INDEX

ABO blood groups, 36, 55, 56, 70
Abortion, 789–790
Absolute risk, 426, 427
Accelerometry, 346–349
limitations of, 348
Acceptable macronutrient distribution ranges (AMDRs), 277
Acclimatization, 10, 184, 286
by acutely exposed sea-level natives, 224–227
to cold, 186–187, 190–191
to heat, 201, 203
Active cold defense, 179, 180–184
Activities of daily living (ADLs), 666–668
Activity, estimating, 352
Activity diaries, 349–350
Activity energy expenditure (AEE), 335
Activity levels, in subsistence populations, 366
Activity patterns
sex differences in, 366–367
variation in, 280–283
Actuarial life tables, 700–701
Acute energy deficiency, 367–368
Acutely exposed sea-level natives, oxygen transport and acclimatization by, 224–227
Acute mountain sickness (AMS), 222
Acute stressors, 483
Adaptability. See Human adaptability (HA)
Adaptation, 7–8. See also Cold adaptation;
Human adaptation
among contemporary human populations, 356–367
to the environment, 31, 177–250
to environmental stressors,
356–360
evaluating, 484
to lifestyle, 459
to lifestyle-related stressors, 485
modes of, 8
to pathogens, 403–407
types of, 10–11
Additive genetic correlation, 149
Additive genetic covariance, 149
negative, 166
Additive genetic variance, 145, 151
Adenine, 58, 60
Adenosine triphosphate (ATP), 85, 331
Adequate intake (AI), 255
Adiposity rebound, 540
Admixture model, 223, 224, 228
Adolescence
benefits of, 560, 563
evolution of, 558–560, 563–571
female, 560–561
male, 561–563
Adolescent behavioral problems, cortisol levels and, 495
Adolescent growth, 27, 28
nutrition and disease in, 617–619
sex differences in, 590
Adolescent growth spurt, 338, 543–544, 559, 561, 562, 590
Adolescent reproduction, 774
Adolescents
energy requirements for, 259
life cycle trade-offs/risks for, 575
protein requirements for, 262–264
Adolescent stage, 541–544
Adrenal androgens, 540
Adrenal gland, 540, 659
tumors of, 767
Adrenarche, 540
Adrenocorticotropic hormone (ACTH), 292, 473, 475
Adulthood stage, 544–545
Adult mortality, 717–718
 prehistoric, 720–721
Adult-onset diabetes mellitus, 293. See also
 Non-insulin dependent diabetes mellitus; Type 2 (adult-onset) diabetes
Aerobic capacity, 203, 662
Aerobic exercise, 282, 775
Aerobic respiration, 331
Affective response, to stressors, 471
Affective state, assessing, 471
Afghanistan, EBV titer study in, 501
African-American gene pool, 109–110
African-Americans, hypertension in, 290–293
African ancestry individuals, sensitivity to cold injury, 187–188
African populations, lactase persistence in, 287–288
Age, female fecundity and, 768–774
Age distribution, 411, 707
Age-related immune system alterations, 660–661
Age-standardization, 422–423, 425
Ageing, 637–692
 body composition and, 662–665
cold resistance and, 179
 heat illness/death and, 200
hormonal, 659
male reproductive, 672
questions related to, 637
Aging-related demographic models, 648–650
Aging stage, 545
Agricultural revolution, life expectancy and, 711
Agriculture, adoption of, 764–765
Air displacement plethysmography, 295
Allele frequencies, 100–101, 223
 analysis of, 100
 changes in, 9
 estimating, 107
 generational change in, 107
 migration and, 108–109
Allele frequency deviations, genetic drift and, 167
Alleles, 7, 55
codominant, 144
 equilibrium frequency of, 105
 for lactase persistence, 287
 identical-by-descent, 652
Allele sharing, 149
Allen’s rule, 196
Allometric analyses, 156
Allometric relationships, 267, 643
 between brain size and BMR, 270
Allopatric medicine, 18
Allostatic load, 464, 465, 489
Allostatic load, 464, 465, 496, 640, 667, 668
α-amylase, salivary, 472, 480–481
Alternative splice sites, 74
Alu sequences, 84, 89
Alveoli, 222
Alzheimer’s disease, 669–670, 794
Ambulatory blood pressure, 472, 477–480
 studies of, 496–499
Amenorrhea, 339, 766
 postpartum, 780
American Association of Physical Anthropologists, 28
American College of Sports Medicine (ACSM) exercise guidelines, 282
American diet, animal food consumption in, 276
American Heart Association (AHA)
 exercise guidelines, 282
American human biology, major divisions of, 25–44
American Journal of Human Biology, 4, 17
American Journal of Physical Anthropology, 28
Americas. See also Native American entries;
 South America; United States colonization of, 127
gene geography in, 122–126
modern populations of, 132
molecular diversity in, 124–126
mtDNA diversity in, 130
mtDNA haplogroups in, 124–125
Amerindian origins, 126–127. See also
Native American populations
Amino acid requirements, 264–265
Amino acids, 65, 254
use in building proteins, 68
Amino acid scores, 263, 264
AMY1 gene, 289–290
Amylase. See α-amylase; Salivary alpha-
amylase; Salivary amylase
Amyloid protein. See β-amyloid protein
Analytical studies, 409
Anasazi populations, 130–131
Ancestral Asian populations, migration
routes of, 128
Ancestry informative markers (AIMs),
109
Ancient DNA (aDNA), 132. See also
Deoxyribonucleic acid (DNA)
analysis of, 127–132
degradation of, 129
research on, 127–129
studies of, 127
Androgens, 537, 590–592, 660, 714. See also
Adrenal androgens
Angiotensin-converting enzyme (ACE),
227
Animal food contributions, variation in,
276
Animal foods, daily energy intake from,
278
Annals of Human Biology, 4, 17
Anorexia, 222
Anovulatory menstrual cycles, 559
Antagonistic pleiotropy, 640, 652
Anthropological genetics, 35–39
contemporary trends in, 38–39
Anthropology
energetics and, 326–328
epidemiology and, 391–394
Anthropometric measures/measurements,
40, 143, 162, 296, 354, 518, 588, 731
Anthropometric Standardization Reference
Manual, 354
Antibodies
passage to fetus, 611
production of, 660
steroid measurement and, 770
Antibody response, 335, 480
Anticodons, 69
Antigenic shift, 388
Antigens, 36, 480, 770
allele frequency data from, 122
Antioxidants, 656
Antisense DNA strand, 67. See also
Deoxyribonucleic acid (DNA)
Antitrypsin factor (ATF), 284
APOE*4 allele, 119
Apolipoprotein E, 670
Apoptosis, 90, 657
Appraisal, 462, 469
Arctic populations, genetic diversity in,
131–132
Arctic-to-tropic clinal variation, 194
Arterial hemoglobin measurement, percent
oxygen saturation of, 225
Arterioles, 180, 676
ASPM gene, 94–95
Atherosclerosis, 526, 662, 675
Atherosclerotic changes, 368
Atresia, 660
Attributable risk, 426, 429, 430
Australopithecines, brain size evolution of,
273
Australopithecus afarensis, 565
Australopithecus africanus, 566
Autoimmune diseases, 217, 334, 661
Autosomes, 87
Auxological epidemiology, 42
“Average heritability,” 162–163
Avian flu, 389
Background risk, 429, 430
Bacteria, 72, 401
Bacterial strains, 391
Baker, Paul T., 33, 41
Balancing selection, 104–105
Basal metabolic rate (BMR), 185, 226, 257,
258, 261, 325, 522, 655. See also BMR
entries
body size and, 266–268
differences in, 265
elevated, 357–358
in the energy budget, 333
measuring, 341
population variation in, 356–357
during pregnancy, 609
relationship to brain size,
270–272
systolic blood pressure and, 359
Base pairs, 519
Bases. See also Adenine; Complementary bases; Cytosine; Guanine; Nucleotide entries; Thymine; Uracil in the DNA molecule, 9
nitrogenous, 58, 331
polymorphic, 161
sequence of, 124
Basic reproductive number, 441
Behavioral adaptations, 11. See also Cultural adaptations
to cold, 196–198
to heat, 203–204
to seasonal energy stress, 359
Behavioral observation, 349–350
Behavioral responses to stress, 470
Behavioral Risk Factor Surveillance Survey (BRFSS), 303
Behavioral traits, 163
Beliefs, effect on growth, 597–598
Bergmann’s rule, 195
Best-fit line, 151, 152
β-amyloid protein, 670
β cells, 293
β-thalassemia, 129–130
Bias
in epidemiological studies, 415, 416–417
evaluating, 417
minimizing, 415
“Big questions” lists, vii
Bills of Mortality, 406–407
Binomial coefficient, 106
Binomial sampling, 106
Biocultural adaptation(s)
aspects of, 364
among circumpolar populations, 361–364
energetics and, 360–367
Biocultural perspective, 12–17, 327, 576, 639
criticisms of, 17
Biocultural reproduction, 555–556
Bioelectrical impedance analysis (BIA), 295, 354
Biogeography, 193–196
Biological anthropology, 24
Biological evolution, 20
Biological maturation, 531
Biological stress response, aspects of, 484
Biological systems, UVR effects on,
211–212
Biologists. See Human biologists
Biology. See Human biology entries
Biomedical anthropology, 42–44
factors related to, 43–44
Biomedicine, 6, 18–20
Biosynthesis, 329
Bipedalism, 354, 561. See also Walking
Birth, 527–532
Birth rates, 760
Birth weight
food shortages and, 607
at high altitudes, 232–233
variance in, 529
Bivariate complex segregation analysis, 159
Blood flow, elevated, 230
Blood pressure, 44, 290–293. See also Hypertension
diurnal variation in, 479
heritability of, 163
measurement and meaning of, 477–478
postural effects on, 499
stable states of, 464
Blood pressure responses,
microenvironments and, 496–497, 497–498
“Blunted” HVR, 227–229
BMR–body mass relationship. See also Basal metabolic rate (BMR)
variation in, 285–286
BMR equations, 343
BMR estimation, 342, 352
Boas, Franz, 24, 27, 28, 39, 40–41, 43
Bodily humors, 395
Body composition, aging and, 662–665
Body fat
assessment of, 353–354
leptin and, 779
Body fat percentages, 332
Body mass index (BMI), 296–297, 354,
412, 540, 602, 664. See also Body weight
in twin studies, 304
variation in, 297
Body-mass regression, 270–272
Body proportions
changes in, 529–531
correlation with mean annual
temperature, 196
Body protection, cultural and behavioral
means of, 220
Body shape
heat stress and, 202
sex differences in, 589–592
Body size
affluence and, 601
basal metabolic rate and, 266–268
diet and, 268–270
fertility and, 622
heat resistance and, 202
sex differences in, 589–592
socioeconomic status and, 596–597
Body size changes, in hominins, 272–275
Body surface temperatures, 181
Body weight, heritability of, 304. See also Body mass entries
Bone aging, 665–666
Bone mineral density (BMD) study, 159
Bongaarts conceptual model, 790, 791
Boyd, William, 36–37
Brain growth and development, 533, 539, 563–565
Brain-mass growth, 539
Brain size
changes in hominins, 272–275
increase in, 355
relationship to BMR, 270–272
Breast-feeding, 610–612. See also Lactation
female fecundity and, 780–783
Broad-sense heritability, 146, 150
Calcium metabolism, 219
Calment, Jeanne, 645, 669–670
Caloric restriction studies, 368
Calories, 330
Canadian fur trapping communities, influenza epidemic in, 443–449
Cancer, lifestyle variables and, 794
Cancer risk, 726
Candidate gene method, 160–161, 229
Candidate genes, blood pressure and, 676
Cannon, Walter, 460–461, 483, 484
Capillaries, 208
Carbohydrates, 252–253
Cardiac ischemia, 157
Cardiovascular aging, 661–662
Cardiovascular disease, 662, 794
Carrying capacity, 762–763, 796
Case–control studies, 413–414, 429
Case fatality rate (CFR), 393, 422, 425
Catch-up growth, 619–621, 675, 735–736
Catecholamine levels, comparing, 493
Catecholamines, 44, 472, 475, 476, 478, 651, 659
Cause of death, age patterns of mortality and, 729
Cell-mediated immune function, 478–480 studies of, 499–501
Cellular maintenance, energy costs of, 338
Cellular metabolism, adaptation of, 230
Cellular respiration, 331
Cellular senescence, 656–657
Centers for Disease Control (CDC), 407, 431
growth charts by, 605
Charnov correlation methodology, 550–551
Child growth studies, 32
Childhood (stage), 537–541
benefits of, 557–558
evolution of, 552–557, 563–571, 792
feeding practices during, 615–616
growth in, 613–617
Childhood growth, nutrition and disease during, 610–617
Childhood mortality, 729–736
decline in, 729–731
determinants of, 734–736
Childhood obesity, 369
Children
energy requirements for, 259–260
growth standards for, 367
life cycle trade-offs/risks for, 574–575
protein requirements for, 262–264
salivary cortisol studies of, 495–496
stunted/wasted, 613
Chimpanzee genome, comparing with human genome, 88–91
Cholera epidemics, 393–394, 396–397
Cholesterol, 412, 526, 662
levels of, 157, 253–254
role in development, 254
Chromatin, 80
Chromosome number, 2, 160
Chromosomes, 53, 56, 437
Chronic degenerative conditions, 638, 672–677
Chronic degenerative diseases, 326, 725
life expectancy and, 679
stress and, 460
Chronic diseases
economic development and, 370
preventing, 255
Chronic energy deficiency, 367
Chronic mountain sickness (CMS), 222
Chronic stress, 482
hypertension and, 292
Chronic stressors, 462, 483
Circulation migration, 739
Circumpolar environment, energetic challenges related to, 361
Circumpolar populations, biocultural adaptations among, 361–364
Cis-acting regulatory sequences, 90
Classical markers, 70, 99, 122–124
Classical marker studies, weaknesses of, 109–110
Climate
 as an agent of natural selection, 177
 cold adaptation and, 178–198
 heat adaptation and, 198–204
 high-altitude adaptation and, 221–234
 human adaptation to, 177–250
 questions related to, 177–178
 skin pigmentation and, 208–220
Climatic influences, on metabolic rate variation, 285–286
Clinal distributions, in North America, 122
Clines, 30, 119
 evolution in skin pigmentation, 178
Cluster analyses, 110, 716–718
Coalescent models, 86, 716–718
125–126
Coding sequences, 78
Codominance, 55–56, 102, 144
Codons, 67–69
Coefficient of kinship, 148
Coefficient of relationship, 147, 652
Coevolution, 727
Cognitive behavioral model, 461–462
Cohort, 641, 791. See also Concurrent cohort studies; Retrospective cohort studies
Cohort studies, 411–413
Cold
 acclimatization to, 186–187, 190–191
 adaptations to, 178–204, 361
 impact on human activity, 178–179
 “Cold adaptation” genes, 192
Cold climate survival, 197–198
Cold-induced vasodilation (CIVD), 180–181
 example of, 186
 role in cooling resistance, 191–192
Cold injury hypothesis, 215
Cold injury/illness, 187–188
Cold mortality, 188–190
Cold resistance, 179
 natural selection for, 194
 variation in, 191
Cold settings, symptoms related to, 179
Cold Spring Harbor conference proceedings, 30
Cold thermoregulation/defenses, 180
Colonization, adaptation and, 167
Commingling analyses, 158
Commitment, stress and, 482
Communicable diseases, 397, 762
Comparative nutrition, 265–272
Comparative perspective, on human postnatal growth, 547–551
Comparison, interest in, 6
Complementary bases, 59
Complement system, 734
Complete proteins, 254
Complex segregation analysis (CSA), 158–159
Computer simulation models, 443, 448
Concurrent cohort studies, 412
Conduction, 200
Confounding, 415, 417–418
Congenital abnormality, 524
Congenital transmission, 403
Consanguineous mating/unions, 130, 147
Conservation of energy, law of, 328
Conserved noncoding sequences (CNSs), 81
Constitutive skin pigmentation, 210, 211
Contact tracing, 435
Contagion, 389, 395
Contemporary human populations, energetics and adaptation among, 356–367
Contested migration, 741, 742
Continuous variation, from discrete inheritance, 144–147
Contraception, 788–790
Control region, 85, 86
Controls, 413
Convergent evolution, 287–288
Cooking, nutritional quality and, 274–275
Cooperative child care, 554–556
Coping, 460
 defined, 462
 as a dynamic process, 470–471
Coping behaviors, 468–469
 categorizing, 470
Coping resources, 468
Coping response, 470–471
Core temperature, 179, 335
Corn-based diets, 283–284
Coronary Artery Risk Development in Young Adults (CARDIA) Study, 291–292
Corpus luteum, 766
Correlated traits, selection on, 165–166
Correlation(s), 120
of accelerometers with DLW method, 348
adaptations expressed as, 193
between diet quality and weight, 269–270
genetic, 147–149
between molar eruption and brain weight, 539–540
Cortisol, 44, 473–474, 651, 778
adolescent behavioral problems and, 495 elevated, 464
measurement of, 475
salivary, 493–496
stress-related, 494–496
Covariance, additive genetic, 149
Cranial discrete trait studies, 157–158
Craniometric variables, 157
Critical periods, in development, 523
Critical temperature, 184–185
Cross-sectional studies, 410–411, 605, 669, 696
Crude mortality (death) rate (CDR), 421–422, 423, 696–697
C→T transition, 130
Cultural (behavioral) adaptations, 11, 178
to cold, 196–198
to heat, 203–204
Cultural context, 14–15
“Cultural historical” hypothesis, 286
Culture
human, 12–13
influence on human biology, 17
influence on stress, 463
Cytogenetics, 7
Cytoplasm, 66
Cytosine, 58, 60
Daily energy needs
estimating, 257–262
variation in, 265–266
Daily protein requirements, established, 262–265
Dairying economy, 363
Dark skin pigmentation, evolution of, 212–213, 214–215
Darwin, Charles, 26, 102, 515–516, 558, 639
Darwinian fitness, 652
Darwinian medicine, 19–20, 43–44
Darwinian theory, 7
Data collection, 5–6
Davenport, Charles B., 28
Death rates, 760. See also Mortality entries
Deep body cooling, 188–189
Deep body temperature loss rates, survival times for, 193
Degenerative causes of death, 725–726
Degenerative diseases, preventing, 255
Delta coefficients, 148
Dementias, 669–670
Demic expansion, 741
Demographic analysis, 744–745
Demographic data, 698–699
Demographic models, aging-related, 648–650
Demographic rates, estimating, 696–700
Demographic surveys, 780–781
Demographic transition, 738, 793
Demography, 5, 24, 36, 638, 758
defined, 696
mortality and migration and, 695–755
population growth and fertility regulation and, 757–803
questions related to, 695–696
Dental development, 539–540
in primates, 553
Deoxyribonucleic acid (DNA), 7, 38, 54, 58, 518. See also Ancient DNA (aDNA); Base pairs; Bases; DNA entries; Mitochondrial DNA (mtDNA); Nucleic acids; tmDNA variation
bases used in building, 60
increased information regarding, 95
mitochondrial, 85–86
nucleotide structures in, 59
in protein production, 65–70
roles of, 61–70
studying, 70–88
types of, 79–81
UVR damage to, 210, 211, 212
Department of Health and Human Services exercise guidelines, 282
Dermis, 208
Descriptive statistics, use in epidemiological analyses, 418–425
Descriptive studies, 409
Developing-world migration, 743–744
Developing-world populations, mortality among, 732, 734–736
Development. See also Dental development; Economic development; Growth entries; Human development stages; Human growth and development; Postnatal development; Prenatal development defined, 519
energy costs during, 336–338
folate deficiency and, 213
hominoid, 552
prenatal, 609
role of cholesterol in, 254
Developmental adaptation hypothesis (DAH), 231–232
Developmental adaptations (acclimatizations), 10, 41, 187, 191, 622
Developmental Origins of Health and Disease (DOHaD), 10, 11, 294, 523–524, 609, 675. See also Fetal origins hypothesis
Developmental patterns, amino-acid regulation of, 519
Developmental stage, 481
Development–fertility hypothesis, 789
DeWitte, Sharon N., ix, 695
Diabetes, 293–294
insulin-dependent, 82
type 2, 160, 293, 674–675
Diarrhea, 616
nutritional status and, 735
Diastolic blood pressure, 290, 477, 499
Diet(s)
body size and, 268–270
global changes in, 356
macronutrient composition of, 278
successful adaptation and, 220
Dietary analysis tool, 352
Dietary consumption, patterns of variation in, 275
Dietary data, collecting, 352
Dietary energy sources, differences in, 279
Dietary fats, differences in, 279
Dietary intake, variation in, 276–280
Dietary patterns, in circumpolar populations, 362
Dietary quality, 269, 270–272
Dietary recalls, 350–353
Dietary records, 350
Dietary reference intakes (DRIs), 255
Dietary surveys, 302
Dietary thermogenesis, 257
Dietary transitions, in hominin evolution, 355
Dietary trends, obesity-related, 300
Diet quality, 355, 548
Differential fertility, 519
Differential misclassification, 416
Differential mortality, 519
Digestibility scores, 263
Diploid cells, 55
Direct calorimetry, 340
Directional selection, 103, 164
Direct transmission modes, 401–402
Disaccharides, 253
Discrete character analysis, 143
Discrete inheritance, continuous variation from, 144–147
Discrete traits, 156, 157
Disease. See also Epidemiology
developmental origins of, 523–524
effects on growth, 606–622
evolutionary influences on, 406
female fecundity and, 783
germ theory of, 395
growth faltering and, 616
historical attempts to understand, 394–397
history of, 405–406
major causes of, 399
prevalence of, 326
strategies for dealing with, 393
underlying causes of, 390
Disease agents, nature and classification of, 399–401. See also Agents
Disease risk, methods for estimating, 426–431
“Diseases of civilization,” 43–44
Disruptive selection, 103
Distress, 471
D-loop region, 86
DNA mutations, skin cancer and, 213
DNA polymerases, 62, 657
DNA primers, 82–83
DNA probes, 75–76
DNA regulation, 11
DNA repair mechanisms, 64–65
DNA replication, 62–65, 71–72
fidelity of, 63–64
DNA samples, individualization of, 84
DNA sequence data, estimate of variation for, 113
DNA sequences, 65–66, 99
determining similarity in, 77–78
repellent, 82–84
DNA sequencing, 161
DNA strands, 67
construction of, 63
Dobzhansky, Theodosius, 30
Domestic microenvironments, blood pressure and, 497–498
Dominance, 35, 55, 105, 145
Dominant major gene, 229, 233
Double helix, 59–60. See also
Deoxyribonucleic acid (DNA)
Doubly labeled water (DLW) method, 259, 343, 344, 365
Douglas bag technique, 341
Drift, effect on quantitative traits, 166.
See also Genetic drift
Droplet transmission, 402
Drug-resistant tuberculosis, 431–437
“Dual nutritional burden,” 298
Duffy Fy⁺ allele, 122
DYS1 haplotypes, 121
Early childhood death, 729–736
EBV-specific antibody titer studies, 499–501. See also Epstein–Barr virus (EBV)
Ecological momentary assessment (EMA), 471
Ecological momentary data (EMA), 494
Ecological stressors, 361
Ecological studies, 404, 409–410
Ecology, 31, 41
energy demands and, 265
focus of, 329
of infectious diseases, 403–407
Economic development
chronic diseases and, 370
as a contraceptive, 788–789
Economic inequality, effect on growth, 595
Economics & Human Biology, 17
Ecosystems science, 31
Effective population size, 91, 113, 167
Effective treatments, 728
Elderly
ethnographic data on, 573
heat tolerance of, 201
life expectancy of, 649–650
mortality among, 705
numbers of, 696
roles for, 575–576
Elders, blood pressure variation among, 498–499
Emotional state, effect on blood pressure, 499
Empirical studies, 725
Encephalization, 12, 94, 268, 326
in the genus Homo, 355
Encyclopedia of DNA Elements (ENCODE), 80, 93. See also
Deoxyribonucleic acid (DNA)
Endemic disease, 398, 500
Endemic environments, 7
Endemic infections, 722
Endocrine changes, stress-related, 489
Endocrine diseases, 783
Endocrine system, during infancy, 533–537
Endogamous matings, 601
Energetic costs, of immune function, 334–335
Energetic modeling, 364
Energetics. See also Human energetics
biocultural adaptation and, 360–367
among contemporary human populations, 356–367
environmental stressors and, 356–360
female fecundity and, 774–779
growth of, 371
health and, 367–371
human evolutionary history and, 354–356
Energetic variables, influence on
reproduction, 339
Energy, dietary sources of, 331–332
Energy balance, 282, 294, 295, 332, 767, 774
measuring, 350–354
Energy constants, 260
Energy costs
of growth, 336–338
of physical activity, 335–336, 348
of reproduction, 338–339
Energy dynamics, worldwide variation in, 364–367
Energy expenditure, 333–339
techniques for measuring, 340
variation in, 276–280, 280–283
Energy expenditure data, from doubly labeled water studies, 365
Energy flow approach, 360
Energy flux, 339, 774–777
Energy homeostasis, 779
Energy intake
estimating, 351–352
measuring, 350–354
obesity and, 302
Energy needs, estimating, 257–262
Energy parameters, measurement of, 340–354
Energy patterns
 influences on, 360
 shifts in, 367
Energy recommendations, 257
Energy requirements, estimating, 261
Energy storage, as fat, 332
Energy stress, genetic adaptation and, 359–360
Energy trade-offs, in circumpolar environments, 361
Energy transfer, 328
Environment
 adaptation to, 23, 30, 31, 177
 carrying capacity of, 762–763
 effect on juvenile/adolescent growth, 617–619
 effects on growth, 40–41, 41–42, 592–604
 effects on human biology, 29
 skin pigmentation and, 211–219
Environmental factors, in obesity, 300–306
Environmental–genetic interactions, growth and, 623–625
Environmental questions, in epidemiology, 391
Environmental variance, 146
Environment–trait correlation, 548
Enzyme-linked immunoassay (EIA), 771
Enzymes, 56, 253, 472
 in melanin production, 209
 restriction, 71
 sodium pump, 358
Epidemic diseases, 387
Epidemics, 708, 710. See also Global epidemics; Pandemics
 of chronic degenerative conditions, 67
Epidemiological concepts, 397–403
Epidemiological data
 analysis of, 418–431, 450
 collecting, 406–418
 pitfalls in collecting, 415–418
 sources of, 406–407
Epidemiological methods, specialized, 437–443
Epidemiological models, 439
 validity of, 443
Epidemiological principles, 722
Epidemiological questions, approaches to, 392
Epidemiological rates, age standardization of, 422–423, 425
Epidemiological reports, 436
Epidemiological studies, 354, 449–450, 775
 concerns of, 389–391
 designing for data collection, 407–408
 error sources in, 415–418
 selective typology of, 408–415
Epidemiological surveys, 302
Epidemiological terminology, 397–399
Epidemiological transition, 725–726, 745
Epidemiologists, 387, 388, 449
 anthropologically oriented, 392–393
 public-health-oriented, 392–393
Epidemiology, 18, 19, 20, 387–457
 of aging, 638
 anthropology and, 391–394
 questions related to, 387–388
Epidermis, 208, 520
Epigenetics, 11, 178, 191, 519, 524–527, 609, 675
Epinephrine, 183, 659. See also Adrenal entries; Norepinephrine
 elevated, 464
 excretion of, 490, 491–493
Epiphyseal union, 544–545
Epstein–Barr virus (EBV), 478–480. See also EBV-specific antibody titer studies
Estimated average requirement (EAR), 255, 256
Estradiol, 254, 659, 766, 770, 782
Estrogen(s), 537, 714, 766, 767
Estrogenic effects, 598
Estrogen replacement therapy, 665
Ethnic groups
 blood pressure variation among, 499
 genetic variation in, 110
Ethnicity, heat resistance and body size and, 202–203
Ethnographic data, on the treatment of children, adolescents, and grandmothers, 573
Euchromatin, 80
Eugenics movement, 27–28
Eukaryotes, 72
Eumelanin, 208, 211, 213, 217
Europe
 colonization of, 120
 geographic variation and evolution in, 119–122
European-American gene pool, 109–110
European migration study, 28
European Neanderthals, genetic variation in, 121
European populations genetic variation in, 132
origin of, 122
Europeans, cold resistance genes in, 192
Evolution. See also Coevolution;
Convergent evolution; Human evolution; Human nutritional evolution; Nutrition evolution
of adolescence, 563–571, 792
of childhood, 552–557, 563–571, 792
in Europe, 119–122
of grandmother stage, 792
growth and, 518–519
hominin, 270, 272–275, 518
of human diet, 355–356
of human life cycle, 515–586
of life stages, 551–575
mechanisms of, 102–111
of menopause, 572–573
quantitative traits and, 164–168
selective forces guiding, 547–548
of skin pigmentation, 212–217
Evolutionary biocultural perspective, 326–327
Evolutionary change
in hominin brain/body size, 272–275
long-term, 11–12
Evolutionary mechanisms, effect on variation, 99
Evolutionary medicine, 18, 19–20, 43–44, 327
Evolutionary perspective, 6–12
Exercise, importance of, 282–283
Exercising metabolism, ratio to RMR, 336
Exogamous matings, 601, 743
Exons, 72, 74, 77, 78
Expectation of life, 641. See also Life expectancy at birth
Experimental studies, 408, 409
Exponential growth, 758, 760–762, 763
Exposed disease stage, 442
Facultative thermogenesis, 334
False positives/negatives, 426
Family limitation, 796
Fat, energy storage as, 332
Fat-free mass (FFM), 333. See also FFM standards
Fats, 332
Fatty acids, 183, 253. See also Saturated fatty acids (SFAs)
omega-3, 370
Faunivory, 268
Fecal–oral disease transmission, 402, 724
Fecundity, 326, 654, 765. See also Female fecundity; Fertility
increase in, 774
male, 783–784
Female fecundity
age and, 768–774
age pattern of, 774
disease and, 783
energetics and, 774–779
lactation and, 780–783
nursing frequency and, 780–782
pregnancy loss and, 779–780
Female reproduction, variations in, 797
Fertility, 518. See also Fecundity; Human fertility
age-specific rates of, 773
body size and, 622
completed, 783
decrease in, 651–652
factors influencing, 41
feedback operating through, 763
mammalian, 556–557
measures of, 164–165
population growth and, 759
primary influences on, 791–792
social regulation of, 784–792
variation in, 762
Fertility drugs, 794
Fertility levels, falling, 796
Fertility rates, 695, 768–769
Fertility regulation
models of, 790–792
in the past, 793–794
in the present and future, 794–796
Fertilization, 55, 520, 765
Fetal growth, at high altitude, 232–233
Fetal loss, 779–780
rates of, 772
Fetal origins hypothesis, 42, 524. See also Developmental Origins of Health and Disease
FFM standards, 357. See also Fat-free mass (FFM)
Field data, collecting, 5–6
Fight or flight syndrome, 460, 475, 483
Finger-cooling tests, 186
Finger temperatures, 191
measurement of, 181–182
among populations, 193–194
Fisher, Ronald Aylmer, 35, 105–106
Fisher’s fundamental theorem, 164
Fitness, 102, 105, 165
 age-specific, 641
 inclusive, 555
 maximizing, 325
 pigmentation-related, 211
 of a population, 104
 reproductive, 547
 stress and, 460
Fixation, 107
Fixed designs, estimating quantitative genetic parameters from, 150–154
Fledging, 671
Flex heart rate (Flex-HR) method, 345–346
Flu viruses, 388. See also Influenza entries
Folate deficiency, 213–214
Folivory, 268, 656
Follicles, 772
 ovarian, 671–672, 766
Follicle-stimulating hormone (FSH), 533, 536, 672, 766
Follicular phase, 766, 767
Food, energy obtained from, 329. See also Thermic effect of food (TEF)
Food availability variation, as a stressor, 251–252
Food chains, 329
Food consumption, changes in, 300–306
Food consumption patterns, economic factors in, 302
Food frequency questionnaires, 351
Food intake patterns, in the United States, 301–302
Food policy, 288
Food processing, 283–285
Food production, results of, 355–356
Food supply, energy available in, 350
Food values, standard, 352
Foraging, 765
Forced migration, 742, 744
Ford, E. B., 35–36, 37
Formula-feeding, 611–612
FOX2 transcription factor, 95
Fracastoro, Girolamo, 395
Frailty, 667–668
Frameshift mutation, 130
Framingham Heart Study, 412–413
FRAPPE analysis, 110, 112
Free radicals, 208, 368, 640
Fremont sample study, 130
Frostbite, 179, 187
 susceptibility to, 215
Frugivorous species, 656
Frugivory, 268
Functional sequences, identifying, 81
Fungi, 401
Galactose, 253
Galton, Francis, 151
Gametes, 55, 101, 520, 657
“Garbage can” models of senescence, 658
Gastrointestinal (GI) tract, size and morphology of, 272
Gene action, regulation of, 93
Gene–culture coevolution, 328
Gene duplication, 77
Gene–environment interactions, obesity and, 303–304
Gene expression, between human and chimpanzee, 90
Gene families, 75–79
Gene flow, 9, 102, 107–111, 166, 601
 migration and, 695
Gene frequencies, 36, 37, 38
 random drift of, 105–106
Gene genealogies, 116–117
Gene geography, in the Americas, 122–126
Gene inactivation, 90
Gene mapping, 87
Gene pool(s), 30, 223, 673
 characteristics of, 100–101
General adaptation syndrome, 461
Genes, 7, 8
 adaptation modes and, 178
 behavior in populations, 54
 demographic rates and, 695
 patterning in, 91–93
 in populations, 100–102
Gene sequences, evolution of, 77
Gene splice sites, alternative, 74
Gene structure, 72–75
Genetic adaptation(s), 7–8, 10–11, 37, 70, 184, 328, 622
 blood-pressure-related, 290–291
 energy stress and, 359–360
Genetic code, 68–69
Genetic correlation, 147–149
Genetic distance, 114
Genetic diversity, measuring, 99
Genetic drift, 9, 35, 77, 102, 105–107, 163, 167, 695. See also Drift
 allele frequency deviations and, 167
 effect of, 107
 hominin evolution and, 167–168
INDEX

Genetic epidemiology, 292–293, 437
Genetic kinship, 147, 148
Genetic loci, 178
obesity-related, 305–306
Genetic markers, 100
Genetic material, 57–60
organization of, 74–75
Genetic polymorphism, 32, 38
Genetics, 53–98
anthropological, 35–39
basics of, 54–57
defined, 53
human brain evolution and, 94–95
influence on growth, 618–619
questions related to, 54
Genetic similarities, 84
Genetic studies, historical, 35–36
Genetic traits, 54–55
Genetic variation, 111–114
questions related to, 99
Gene transcription, 215
Genome(s), 54. See also Human genome
human, 38
locating genes in, 160
viral, 389
Genome organization, 100
Genome-wide approaches, 224
Genome-wide association studies (GWAS), 161, 305–306
Genome-wide scans, 670
Genomic homeobox, 518–519
Genomic imprinting, 526
Genomics, 54
rise of, 93–94
Genomic techniques, in the migration model, 223–224
Genotype(s), 7, 55, 100
thrift, 42, 293–294, 674–675
value and frequency of, 144
Genotype assay, 110–111
Genotype fitness, measuring, 102
Genotype frequencies, relationship with allele frequencies, 101
Geographic information systems (GISs), 437
Geographic networks, influence on epidemic spread, 448
Geographic structure, recognizing, 130–131
Geographic variation, in Europe, 119–122
Geriatrics, 640
Germ theory of disease, 395, 729
Gerontology, 640
Ghana, population growth in, 760, 762
Global epidemics, 369
HIV/AIDS, 574
Global health challenges, 367
Global population, increase in, 797
Global trends, obesity-related, 300–301
Global undernutrition, 368
Globin genes, 77
Globins, 79, 82
Glossary terms, vii, 805–831
Gluconeogenesis, 294
Glucose, 19, 183, 253
Glucose metabolism, 529, 664
Glucose oxidation, 331
Glycemic index, 279
Glycoalkaloids, 284
Glycogen, 183, 252
G matrix, 165–166
Goldstein, Marcus, 29
Gompertz coefficient, 645
Gompertz equation, 646–647, 703
Gonadarche, 541
Gonadotropin-releasing hormone (GnRH), 533, 536, 766
“Grandmother hypothesis,” 572–573
Grandmother stage, evolution of, 792
Great apes, phylogeny of, 89
Gross reproduction rate, 737
Growth. See also Development; Human growth entries; Human postnatal growth; Population growth as an adaptive response, 41
during adolescence, 542–544
during adulthood, 544–545
during childhood, 537–541
effect of belief/ideology on, 597–598
effects of nutrition and disease during, 606–622
energy costs of, 336–338
energy demands for, 259–260
environmental effects on, 592–604, 626
environmental–genetic interactions and, 623–625
evolution and, 518–519
exponential, 758, 760–762, 763
genetic control of, 618–619
heredity vs. environment in, 40–41
impact on body size, 616–617
as an indicator of health, 41–42
interpopulation variation in, 40
juvenile mammalian, 550
reproduction and, 41
Growth comparison, in different populations, 603–604
Growth curves, 532–533, 534–535
Growth data, nutritional status and, 612–613
Growth faltering, 42, 613, 615, 616, 619–620, 735–736
Growth pathology, 522
Growth plate region, 545
Growth references, 605–606
Growth research trends, 42
 See also Midgrowth spurt
Growth standards, 605–606
Growth trajectories, 563–564
Growth variation
 factors in, 587–635
 among and within populations, 588–592
 questions related to, 587
Guanine, 58, 60
Guide to the Human Adaptability Proposals, 32–33
H1N1 flu strain, 388, 389
Habituation, 11, 468
Haldane, J. B. S., 35
Hand cooling tests, 181–182
Hand temperatures, 191
Haplogroup diversity, 124–126
Haploid, 115
Haploid cells, 55
Haplotype, 56, 57, 99, 673
 European, 120
 longevity-enhancing, 653
 shared, 160
Hardy–Weinberg equilibrium (HWE), 101–102, 144
HA research program, 32. See also Human adaptability (HA)
Hawaii finger temperature experiments, 192
HDL–LDL ratio, 157. See also Lipoproteins
Health, 23
 caloric restriction and, 368
 developmental origins of, 523–524
 energetics and, 367–371
 evolutionary influences on, 406
 measures of, 32
 societal issues affecting, 390
Health outcomes
 culturally specific, 483
 lifestyle incongruity and, 487–488
 psychosocial stress and, 486–488
 stress and, 482–483, 501–502
Health surveys, 351
Heart rate (HR) monitoring, 344–346, 348
Heat. See also Therm- entries
 acclimatization to, 201, 203
 cultural adaptation to, 203–204
Heat adaptation, 198–204
 summary of, 204
Heat adaptation variation
 among populations, 202–203
 within populations, 201
Heat exhaustion, 200
Heat illness/death, 200
Heat radiation, 202
Heat resistance, 201
 body size and, 202
Heat strain, resistance to, 203
Heat stress, 199–200
 body shape and, 202
Heat stroke, 200–201
Heat stroke resistance, 201
Heat tolerance, 201, 203
Height
 in human populations, 589
 secular increases and, 599–600
 socioeconomic status and, 593–595
Height-for-age z-scores, 604, 612, 614, 615
Hemoglobin A, polymorphism for hemoglobin S and, 230
Hemoglobin concentration, 229
Hemoglobin S, polymorphism for hemoglobin A and, 230
Henle–Koch postulates, 397
Hereditarian perspective, 28–29
Hereditary/hereditarian determinism, 27, 29
Hereditity
 growth and, 40–41
 study of, 53
Heritability, 146–147, 657
 average, 162–163
 of CIVD, 186
 of discrete traits, 157
 estimating from parent–offspring regression, 151–152
 generalities about, 163
 of HVR, 228
 of recumbent length, 155
Heterochromatin, 80
Heterogeneous populations, 698–699
Heterozygosity, 601
 of a population, 111
Heterozygotes, 7, 55, 100, 144, 229
Hierarchical cluster analyses, 716–718
HIFs, 227
High-altitude cerebral edema (HACE), 222
High-altitude hypoxia, 178, 221–234
 acclimatization to, 223
 modes of adaptation to, 233–234
 summary of, 233–234
High-altitude natives, oxygen transport among, 227–233
High-altitude pulmonary edema (HAPE), 222, 227
Hippocratic ideas, 394–395
HIV, 724
HIV/AIDS pandemic, 574, 649
HIV-positive mothers, 611
Homeobox. See Genomic homeobox;
 Homeotic homeobox genes; hox entries
Homeostasis, 180, 334, 460–461, 545
Homeostatic control, 660
Homeotic homeobox genes, 91
Homeotic transformation, 91–92
Hominin brain/body size, dietary implications of, 272–275
Hominin evolution, 270
diet and, 272–275
energetics and, 354–356
 genetic drift and, 167–168
 life cycle stages and, 565–571
Hominins, 143
 adaptive shifts among, 354
diet of, 274–275
 fertility patterns of, 769
Hominoid development, 552
Hominoid diets, 674
Homo, encephalization in, 355
Homo antecessor, 570
Homo erectus, 568–570
diet of, 274–275
evolution of, 273–274
Homogeneous populations, 698
Homo habilis, 567
Homologous chromosomes, 56
Homology, 78, 79
Homozygotes, 7, 55, 100, 144, 229
Hooton, Ernest A., 28
Hormonal aging, 659
Hormones, 254, 472
disease and, 400
 female fecundity and, 766–767
 energetics and, 327
during infancy, 533–537
measuring, 6, 770–771
release of, 183, 184
stress-related, 651
Horticultural populations, migration of, 741
Hospital-based control strategies, assessing, 435–436
Host–agent interaction, 390
Host–parasite interactions, 727
Host–pathogen interaction, 438, 722
hox proteins, 91–92
hox response elements (HREs), 92
HPA axis, 461. See also Hypothalamic–pituitary–adrenal (HPA) system
Hrdlička, Aleš, 28, 43
Hrdlička replacement colonization hypothesis, 131
Hulse, Fredrick, 29
Human activity, impact of cold on, 178–179
Human adaptability (HA), 13, 31–35
 in the International Biological Programme, 31–33
Human adaptation, to climate, 177–250
Human aging, 658–672
Human biological stress research, focus of, 489
Human biological studies, of psychosocial stress and stress responses, 486–501
Human biologists, 4
 focus of, 760
 primary interest of, 5
 professional affiliations of, 43
Human biology. See also American human biology
 “big questions” related to, 3
defined, vii, 4–5
developments in, 44–45
diversity of thought related to, 4–5
ergetics approach in, 360
evolutionary perspective on, 6–12
history in the United States, 23–50
history of, 24–25
questions related to, 23–24
Human Biology, 4–5, 28
Human Biology Association, vii
Human body
 amount of UVB reaching, 207–208
 solar radiation and, 205–221
 Human body composition, range of variation in, 296
 Human brain evolution, genetics and, 94–95
 Human–chimp divergence, 89
 Human core temperature, 199
Immune function, 334–335
Immune response, 400, 473, 661, 722
stress and, 482
Immune system, aging and, 660–661
Immunity, 391, 478
age and, 661
mortality and, 722
vitamin D and, 216
Immunocompetence, 335, 714, 733–734
Immunology, 36
Implantation, 765
successful, 779
Incidence, of diseases, 398
Incidence rates, 419, 421
Inclusive fitness, 555, 652
Incomplete dominance, 56
Incubation period, 398
Independent assortment law/principle, 35, 57, 144
Indirect calorimetry, 340
Indirect transmission modes, 402
Individual-based approach, 438
Individual-based epidemiological models, 441, 443
of an influenza epidemic, 444–445
Industrial development, migration and, 738
Industrialized societies, lifestyle changes in, 251
Inequalities, biological effects of, 16
Infancy (stage), 533–537
growth in, 613–617
Infant feeding practices, 610–612, 615–616
Infant growth, nutrition and disease during, 610–617
Infanticide, 787
Infant infectious disease mortality, 724–725
hypothesis concerning, 724–725
Infant mortality, 230, 412, 524, 697, 700, 729–736, 762
prehistoric, 720–721
Infants, hypothermic, 190
Infection, progression of, 398
Infection control techniques, testing, 436
Infectious disease(s), 13, 334, 395–396, 398, 449
emergence and growth of, 723
female fecundity and, 783
linkage studies for, 160
reduction in, 601
skin pigmentation and, 213
species causing, 401
transmission modes of, 401–403
Infectious disease mortality, 722, 725–726
hypothesis concerning, 724–725
Infectious disease transmission, mathematical models of, 438–443
Infectious individuals, 438, 722
Infectious lesions, 403
Infectious period, 399
Infinite allele model, 111
Infinite sites model, 113
Influenza (flu), 387, 388
Influenza (flu) epidemic
in Canadian fur trapping communities, 443–449
model structures of, 446
Information bias, 416–417
Infrared energy, radiated from skin, 200
Insolation, 207
Institute of Medicine (IOM), 255
macronutrient composition recommendations of, 279
Instrumental activities of daily living (IADLs), 666, 668
Insulin, 487, 778
Insulin gene, 82
Insulin resistance, 279, 664
Insulin sensitivity, 368
Intercourse, frequency of, 787
Intergenerational effects hypothesis (IEH), 524, 609
Intergenic DNA, 80. See also Deoxyribonucleic acid (DNA)
Intergenic transcripts, 80
Interleukin-1, 660
Intermediate transmission agents, 403
International Association of Human Biologists, 24
International Biological Programme (IBP), human adaptability in, 31–33
International Council of Scientific Unions (ICSU), 31
Interpopulational variation, in nutrition and metabolism, 275–306
Interviews, 349–350
Intrinsic rate of increase, 708
Introns, 72, 74, 77, 78
Inuit populations, research on, 361–362
Invasion migration events, 740, 741–742
In vitro fertilization (IVF), 772, 779, 794
Irish famine, 735
Isolation by distance, 107
Jarman–Bell relationship, 269–270
Johnston, Francis E., ix, 23
Journals, human biology, 45
“Jumping PCR,” 129
“Junk DNA.” 80, 81. See also
 Deoxyribonucleic acid (DNA)
Juvenile growth, nutrition and disease in, 617–619
Juvenile mammalian growth, 550
Juvenile mortality, 731
“Juvenile risk aversion hypothesis,” 550, 551
Juveniles, growth reference data for, 605
Juvenile stage, 541
Keratinocytes, 208
Key nutrients, 251
Kilocalories, 252, 330
Kin selection, 561, 652
Kinship relations, 555
Kleiber relationship, 267, 268
“Known diseases,” 724
Koch, Robert, 397
Krogman, Wilton M., 39, 40, 42, 4
KwaZulu-Natal tuberculosis outbreak, 433–435
Lactase, 286
Lactase persistence (LP), 286–288
 evolution of, 328
 genetic differences in, 288
Lactation. See also Breast-feeding
 additional energy demands during, 259
 energy costs of, 338–339
 female fecundity and, 780–783
 protein requirements during, 264
Lactational amenorrhea, 339
Lactose, 253
Lactose tolerance, variation in, 287
Landsteiner, Karl, 36, 70
Lasker, Gabriel W., 28, 29
Late life stage, 545
Latent period, 398
“Learning hypothesis,” 541, 549
Leptin, 778–779
Life cycle. See also Human life cycle
 effects of nutrition and disease during, 606–622
 malaria, 405
 mammalian, 548–550
 stages in, 520–546
Life cycle trade-offs/risks, for children, adolescents, and postmenopausal
 women, 574–576
Life events
 EBV titers and, 500
 as sources of stress, 500
Life-events research, 461
Life expectancy, 648–649, 710
 contemporary, 711–712
 sex-related, 713–715
Life expectancy at birth, 641, 642, 643, 700, 706–707, 710, 712
Life history data, collecting and analyzing, 546
Life history stages, evolutionary fitness and, 557–558
Life history theory, 12, 325–326, 547–548, 774
 origins of, 548
Life history trade-offs, 356
Life history traits, 162
Life span, 11, 103, 326, 401, 484, 540, 641, 678–679
 estimated, 644
Life-span approach, 42
Life stages, evolution of, 551–575
Lifestyle, adaptation to, 459
Lifestyle changes, 44
 obesity and, 301
Lifestyle incongruity, 467
 health outcomes and, 487–488
Lifestyle modernization, 490–491
Life tables, 698, 700–703, 744–745
 clustering in, 717
Light skin pigmentation, 221
 evolution in females, 219
 evolution of, 214, 215, 216, 217
Likelihood, defined, 153
Lineages, temporal change within or between, 166–167
Linguistic diversity, in America, 126
Linkage analysis, 160–161
Linkage disequilibrium, 57
Linked genes, 56
Lipoproteins, 253. See also HDL–LDL ratio
Livingstone, Frank B., 37
Lock-and-key biocultural interaction, 283–284
Locomotion, efficiency of, 354
Locus (loci), 100, 144. See also Genetic loci:
 Marker loci; Quantitative trait loci (QTL)
 genetic variation at, 111
 independent, 144
INDEX 851

LOD score, 160
Logistic growth, 763
Log-likelihood, 153
Longevity, 645, 677–679, 695–696
Longevity studies, 143
Long interspersed elements (LINEs), 84
Longitudinal cohort studies, 294
Longitudinal studies, 39, 412, 604, 605, 664, 696, 780
Loughborough University Human Biology Programme, definition of human biology, 4
Low birth weight (LBW), 488, 527, 528–529, 606
Low-energy environments, dietary strategies for, 361–363
Low-protein diets, 729
Low-UVR environments, 220
Lung capacity, in high-altitude natives, 228
Luteal phase, 766, 767
Luteinizing hormone (LH), 533, 536, 766
Lymphocytes, 216
proliferation of, 783
“Machine metaphor,” 19
Macroevolution, 11
Macronutrient composition, variation in, 277–280
Macronutrients, 252, 331–332
Macroparasites, 401
Macrophages, 660
Maintenance energy costs, 333
measuring, 341–343
Maize processing, 283–284
Malaria, life cycle of, 405
Male adolescence, 561–563
Male fecundity, 783–784
Male reproductive aging, 672
Male reproductive effort, energy dynamics and, 339
Malnutrition, 23, 187, 284, 391, 522, 595, 667
childhood, 339
stress–immune function and, 500
Malthus, Thomas, 757–758, 762–763, 796, 797
Maltose, 253
Mammalian basal energy needs, 267
Mammalian brain expansion of, 94
growth of, 274
Mammalian evolution, 88
Mammalian life cycles, 548–550
Mammalian species, weights and BMRs for, 268
Mammals, juvenile, 541
Man and the Biosphere (MaB) Program, 34–35
Marker loci, 70, 160, 676
Maternal nutrition, 606–609
Mathematical models, 448
of infectious disease transmission, 438–443
Maturity, 326, 655
measuring, 519
reproductive, 671
Maximum life span potential, 641–642, 645
Maximum likelihood, 152, 155
Maximum likelihood estimation (MLE), 153, 154
Maximum likelihood method, 159
Maximum reproductive potential, 640
MCPH1 gene, 94–95
MDR-TB (multidrug-resistant tuberculosis), 390, 431, 433
Mean pairwise distance, 120
Measurement bias, 416–417
Meat, in the Homo erectus diet, 274
Mediators, 463, 467–469
Medical anthropology, 43
Meiosis, 55, 672
Melanin, 208–212, 221. See also Eumelanin; Pheomelanin
folate destruction and, 214
production of, 209, 210, 211
Melanocytes, 208, 209
Melanoma, 212
Melanosomes, 208
Menarche, 41, 338, 552, 598, 695, 772
as a risk factor, 601
Mendel, Gregor, 35, 54–55
Mendelian heredity, 57–58
Menopause, 545, 552, 671–672, 695, 772
evolution of, 572–573
in human life history, 571–573
Menstrual cycle, 475, 766, 767
Menstrual irregularity, 775
Menstruation, stress and, 775
Messenger RNA (mRNA), 66–67, 72–74.
See also Ribonucleic acid (RNA)
Metabolic adaptations, 276
Metabolic equivalents (METs), 183, 336
Metabolic heat, 183–184
Metabolic maintenance costs, 355
Metabolic rates, 184, 330, 655. See also Basal metabolic rate (BMR)
body size and, 267
variation in, 304
Metabolic rate variation, climatic influences on, 285–286
Metabolic syndrome, 279
Metabolism, 330–331
interpopulational variation in, 275–306
patterns of variation in, 275
Metazoa, 401
Methylation, 90
Miasma, 395
Microenvironments, blood pressure responses and, 496–497, 497–498
Microenvironment stressors, 490
Microevolution, 11, 35
Micronutrients, 252, 351, 674
shortages of, 734
Microparasites, 401
microRNAs, 92. See also Ribonucleic acid (RNA)
Microsatellites, 82, 83, 120.
Minerals, 254–255
Minisatellite DNA, 82, 83, 120. See also Deoxyribonucleic acid (DNA)
Minorities, obesity rates among, 298, 302
Misclassification bias, 416–417
Mismatch distribution, 117–118
Mitochondria, 85, 222
Mitochondrial DNA (mtDNA), 85–86, 113, 118, 358, 640. See also Deoxyribonucleic acid (DNA); mtDNA entries
Mitochondrial DNA haplogroups, 124–125, 358
Mitochondrial sequence data, 113
Mitosis, 55, 772
“Mix-and-match” protein production, 74
Mobility, vs. migration, 737
Mobility transition, prehistoric, 739
Model life tables, 718
importance of, 721
Moderators, 467–469
Modernization. See also Lifestyle modernization
health effects of, 488–489
stress of, 487
Modern medicine, 727–728
Modern populations, movement into Europe, 120
Molecular data, 118
on Native American populations, 126–127
Molecular diversity, in the Americas, 124–126
Molecular markers, variation of, 110–111
Molecular methods, 113
Monosaccharides, 253
Monounsaturated fatty acids (MUFAs), 279, 280
Moods, 471
cortisol levels and, 494–495
Morbidity, 187
cardiovascular, 477
measures of, 419–423
sex-related, 637
undernutrition-related, 368
vital statistics on, 406

Milk consumption, 286–288
Mind of Primitive Man, The (Boas), 27
Minerals, 254–255
Migration, 106, 439
allele frequency and, 108–109
body size and, 603
catecholamine responses to, 491
disease burden associated with, 220
effect on quantitative traits, 166
of elders, 190
gene flow and, 695
genetic effects of, 109
 genetic similarities and, 84
mortality and, 695–755
population distribution and, 736–744
population growth and, 759
proximate causes of, 743–744
role in population genetic structure, 107–108
sex-related, 737–738
Migration and Settlement Study, 737
Migration distances, 739
Migration level, variability in, 738–742
Migration model, 222–223
for studying socioeconomic status, 231
Military medicine, cold injury and, 187

852 INDEX
Morphological change, genetic change and,
94–95
Morphometric traits, 163
Mortality, 7, 700–736
 African patterns of, 718
 age and, 648
 age patterns of, 715–722
 allostatic load and, 464
 causes of variation in, 722–727
 cholera, 394
 cold-related, 188–190
 decline in, 727
 determinants of variation in, 727–729
 in early adulthood, 705
 European patterns of, 717–718
 feedback operating through, 763
 frameshift mutation and, 130
 impact on populations, 762
 life history trade-offs and, 356
 measures of, 423–425
 migration and, 695–755
 patterns of, 638
 sex differences in, 726
 on slave ships, 291
 U-shaped age pattern of, 718, 745
 from XDR-TB, 435
Mortality analysis, 700–703
Mortality level
 historical trends in, 712
 variability in, 706–715, 745
Mortality patterns, causes of variation in,
721–722
Mortality rate doubling time (MRDT), 645
 estimating, 646
Motor skill development, 533, 535
mtDNA genome sequence, 131–132. See also Mitochondrial DNA (mtDNA)
mtDNA sequence data, 115–116, 125
Multidisciplinary projects, in human biology, 34–35
Multidisciplinary research, 33–35
Multiple sclerosis (MS), 526
Multivariate quantitative genetic analysis, 156
Multivariate selection, 165–166
Muscle, insulative property of, 185
Mutations, 9, 35, 102, 522
 accumulation of, 640
 dominant, 670
 incorporation into mtDNA, 85
 selection of, 287–288
Mycobacterium tuberculosis, 432
Narrow-sense heritability, 146–147, 151–152,
 163
 for discrete traits, 157
 estimates of, 155
National Institutes of Health guidelines, 6
National Maternal and Infant Health Survey (NMIHS), 410–411
Native American genetic data, 123
Native American populations. See also Amerindian origins; Inuit populations
 genetic variation in, 122
 molecular data on, 126–127
Natural experimental design, 485–486
Natural killer cells, 660–661
Natural selection, 7–8, 9, 30, 36–37, 38, 55,
 102–105, 143, 518, 641
 adolescence and, 558–559
 climate as an agent of, 177
 for cold resistance, 194
 female energetics and, 778
 fitness maximization and, 167
 for frostbite resistance, 187
 on hemoglobin concentration, 229
 at high altitude, 230
 lactase activity and, 286
 male reproductivity and, 783–784
 mortality and, 695
 nose width and, 196
 pygmy growth and, 588–589
 in pygmy populations, 359–360
 “Nature’s contraceptive,” 782
Neanderthal nuclear genome, 129
Neanderthals, 570–571. See also European Neanderthals
 subsistence strategy of, 364
Negative additive genetic covariance, 166
Neonatal deaths, 705
Neonatal oxygen, 178
Neonates, 527
Neural tube defects (NTDs), 214
Neuronal-related genes, 94
Neurotransmitter activity, dementia and, 669
Neutralism, 38
Newfoundland influenza studies, 409
“New physical anthropology,” 30
New World peopling, archaeological evidence for, 126
9-bp deletion, 124
Nitrogen balance studies, 262
Nitrogenous bases, 58, 331
Noncoding RNAs (ncRNAs), 80. See also RNA
Nondifferential misclassification, 416–417
Nonexercise activity thermogenesis (NEAT), 336
Noninfectious diseases, 397, 400, 449
Non-insulin-dependent diabetes mellitus, 160. See also Adult-onset diabetes; Type 2 (adult-onset) diabetes mellitus
Non-neutral evolution, 90
Non-neutral genetic variation, 86
Nonshivering thermogenesis, 184, 334
Nonspecific stimulus concept, 461
Nonstarch polysaccharides (NSPs), 253
Norepinephrine, 184, 292, 472, 659
excretion of, 490, 491–493
Normal distribution(s), 144, 152–153, 157, 613
Norway House region (Manitoba) individual-based model for, 448
influenza epidemic in, 444–445
Nosocomial infection, 436
Nuclear DNA, 85. See also Deoxyribonucleic acid (DNA)
Nuclear molecular markers, 118
Nuclear molecular variation, among European populations, 120
Nucleic acids, 58. See also Deoxyribonucleic acid (DNA); Ribonucleic acid (RNA)
ancient, 129
in prehistoric material, 127
synthesis of, 213
Nucleotide differences, 113
Nucleotides, 58, 59
Nucleotide sequence divergence, 90
Nucleotide sequence similarity, 89
Nucleus, 66, 401
Nursing frequency, female fecundity and, 780–782
Nutrient Analysis Tools and System (NATS), 352
Nutrients, 252–255
Nutrition adequate, 254
comparative, 265–272
effects on growth, 606–622
fundamentals of, 252–265
interpopulational variation in, 275–306
mortality decline and, 728–729
Nutritional adaptations, 251
Nutritional differences, between humans and other primates, 252
Nutritional diseases, 400
Nutritional quality, cultural practices to improve, 251
Nutritional requirements, 255–257
Nutritional status, 353–354
growth data and, 612–613
Nutrition evolution, influences on, 275–276.
See also Human nutritional evolution
Obesity, 44, 283, 294–306, 369–370
diabetes and, 293
diagnosing, 369
factors in, 300–306
genetic factors in, 303–306
global trends in, 300–301
heritability of, 306
income inequality and, 595–596
measuring, 294–297
prevalence of, 326
Obesity epidemic, 303, 602
Obesity rates, 297–300, 369–370, 601–602
“Obesogenic” environments, 303–304
Obligatory thermogenesis, 334
Observational studies, 408, 409
Observation bias, 416–417
Odds ratio, 426, 428–430
Omega-3 fatty acids, 370
Oocytes, 545, 671–672, 765
Open reading frames (ORFs), 75
Oral transmission, 402
Orthologs, 89
Ossification centers, 531
Osteoarthritis, 369, 665–666
Osteomalacia, 217, 673
Osteoporosis, 20, 159, 474, 575, 665, 794
Out of Africa hypothesis, 86, 115
Ovarian function, 769
hormone levels and, 778–779
Ovarian hormone levels, 772
Ovaries, 671, 765
Overdominant selection, 104–105
Overnutrition, 294, 369, 609, 725
Ovulation, 559, 766, 767
Oxidation, 331
Oxidative phosphorylation, 358
Oxygen carrying, enhancement of, 229
Oxygen delivery, via blood flow, 230
Oxygen demands, at high altitudes, 231
Oxygen transport among acutely exposed sea-level natives, 224–227
among high-altitude natives, 227–233
Pacific populations, modernization of, 491–493
Paleodemographic data, 699
Paleodemographic mortality patterns, 719–720
Pancreas, type 2 diabetes and, 293
Pandemics, 387
Panmictic population, 101
Parameters, 708
quantitative genetic, 147–156
Parametric models, 152
Parasites. See also Host–parasite interactions
contact with, 724
skin pigmentation and, 213
Parasitic agents, 391
Parasitic worms, 338
Parathyroid (PTH) concentrations, 219
Parental imprinting, 526
Parental investment, 555, 653, 655
Parent–offspring regression, estimating heritability from, 151–152
Parkinson’s disease, 669
Passive cold defense, 184–185
Pathogen load, EBV titers and, 501
Pathogens, 19, 389, 660
breast-feeding and, 611
synergistic interactions among, 436
Pearl, Raymond, 24, 25, 28
Pedigree data, estimating quantitative genetic parameters from, 155–156
Pedometers, 348–349
Pelagra, 284
Pelvic inlet, 561
Perceived stress scale (PSS), 469
Percentiles, 256, 369, 604, 613
Percent oxygen saturation, of arterial hemoglobin measurement, 225
Performance, effect of cold on, 179
Peripheral vasoconstriction, 180–181
Person-years, 420
Phagocytosis, 660
Phenotype(s), 7, 35, 55
effect of genes on, 156
fitness of, 557
high-altitude, 178
natural selection and, 102
path from genes to, 91
plasticity and, 557–558
thrifty, 42, 294, 674–675
Phenotypic adaptations, 519
Phenotypic change, age and, 637–638
Phenotypic value, 146
Fheomelanin, 209–210, 212
Phospholipids, 253
Photon energy, 328
Photons, 217
Photosynthesis, 328
Phylogenetic analyses, 546
Phylogenetic inferences, 113
Phylogenetic tree, 116
Phylogeny, 86
Physical activity/activities
categories of, 349
changes in, 300–306
energy costs of, 335–336, 337, 348
importance of, 282–283
measuring, 343–350
methods for estimating, 343
Physical activity levels (PALs), 258, 259, 260, 266, 335
following childbirth, 328
for subsistence populations, 366
variation in, 280–282
Physical activity ratio (PAR), 335–336
Physical activity trends, 303
obesity-related, 300–301
Physical anthropology, 26
Physical characteristic variation, with mean annual temperature, 195–196
Physical fitness, heat production and, 185
Physical stressors, 462–463
Physiological response, to stress, 472–481
Pituitary gland, 533, 538, 659, 767
Plant food contributions, variation in, 276
Plasma volume, 201, 675
Plasticity, 3, 23, 29, 532
developmental, 27
dietary, 252, 276
growth-related, 338, 622
of human variability, 43
longevity-related, 677
in milk use, 288
phenotypes and, 557–558
Pleiotropic phenotypes/genotypes, 674–675
Pleiotropy, 156
antagonistic, 640, 652
patterns of, 647
P matrix, 165–166
Political-economic approach, 16–17
Polygenetic effects, 146
in complex segregation analysis, 159
Polygenetic heritability, 159
Polygenic model, 161–162
Polymerase chain reaction (PCR), 71–72, 73, 82–83, 127
Polymerase enzymes, 67
Polymerase inhibition, 127–129
Polyorphic molecular markers, 110
Polyorphic sites, 160
Polymorphism(s), 32, 38, 85 differences among, 99 for hemoglobin A and S, 230
Polynucleotide chains, 59–60
Polypeptide chains, 65
Polypeptides, primary structure of, 70
Polysaccharides, 253
Polyunsaturated fatty acids (PUFAs), 274, 275, 279–280
“Pooled energy budget” hypothesis, 554
Population-based approach, 438
Population-based epidemiological models, 440, 441 of an influenza epidemic, 444–445
Population biology, 29–30
Population density, mortality and, 729
Population estimates, 109–110
Population genetics, 100–111
Population growth, 757–765 exponential models of, 708–710 questions related to, 759
Population history, 119–127
Population history models, 118
Population-level research, quantifying energy intake in, 351
Population-level variation, 356–357
Population projections, 795–796
Population regulation in the past, 792–794 pathogen exposure and, 792 in the present and future, 794–796
Primer molecules, 62
Primers, 72. See also DNA primers
“Principle of Population,” 758
Prions, 43, 401
Probabilities, 153
Probability-of-transmission parameter, 442
Professional organizations, 45
Progesterone, 254, 525, 659, 766, 767, 770–771
Programmed senescence, 657–658
Prokaryotes, 72
Prolactin, 767, 780
Promoters, 67
Proportionate mortality ratio (PMR), 421, 422, 425
Protection index, 193–194
Protein. See also Proteins
in infant feeding practices, 610
metabolic elevations and, 333–334
synthesis of, 69–70, 100
in viruses, 401
Protein coding transcript, 80
Protein digestibility, 263, 264, 265
Protein-energy malnutrition, 734
Protein intakes, by age and sex, 263
Protein levels, in blood serum, 161
Protein requirements
established, 262–265
estimating, 261–262
Proteins, 252, 254, 329. See also Enzymes;
Protein
DNA in producing, 65–70
as markers, 70
metabolism of, 473
production of, 60
synthesis of, 69–70, 100
tasks of, 70
Protein sources, digestibility and amino acid
scores of, 263
Protozoa, 401
Proximate causes, 650–651, 695
of migration, 743–744
Pseudogenes, 81–82, 90
Psychological factors, in disease, 400–401
Psychological studies, of blood pressure
responses, 497
Psychosocial stress, 486–488
effect on growth, 598
Puberty, 209, 495, 537, 541–542, 590, 715, 767
ages at, 641, 644
Public health approach, 392
Puebloan populations, 130–131
Pulse oximeters, 225
Purifying selection, 81, 86, 217
Purines, 58
Pygmy growth, 359–360, 588–589
Pyrimidines, 58
Quantitative genetic analysis, multivariate, 156
Quantitative genetic models
assumptions of, 161–162
for threshold traits, 156–158
Quantitative genetic parameters
estimating from fixed designs, 150–154
estimating from pedigree data, 155–156
estimation of, 147–156
Quantitative trait loci (QTLs), 160–161, 162
studies of, 161
Quantitative traits
evolution and, 164–168
evolutionary study of, 133
genetic variability in, 228
selection on, 164–165
Quantitative variation, 143–173
questions related to, 143–144
Questionnaires, 349–350
Race
study of, 30–31
typological beliefs concerning, 26–28
Races: A Study of the Problem of Race
Formation in Man (Coon et al.), 30
Racial taxonomy, and blood groups, 36–37
Racial typology, 29
Radioimmunoassay, 770, 771
Random error, 415–416
Randomized trials, 414–415, 450
Random mating, 114
Random mixing, 440
Rate of living, 655–656
Rates, defined, 420
Ratio
defined, 419
of exercising metabolism to RMR, 336
Reactive oxygen species (ROS), 208, 656
Recent physical activity questionnaire
(RPAQ), 350
Recessive alleles, 35, 55
Recombination, 56–57, 115
Recombination rate, 160
Recommended dietary allowances (RDAs), 255, 256
Recommended nutrient intakes (RNIs), 255, 256
Recovered individuals, 438
Recumbent length, 155, 529
Recurrent aphthous stomatitis (RAS) genetic analysis, 156
Reflectance spectrophotometry, 210
Regional continuity model, 86, 115
Regression, body-mass, 270–272
Regression analysis, 151
Relative odds, 429–430
Relative risk, 417, 426, 427–428
of death, 731
Relatives, genetic correlation and covariance between, 147–149
Repetitive DNA sequences, 82–84. See also Deoxyribonucleic acid (DNA)
Replacement colonization hypothesis, 131
Replication, semiconservative, 62
Reproduction
early, 774
ergy costs of, 338–339
growth and, 41
migration and, 743
Reproductive aging, 671–672
Reproductive cessation, 572–573
Reproductive ecology, 41
Reproductive fitness, 547
Reproductive maturity, 545
in males, 561–562
Reproductive physiology, female,
765–768
Reproductive unions, social prescriptions regarding, 786–787
Reserve capacity, 639
cognitive, 565
Residual volume (RV), 228–229
Resistance resources, 468
Resource-related trade-offs, 325
Respiratory quotient (RQ), 340
Respiratory transmission, 402
Response to selection, 164, 165
Resting metabolic rate (RMR), 183, 330, 336, 341, 537
Restriction enzymes, 71
Restriction fragment length polymorphisms (RFLPs), 676
Restriction site polymorphisms (RSPs), 113, 114
Retrospective cohort studies, 412
Rh blood group, 109
Ribonucleic acid (RNA), 11, 58, 60, 401. See also Messenger RNA (mRNA); microRNAs; Noncoding RNAs (ncRNAs); Nucleic acids; Ribosomal RNA (rRNA); RNA entries; Transfer RNA (tRNA)
Ribosomal RNA (rRNA), 66, 75. See also Ribonucleic acid (RNA)
Ribosomes, 66
Rickets, 216, 217, 400, 673
Risk factor(s), 157, 187, 661
for cancers, 794
for cardiovascular disease, 369
concept of, 43
disease-related, 399, 400
migration-related, 744
Risk measures, 427–429
RNA polymerase, 67
Salivary amylase, 289–290, 472, 480–481
Salivary cortisol studies, 493–496
Sanitation, mortality and, 727
Saqqaq mtDNA genome sequence, 131–132. See also Deoxyribonucleic acid (DNA)
Satellite DNA, 82. See also Deoxyribonucleic acid (DNA)
Saturated fatty acids (SFAs), 253, 279, 280
Saturation of arterial hemoglobin (SaO₂), 159, 224, 225, 229–230
Schistosomiasis, 403, 404
Schofield equations, 286
Schofield norms, 342
Seasonal energy stress, 359
Secondary appraisals, 469
Secondary consumers, 329
Secondary sexual characteristics, 542
Secondary stressors, 467
Secular trends, 338
effect on growth, 598–603
maturation-related, 774
Sedentary activities, 303
Segregation, 101
law of, 35
Segregation analyses, 159
Selection. See also Kin selection; Natural selection; Sexual selection multivariate, 165–166
population fitness and, 167
on quantitative traits, 164–165
Selection bias, 416
Selye, Hans, 461, 483, 484
Semiconservative replication, 62
Seminiferous tubules, 672
Senescence, 545, 638, 695
consistencies and variation in, 639
defined, 640–641
evolutionary theories of, 651–655
“garbage can” models of, 658
historical background of, 639–640
mechanisms of, 655–658
programmed, 657–658
theories of, 650–655
trade-offs and, 679
Senescence models, postulates of, 654
Sense DNA strand, 67. See also Deoxyribonucleic acid (DNA)
Sensitivity, 426
Sequence differences, between chimpanzees and humans, 89–90
Sequence methylation, 90
Severe acute respiratory syndrome (SARS), 388, 394, 407, 408
Sex chromosomes, 87. See also X chromosome; Y chromosome
Sex differences. See also Sexual dimorphisms
in activity patterns, 366–367
in body size/shape, 589–592
Sex steroids, 659–660
Sexual dimorphisms, 151, 219, 529, 590.
See also Sex differences
Sexually transmitted diseases (STDs), 403, 783
Sexual maturation, 543–544
Sexual selection, 558–559
Shapiro, Harry, 29
Shifting balance theory, 167–168
Shivering, 183
thermogenesis via, 334
Short interspersed elements (SINEs), 84
Short tandem repeats (STRs), 82, 83, 99
Sibships, 150
Sickle-cell allele, elevated frequency of, 104–105
Sickle-cell anemia, 37
SI models, 439, 441
Single-nucleotide polymorphisms (SNPs), 83, 99, 161, 224. See also SNP arrays
SIR models, 439–440, 441, 443
SIRS models, 439, 441
6 PUFAs, 279–280
Skeletal maturation, 545, 619, 620–621
studies of, 39
Skin, solar radiation and, 205
Skin cancer, 211, 212
DNA mutations and, 213
Skin color, 208. See also Skin pigmentation
Skinfold measurements, 184, 295–296, 529
Skin phenotype, 210
Skin pigmentation, 208–220. See also Dark skin pigmentation; Light skin pigmentation
as an adaptation to UVR, 220
environment and, 211–219
evolution of, 212–215
infectious disease and, 213
parasites and, 213
sexual dimorphisms in, 219
Skin thickness, 185
Slave trade, hypertension and, 291
Sleeping metabolic rate (SMR), 341
Small body size, undernutrition and, 622
Small populations
age patterns of mortality in, 718
life expectancy of, 712–713
sampling in, 106–107
Snow, John, 395–397
SNP arrays, patterns of variation in, 111.
See also Single-nucleotide polymorphisms (SNPs)
Social contact patterns, influences on influenza epidemic, 447
Social functioning, 468
Social intimidation, 550
Social networks, influence on epidemic spread, 448
Social readjustment rating scale, 461
Social resources, 468
Social stress, hypertension and, 291–292
Socioeconomic status (SES), 6, 231, 291–292, 487–488, 526
influence on growth, 593–597
low birth weight and, 528
menopause and, 672
Sociological approach, to stress, 462
Sodium pump enzymes, 358
Solar radiation, human body and, 205–221
Solar zenith angle (SZA), 205
South America, genetic studies of, 123–124
Southern blot analysis, 76
Soybean processing, 284
Spatial autocorrelation techniques, 119
Specialized epidemiological methods, 437–443, 450
Speciation, 11, 89, 103, 552
Specificity, 426
Spermatids, 672
SRY locus, 88
Stable population model, 710
Stable population theory, 708
Standard deviation(s), 153, 229, 256, 604, 658, 711
Standard food values, 352
Standardized mortality ratio (SMR), 423
Standard mathematical analysis, 442
Standing biomass, 757
Stanford University Human Biology Program, mission statement, 4
Starch, 253
consumption of, 289–290
digestion of, 481
Start codon, 69
Stationary population theory, 698, 709
Steroids, measuring, 770
Stimulus–response approaches, 461, 462
Stochastic genetic processes, 9, 36, 38, 75, 106
Stochastic models, 443
Stop codons, 69
Streptomycin, 432–433
Stress
affective response to, 471
behavioral and biological responses to, 470–483
biobehavioral effects of, 501
biological, environmental, and cultural context of, 481–482
chronic nature of, 482
definitions of, 460–463
health outcomes as a response to, 482–483
human biology and, 459–512
immune response and, 482
multidisciplinary interest in, 460
physiological response to, 472–481
psychological models of, 463
questions related to, 459
sociological approach to, 462
Stressors, 5, 459, 465–467
appraisal of, 469
categorizing, 466–467
chronic, 462
defined, 465–466
immune function and, 499–502
impact of, 468
measuring, 467
response to, 481
source of, 481–482, 495
Stress process
evaluating, 465
model of, 466
Stress research, 461–462
basis and design of, 484–486
cultural context of, 463
discipline-based approaches to, 462–463
Stress responses, 44
evolutionary perspective on, 483–484
Stress sources, 481–482
in non-Western industrialized populations, 495
Structural reduction hypothesis, 215
“Structural violence,” 436
STRUCTURE computer program, 110
Studies in Human Biology (Pearl), 24
Stunted children, 367, 368, 613
Stunting, disadvantages of, 622
Subarctic survival, 197–198
Subcutaneous fat, 180, 354, 588, 591
Subscapular skinfold, 295, 529, 590
Subsistence strategies, 361–363
Sucrose, 253
Sunburn, 210, 211
prevalence of, 212
Sunlight
seasonal patterns of, 206–207
UVR content of, 205
Surveillance data, 407
Surveys, 32, 604
anthropometric, 162
cold-related, 178–179
demographic, 780–781
population, 407
Survivorship curves, 647, 678, 679
Susceptibility, 391
to disease, 395
stress-related, 463, 483
Susceptible individuals, 722–724
Sweat production, 202
Sympathetic–adrenal–medullary system (SAMS), 472, 475–477, 659
Sympathetic nervous system, 481
response of, 188
Syndemic approach, 389–390
Synthetic theory of evolution, 6–7
Systolic blood pressure, 155, 290, 477, 499, 662
BMR and, 359
Tanner, James M., 39, 41, 42, 43
Tanning, 210, 211
TB sanatoria, 432. See also Tuberculosis (TB)
Technology-based food production, 356
Telomeres, 80, 87, 640
loss of, 657
Temperature, relationship to mortality, 189
Templates, 62
Termination codons, 69
Tertiary consumers, 329
Tertiary structure, 70
Testosterone, 254, 339, 562, 592, 672
male behavior and, 784
male fecundity and, 783
Thalassemias, 83. See also β-thalassemia
The most recent common ancestor (TMRCA), 117, 118
“Thermal effector loop,” 180
Thermal stress, 356–359
Thermic effect of food (TEF), 257, 333–334
Thermoneutral range, 257, 334
Thermoregulation, 178, 179–180, 257, 325, 334
cold, 186
factors in, 185
heat, 200–201
Thomson’s rule, 196
3 PUFAs, 279–280. See also Polyunsaturated fatty acids (PUFAs)
Threshold model, 157
Threshold traits, quantitative genetic models for, 156–158
Thrifty genotype, 293–294, 674–675
Thrifty phenotype, 42, 294, 674–675
Thyroid hormones, metabolic adaptation and, 358
Time allocation technique, 349–350
Time motion studies, 494
Tissue growth strategies, 520–522
T-lymphocytes, 660
Todd, T. Wingate, 39
Tolerable upper intake level (UL), 255
Tooth eruption, correlation with birth interval, 553
Total daily energy expenditure (TDEE)/
Total energy expenditure (TEE), 258, 261, 265–266, 331, 333, 344
in subsistence populations, 366
underestimation of, 350
variation in, 280–282
Total fertility rate (TFR), 790–791
Total likelihood, 153
Total log-likelihood, 154
Toxicants, effect on growth, 598
Trade-offs, 547, 548
longevity-related, 677
between maturation and adult size, 618
between metabolic needs and reproduction demands, 778
resource-related, 325
Traditional lifestyles, endocrine changes related to, 492–493
Trait–environment correlation, 548
Trait heritabilities, variation in, 162–163
Trait liability, 157
Trait repeatability, 163
Traits, with discrete genetic causality, 158
Transcription, 67
Transcriptionally active regions (TARs), 80
Transcription start sites (TSSs), 80
Transcriptome, 80
Transfer RNA (tRNA), 69, 75. See also Ribonucleic acid (RNA); tRNAβ
Translation, 67
Triceps skinfold, 295, 529, 590
Triglycerides, 253
Trimesters, 520, 522–523
additional kilocalories during, 258–259
energy costs during, 338–339
tRNAβ, 124. See also Transfer RNA (tRNA)
Trophic level, 329
Tuberculosis (TB)
drug-resistant strains of, 431–437
multidrug-resistant cases of, 433
Tugela Ferry study, 434–436
Twin studies, 150, 304
Type 2 (adult-onset) diabetes mellitus, 293, 674–675. See also Adult-onset diabetes mellitus; Non-insulin dependent diabetes mellitus
Typological beliefs, race-related, 26–28
Typology, 26
Tyrosinase, 209
Ultraviolet radiation (UVR), 10, 177–178, 205, 207, 526. See also Low-UVR environments; UVA; UVB; UVR exposure
strength of, 215
Uncontested migration, 741
Underground storage organs (USOs), 290
Undernutrition, 202, 294, 338, 367–368, 527, 592, 597
childhood, 731
effects of, 626, 733–734
fetal, 675
growth and, 615
prenatal, 10–11
small body size and, 622
Underwater weighing, 295
United Nations Educational, Scientific, and Cultural Organization (UNESCO), 34–35
United States. See also American entries; National entries
human biology history in, 23–50
infectious disease mortality in, 733
milk consumption in, 288
obesity rates in, 294–295, 297, 299, 301–303
population growth in, 764
protein consumption in, 277
tuberculosis prevalence patterns in, 437
Unlinked loci, 57
Unsaturated fatty acids, 253
Uracil, 58, 60, 64
“Urban graveyard” hypothesis, 739–740
Urinary catecholamine excretion, effects of lifestyle on, 490
Urinary catecholamine studies, 489–493
UVA, 207, 214, 216. See also Ultraviolet radiation (UVR)
UVB, 205–208. See also Ultraviolet radiation (UVR)
UVMED (minimal erythemal dose), 211
UV exposure, 210, 211. See also Ultraviolet radiation (UVR)
folate degradation and, 214
Variable number tandem repeats (VNTRs), 82, 83, 84
Vascular dementia, 669
Vasoregulation, 180–181, 186, 196, 292, 334, 676
Vasodilation, 179, 200, 334
Vectors, 403, 725
Vegetarian diets, protein derived from, 264
Vehicles, 403
Ventilation studies, 227–228
Vertical transmission, 403
Viability selection, 103
Viral genome, 389
Virologists, 388
Virulence, 727
Viruses, 58, 401
Visceral adipose tissue (VAT), 369
Vital capacity (VC), 228–229, 231
Vital statistics, 407
on morbidity, 406
Vitamin D
deficiency in, 215–221
function of, 216
photosynthesis of, 215, 216
Vitamin D receptor (VDR), 215
Vitamins, 254
Voluntary migration, 743, 744
Walking, importance of, 303. See also Bipedalism
Washburn, Sherwood, 30
Wasted children, 367, 613
Water, requirements for, 255
Watts, Elizabeth, 42
“Wear and tear” theory, 651
Weight
heritability of, 304
socioeconomic status and, 595–596
Weight-for-height z-scores, 604, 612, 613–615
Weight gain, genetic differences in, 304–305
Weight loss, ovarian function and, 775–776, 777
Weiner, Joseph S., 31–33
Well-being, 23
Westernization, health changes associated with, 371
Westernized life, stresses of, 486–487
Western Samoa, EBV antibody study in, 500–501
WHO Commission on Social Determinants of Health, 390. See also World Health Organization (WHO)
WHO energy requirement recommendations, 257–258
WHO Global Infobase, 298
WHO growth charts, 605–606
WHO height standards, 617
WHO protein quality measure, 265
Winter mortality, 190
Women, life cycle trade-offs/risks for postmenopausal, 575–576
Workload, ovarian function and, 776–778
World Health Organization (WHO), 255–265, 407. See also WHO entries
World population growth, 761
Wright–Fisher reproduction model, 117
Wright, Sewall, 35, 36, 105–106, 107
 shifting balance theory of, 167–168

X2a haplogroup, 125
X chromosome, 87–88
XDR-TB (extensively drug-resistant tuberculosis) epidemics, 387, 431, 432, 433, 436–437
 epidemiological statistics related to, 434–435

X-specific region, 87
XY females, 592

Yakut subsistence economy, 362–363
Y chromosome, 87–88, 590–592
 molecular variation on, 121
Y-chromosome molecular markers, 121, 125
Y-specific region, 87–88

Zoonoses, 725, 792
z-scores, 270, 604, 612–613