Index

above-threshold bias condition, 78, 97, 106
absolute temperature, 74
absorption coefficient, 119, 125
absorption rate, 53
absorption region, 125
active layer, 35
active region, 35
active tuning, 30
ambient temperature, 79
analytical method, 105
atom energy, 11
average avalanche multiplication, 132

band gap, 11, 117
bandwidth, 121
based-collector junction capacitance, 220
based-emitter junction capacitance, 220
bit error ratio, 234
Boltzmann's constant, 66
built-in potential, 79
buried heterostructure, 18

capacitance-voltage characteristics, 138
capacitive peaking technique, 225, 277
carrier density, 26, 42
carrier transport, 41, 166
cascade feedback amplifier, 265
channel length modulation parameter, 158
channel resistance, 153
charge storage, 66
charge storage capacitance, 142
chirping, 44
compound-semiconductor-based device, 149
conduction band, 11
contact resistance, 77
coplanar waveguide, 204
correlated current noise sources, 171
cross spectral intensity, 73
Curtice-cubic model, 160
cutoff bias condition, 179
dark current, 119, 140
Darlington feedback amplifier, 263
DC model parameters, 174
de-embedding, 78, 98
depletion region, 119
depletion width, 124
depletion-layer capacitance, 142
differential feedback amplifier, 265
diffusion capacitance, 70
direct modulation, 190
direct-coupled FET logic, 200
distortion measurement, 57
distributed amplifier, 222
distributed Bragg reflector, 29
distributed feedback laser, 27
double heterojunction, 17
drain channel current noise, 161
drain pad capacitance, 153
drain-bulk junction, 178
drain-to-source capacitance, 153
driver circuit, 199
dynamic range, 241
dynamic resistance, 97
electrical signal, 114
electro-absorption modulator, 190
electron density, 35
electron mobility, 150
electron-hole pair, 39, 114
electronic field, 115
electronic part, 79
emitter coupled logic, 200
empirical equivalent circuit model, 138
calculated energy band, 11
equilibrium electron density, 37
equivalent circuit model, 63
equivalent input circuit current, 247–248
equivalent noise temperature, 164
external modulation, 191
extinction ratio, 239
eye diagram, 238

Fabry-Perot cavity lasers, 20
fall time, 239
FET modeling technique, 151
fiber-optic links, 1
finite-difference form, 137
flat-band voltage, 136
forward-bias, 79
Fourier transform, 77
frequency chirp, 46
frequency modulation, 34, 44
front-end circuit design, 243

gain compression factor, 37, 65
gain slope coefficient, 65
gain-guided, 18
gap capacitance, 138
gap voltage, 137
gate induced noise current, 161
gate pad capacitance, 153
gate-to-drain capacitance, 153
gate-to-source capacitance, 153
gateway state, 76
grounded electrode, 137
harmonic balance, 155
harmonic distortion, 48
HBT modeling, 165
HEMT, 151
heterojunction, 15
high impedance front-end, 245
hole mobility, 129
homojunction, 15
hybrid optoelectronic integrated circuits, 197, 244
incident light power, 116
index guiding, 18
inductive peaking technique, 226, 274
input logic swing, 209
input reflection coefficient, 95
insertion loss, 192
intensity modulation direct-detection, 46
interdigitated electrode, 135
intermodulation distortion, 56
intrinsic region, 124
inverter circuit, 268
ionization layer, 131
junction capacitance, 127
knee voltage, 217
Langevin noise, 52
large signal model, 65, 168
large signal transit response, 46
large-signal circuit model, 65
large-signal modulation, 46
laser driver, 199
lateral planar geometry, 135
level shift circuit, 206
linear model, 168
linewidth enhancement factor, 44
Mach–Zehnder, 190
matching network, 202
measurement procedure, 103
measurement technique, 55
MESFET, 152
microsolder bump bonding, 197
microstrip test fixture, 103
microwave modeling technique, 114
millimeter-wave, 1
modulation response, 48
modulator driver, 205
monolithic optoelectronic integrated
circuit, 195, 224
MOSFET, 176
MSM PD, 134
multi quantum well, 24
multimode fiber, 3
multimode rate equations, 38
multiplexer, 188
multiplication noise, 130
multiplication region, 132
noise bandwidth, 52
noise correlation matrix technique, 165
noise current source, 73
noise effective bandwidth, 235
noise figure, 252
noise measurement technique, 55
noise model, 161, 163, 170, 181
noise performance, 52
nonlinear equivalent circuit
model, 76
nonradiative recombination, 39
non-return-to-zero, 189
normalization constant, 66
normalized small signal modulation
response, 96
one-level, 76
on/off aspect ratio, 93
open test structure, 153
operating wavelength, 44
optical cavity, 14, 33
optical communication system, 1
optical confinement factor, 37
optical external modulator, 191
optical fiber, 3–4
optical modulation, 190
optical receiver, 234
optical transmitter, 188
parameter extraction method, 95, 171, 181
parasitic effects, 95
parasitic element, 79
passive peaking technique, 224, 274
passive tuning, 31
phase tuning, 31
photocurrent, 127
photo-generated carrier, 122
photon density, 36
photon lifetime, 35
PIN PD, 124
PI-type model, 168
population distribution, 12
population inversion, 14
positive electrode, 137
positive feedback, 14
Pospieszalski noise model, 163
power dissipation, 210
Pucel noise model, 161
quantum efficiency, 66, 116
quantum well lasers, 22
radio frequency, 1
rate equation, 35
reach-through voltage, 138
receiver sensitivity, 238
relationship, 156
relative intensity noise, 51, 72
relaxation oscillation, 48
responsivity, 116
return-to-zero, 198
reverse-bias, 115
ridge-waveguide laser, 64
rise time, 47, 117, 239
room temperature, 67
saturation drift velocity, 137
saturation voltage parameter, 209
Schottky barrier, 136
Schottky contact, 136
second-order harmonic distortion, 48
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>semi-analysis method</td>
<td>105, 181</td>
</tr>
<tr>
<td>semiconductor laser</td>
<td>10</td>
</tr>
<tr>
<td>separate absorption and multiplication</td>
<td>132</td>
</tr>
<tr>
<td>separate confinement structure laser</td>
<td>23</td>
</tr>
<tr>
<td>separate-confinement heterostructure</td>
<td>24</td>
</tr>
<tr>
<td>series inductance</td>
<td>77</td>
</tr>
<tr>
<td>short noise</td>
<td>73</td>
</tr>
<tr>
<td>shunting capacitance</td>
<td>77</td>
</tr>
<tr>
<td>SiGe</td>
<td>175</td>
</tr>
<tr>
<td>signal bandwidth</td>
<td>240</td>
</tr>
<tr>
<td>signal transfer function</td>
<td>247</td>
</tr>
<tr>
<td>signal-to-noise ratio</td>
<td>238</td>
</tr>
<tr>
<td>silicon-based device</td>
<td>149</td>
</tr>
<tr>
<td>single mode fiber</td>
<td>3</td>
</tr>
<tr>
<td>single quantum well</td>
<td>24</td>
</tr>
<tr>
<td>single-longitudinal mode semiconductor laser</td>
<td>44</td>
</tr>
<tr>
<td>single-mode rate equations</td>
<td>35</td>
</tr>
<tr>
<td>small signal frequency modulation</td>
<td>44</td>
</tr>
<tr>
<td>small signal intensity modulation</td>
<td>34, 40</td>
</tr>
<tr>
<td>small signal model</td>
<td>68, 152, 177</td>
</tr>
<tr>
<td>source-coupled FET logic</td>
<td>200</td>
</tr>
<tr>
<td>space-charge capacitance</td>
<td>70, 97, 138</td>
</tr>
<tr>
<td>space-charge region</td>
<td>167</td>
</tr>
<tr>
<td>spontaneous emission</td>
<td>12, 35, 66</td>
</tr>
<tr>
<td>Statz model</td>
<td>157</td>
</tr>
<tr>
<td>steady state carrier density</td>
<td>38</td>
</tr>
<tr>
<td>steady-state analysis</td>
<td>68</td>
</tr>
<tr>
<td>steady-state condition</td>
<td>38, 69, 88</td>
</tr>
<tr>
<td>stimulated emission</td>
<td>13</td>
</tr>
<tr>
<td>stripe-geometry laser</td>
<td>18</td>
</tr>
<tr>
<td>subcarrier multiplexed</td>
<td>52</td>
</tr>
<tr>
<td>submode suppression ratio</td>
<td>28</td>
</tr>
<tr>
<td>supply voltage</td>
<td>210</td>
</tr>
<tr>
<td>terminal electrical noise</td>
<td>52, 74</td>
</tr>
<tr>
<td>thermal equilibrium</td>
<td>126</td>
</tr>
<tr>
<td>thermionic emission lifetime</td>
<td>42, 86</td>
</tr>
<tr>
<td>three-level</td>
<td>76</td>
</tr>
<tr>
<td>three-level equivalent circuit model</td>
<td>90</td>
</tr>
<tr>
<td>threshold current</td>
<td>70</td>
</tr>
<tr>
<td>threshold voltage</td>
<td>209</td>
</tr>
<tr>
<td>time-varying variable</td>
<td>43, 69</td>
</tr>
<tr>
<td>timing jitter</td>
<td>240</td>
</tr>
<tr>
<td>transconductance parameter</td>
<td>141, 212, 213</td>
</tr>
<tr>
<td>transfer function</td>
<td>45</td>
</tr>
<tr>
<td>transimpedance front-end</td>
<td>247</td>
</tr>
<tr>
<td>transimpedance gain</td>
<td>250</td>
</tr>
<tr>
<td>transit response</td>
<td>46</td>
</tr>
<tr>
<td>transit response measurement</td>
<td>58</td>
</tr>
<tr>
<td>transit time</td>
<td>124</td>
</tr>
<tr>
<td>transverse junction stripe</td>
<td>18</td>
</tr>
<tr>
<td>T-type model</td>
<td>168</td>
</tr>
<tr>
<td>turn-on delay</td>
<td>94</td>
</tr>
<tr>
<td>turn-on time</td>
<td>47</td>
</tr>
<tr>
<td>two-level</td>
<td>76</td>
</tr>
<tr>
<td>two-level equivalent circuit model</td>
<td>83</td>
</tr>
<tr>
<td>two-port network</td>
<td>251</td>
</tr>
<tr>
<td>valence band</td>
<td>11</td>
</tr>
<tr>
<td>vertical cavity surface emitting laser</td>
<td>33</td>
</tr>
<tr>
<td>voltage standing wave ratio</td>
<td>222</td>
</tr>
<tr>
<td>wire bonding</td>
<td>197</td>
</tr>
</tbody>
</table>