145–146
processing, 181
purification with Centricron columns, 265
PCR protocol, in dynamic allele-specific hybridization, 171
PCR purification, 268
PCR replication errors, 76
PCR sequencing reaction, 266
PCR standardization, for MADGE analysis, 316–317
Peptide-level mutation detection, 21–22
Peptide nucleic acids (PNA), 18
PerkinElmer Life Sciences, Inc., 175
Perpendicular electrophoresis, 222–224
Perseptive particle purification, 261
Phage T4 endonuclease 7, 72, 73f
Phenol-chloroform DNA extraction, 137–140
“Phenotype-genotype analysis” routines, 127
Phenotype-genotype analysis” routines, 127
phi29 DNA polymerase, 39–40
DNA amplification by, 42
DNA electrophoresis via, 86–88
SDS, 236–237
silver staining of, 204–207, 231–232
Polymerase chain reaction (PCR), 15, 145–152.
See also Amplification refractory mutation;
PCR entries
denaturing HPLC and, 242
in multiplex probe ligation/amplification, 299–301
poor-quality, 62
quantitative real-time, 24
sample alteration by, 76
in SNP genotyping, 161–162
stoichiometry of, 147t
Polymerase fidelity, 63–64
Polymerases, thermostable, 146–147
Polymorphic variants, 130
Polymorphism, 9
Population screening, 26
“Position” routines, 127
Polymerase fidelity, 63–64
Polymerases, thermostable, 146–147
Polymorphic variants, 130
Polymorphism, 9
Population screening, 26
“Position” routines, 127
Posthybridization washes, 294, 310–311
Potassium permanganate (KMnO₄), 70, 258
Potassium permanganate reaction, 260
“Potential stop codons” routines, 127
Pregap4 software, 273–276
running, 276
selecting modules in, 274–275
starting, 274
Prehybridization solution, 293, 312t
Premutation, 11
Prenatal testing, 26
Pre-symptomatic (predictive) DNA testing, 26
Primer 3 software program, 58
Primer annealing, 189–190
Primer-ddNTP mix, 163
Primer design, 57–58
Primer dimers, 171
Primer extension, SNP genotyping methods using, 119–121
Primer sequences, 286t
Probe prehybridization, 310
Protein gel Coomassie stain, 236. See also Coomassie staining
Protein gel destain, 236
Protein precipitation solution, 136
Protein sequence, 129
Protein truncation test (PTT), 21–22, 79, 80, 233–238. See also RT-PCR-PTT
autoradiography in, 238
electrophoresis in, 237–238
gel fixing in, 238
polymerase chain reaction for, 237
radioactive enhancement in, 238
reagent storage for, 235
solutions for, 235–236
PTT reactions, 237. See also Protein truncation test (PTT)
Purification strategies, 119
Pyrosequencing, 17, 22, 187–192
Qiagen PCR Clean up kit, 257
Quality, in mutation detection, 75–78
Quality Clip module, 275, 277
QuantArray® software, 160, 165, 166
Quantification, in SNP genotyping, 165
Quantitative multiplex PCR of short fluorescent fragment (QMPSF), 24, 48
Quantitative real-time PCR, 24, 46
Radioactive enhancement, in protein truncation test, 238
Random priming, DNA labeling with, 308–309
Rapid analysis mode, 63
Rassoulian, Hamid, x, 85
RDS gene, 27–28
Reagent preparation, in fluorescence polarization SNP detection, 180–183
Reagents, storage of, 235
Real-time hybridization mutation typing methods, 16–17
Real-time PCR, 47
Red blood cell lysis solution, 136
Reference sequence, 78
Refactory mutations, 14
detection procedures for, 23–25
Relational databases, 126
RepeatMasker, 42
Reporter oligos, 196
Resolvases, 72
Restriction digestion analysis, 15
Results, interpreting, 78
Retinitis pigmentosa (RP), 27
Reuss, Ferdinand Frederic, 86
Reveal Mutation Discovery System, 249–250
mutation screening with, 252
Ribonuclease, 71–72
Ribonuclease mismatch cleavage, 21
RNA sequence, 129
Robinson, Mark D., x, 145, 201, 233
Rolling circle amplification (RCA) method, 18
RT-PCR-PTT, 22, 23. See also Protein truncation test (PTT)
SALSA probes, 298–299
Salt extraction, 139–140
Salt precipitation, DNA extraction by, 135–137
Sample mix-up, 75–76
Sanger-DNA sequencing, 22
ScanArray® 5000, 165
Scanning, 42
mutation detection by, 14
in SNP genotyping, 165
Scanning methods, 67
BRCA1 mutation analysis, 79–83
PCR-based, 19–23
Scanning technologies, 89
Schouten, Jan, xi, 297
Scorpion primers, 17
Screening, mutation detection by, 14
SDS-PAGE 10x running buffer, 236
SDS-PAGE analysis, 234
SDS polyacrylamide gels (SDS-PAGEs), formulation of, 236–237
Search and analysis routines, 127
Semiquantitative PCR gene dosage, 285–289
Sequence variation description nomenclature, 128–131
Sequencing, from plasmids, 77. See also Automated dye terminator sequencing; Direct sequencing
Sequencing reactions
ethanol clean up of, 269
purification of, 266
Short sequence repeat variability, 131
Shrimp alkaline phosphatase exonuclease I (SAP Exo I) method, 155, 159, 162–163, 178
Sickle cell disease, 14
Signal detection, 160
Sigurdsson, Snaevar, xi, 101, 157
Silver staining, of polyacrylamide gels, 204–207, 231–232
Silver staining solutions, 202–203, 231
Single-base pair disease-causing substitution, 13
high-throughput, 121
laboratory protocol for, 161
method for, 158–166
Single nucleotide polymorphisms (SNPs), 9, 109. See also Electronic hybridization; Single nucleotide polymorphism genotyping: SNP entries
Single nucleotide primer extension (PEX), 15–16
Single-strand conformation polymorphism (SSCP), 20, 201–207. See also Fluorescent SSCP, SSCP entries
endonuclease digestion and, 204
gel preparation for, 203
samples, preparation, and electrophoresis for, 204
silver staining of polyacrylamide gels and, 204–207
solutions for, 201–203
troubleshooting guide for, 206–207
Single-strand conformation polymorphism analysis, 79, 89
Single-stranded DNA (ssDNA), 205
6µg DNA, labeling of, 309
Slab gel formats, 86
Slab gel system, 209–217
Slide prehybridization, 309–310
Slides
amino silane-coated, 305–306
UV cross-linking of, 308
Small-scale mutations, 10
SnaPshot Kit, minisequencing protocol using, 153–156
Snowden, Helen, xi, 291
SNP Amplicon-Down Amplicon/stabilizer oligo address, 197
SNP applications, Amplicon and oligo design for, 195
SNP Capture-Down stabilizer oligo and Amplicon address, 197–198
SNP components, 195–196
SNP detection, via fluorescence polarization, 175–185
SNP genotyping reactions, use of MADGE in, 316
SNP mutation calling, 61
SNP primers, 179–180
SNP protocols, 194–195
running on NanoChip Molecular Biology Workstation, 196–199
SNP reporter hybridization, 198–199
SNP thermal discrimination, 199
Software
allele-calling, 180
for creating a locus-specific database, 114–115
DHPLC mutation scanning, 57
mutation database-specific, 115
Somatic mosaicism, 13
Southern blot analysis, 24, 37, 45
Spanakis, Emmanuel, xi, 85
SPC sequencing, 22–23
Spectrophotometer, calibration of, 142
SpectruMedix screening gel, 250
Spinal muscular atrophy (SMA), 5–6
Splicing mutations, 4
changes involving, 4–6
SSB Pyrosequencing Grade Kit, 192
SSCP gel preparation of, 203
SSCP modules, 211–212
SSCP polymer, 217
SSCP sample preparation, in fluorescent SSCP, 211
Stabilizer oligos, 198
sequences of, 196
Staden package, 273–283
mutation data processing methods in, 283
procedures in, 273–283
“Stat exons” routines, 127
Stock acrylamide solution, 263–264
“Structure” routines, 127
Substitutions, 130. See also Base substitutions;
Single-base pair disease-causing substitution;
Synonymous substitutions
Susceptibility genetic testing, 27
Synonymous mutations, 10
Synonymous substitutions, 10–11
Systematic names, 128
Syvänen, Ann-Christine, xi, 101, 157
T4 endonuclease 7, 72, 73f
T4EVII digestions, 261
T7 El digestions, 262
TAE buffer, 143
Tag-array minisequencing, 103–104, 157–168
outline of, 159f
Tag primers, hybridization to, 160
Taq enzymes, 146
TaqMan, 17, 46, 47f
Target DNA, sonication of, 307
Target DNA amplification, 180–181
reagents for, 179
Target-specific sequences, 297
Taylor, Claire F., xi, 239
Taylor, Graham R., xi, 135, 145
T bases, mismatched, 69
TBE, 202
TE buffer, 138, 259
Technology deficiencies, 77
TEMED, 202, 203, 226, 230, 265
Temperature-gradient capillary electrophoresis
(TGCE), 249–255
example of, 254–255
mutation screening in, 252
Reveal Mutation Discovery System and,
249–250
sample preparation for, 250–252
temperature ramping profile for, 253–254
Temperature gradient gel electrophoresis
(TGGE), 20, 90
Temperature-modulated heteroduplex analysis
(TMHA), 20, 53
Temperature profile, 252
Temperature ramping profile, establishing,
253–254. See also Thermal ramp electrophoresis
Template display, 282–283
Template preparation, for automated dye
terminator sequencing, 265
Template purification, 155
Test DNA, 149
Tetraethylammonium chloride, 259
Thermal cycler program, for MPLA reaction,
300–301
Thermal cyclers, 147
Thermal discrimination, SNP, 199
Thermal ramp electrophoresis, 85, 89–91. See also
Temperature ramping profile
Thermocycler, 178
Thermocycling, 164
parameters in, 289
Thermosequenase, 163
Thermostable polymerases, 146–147
TNT quick kit, 233–234, 237
Tosi, Mario, xi, 45
“Touchdown” PCR procedure, 103
TRACEDIFF program, 77
Transgenomic WAVE® DNA Fragment Analysis
system, 53, 54–55, 56t, 63
Transitions, 10
Translocations, 131
Transversions, 10
Triethylammonium acetate (TEAA), 55
Trinucleotide repeats, unstable expanding,
11
Tumor samples, 243
“Two-Dimensional DNA Typing, a Laboratory
Manual,” 222
Washes, posthybridization, 294
Wash solutions, 292, 312
WA VEmaker software, 20, 53, 57, 240
WAVE Navigator software, 57, 58
WAVE® nucleic acid fragment analysis systems, 56. See also Transgenomic WAVE® DNA Fragment Analysis system
WAVEmaker software, 20, 53, 57, 240
WAY Station, 111
White cell lysis solution, 136
White cells, digestion of, 139

Two-dimensional electrophoresis, 20
Two-dimensional gene scanning (TDGS), 79, 80
Unknown point mutations, detection procedures for, 19–23
Unstable triplets, 11
UV cross-linked slides, 308

Variants, functional assays of, 28
Very high-throughput mutation scanning, 85–99
Victor filters, 179t