CONTENTS

Prelace xi
Acknowledgments xvii

PART I BOOLEAN LOGIC

1 The Beginning 3
 1.1 Boolean Formulae 8
 1.2 Induction on the Complexity of WFF: Some Easy Properties of WFF 17
 1.3 Inductive Definitions on Formulae 22
 1.4 Proofs and Theorems 37
 1.5 Additional Exercises 48

2 Theorems and Metatheorems 51
 2.1 More Hilbert-Style Proofs 51
 2.2 Equational-Style Proofs 60
 2.3 Equational Proof Layout 63
 2.4 More Proofs: Enriching Our Toolbox 66

vii
2.5 Using Special Axioms in Equational Proofs 76
2.6 The Deduction Theorem 81
2.7 Additional Exercises 86

3 The Interplay between Syntax and Semantics 89
3.1 Soundness 90
3.2 Post's Theorem 93
3.3 Full Circle 99
3.4 Single-Formula Leibniz 100
3.5 Appendix: Resolution in Boolean Logic 104
3.6 Additional Exercises 107

PART II PREDICATE LOGIC

4 Extending Boolean Logic 113
4.1 The First-Order Language of Predicate Logic 115
4.2 Axioms and Rules of First-Order Logic 138
4.3 Additional Exercises 148

5 Two Equivalent Logics 151

6 Generalization and Additional Leibniz Rules 155
6.1 Inserting and Removing "(\forall x)" 155
6.2 Leibniz Rules that Affect Quantifier Scopes 165
6.3 The Leibniz Rules "8.12" 168
6.4 Additional Useful Tools 170
6.5 Inserting and Removing "(\exists x)" 178
6.6 Additional Exercises 187

7 Properties of Equality 191

8 First-Order Semantics—Very Naively 195
8.1 Interpretations 196
8.2 Soundness in Predicate Logic 201
8.3 Additional Exercises 208

Appendix A: Gödel's Theorems and Computability 211
A.1 Revisiting Tarski Semantics 212
A.2 Completeness 223
A.3 A Brief Theory of Computability 232
A.3.1 A Programming Framework for Computable Functions 233
A.3.2 Primitive Recursive Functions 243
A.3.3 URM Computations 254
A.3.4 Semi-computable Relations, Unsolvability 259
A.4 Gödel's First Incompleteness Theorem 263
A.4.1 Supplement: $\delta_x(x) \uparrow$ Is First-Order Definable in \mathcal{M} 275

References 281

Index 285