Index

a
advanced process control (APC) 248
base-layer control system 248
ccontroller limits, plant constraints 260–261
distributed control system 248
dynamic process models 248
planning and scheduling activities 248
process control hierarchy 247–249
production and plant constraints 248
real-time optimization 248
air emissions 60
ancillary services 309–310
artificial intelligence (AI) 130

b
Bayer Climate Check 318
best demonstrated practice (BDP) 86 values 330
bivariate least squares (BLS) regression 133
Brundtland report 454
business clustering
 business parks and park management 461–462
cross-sectorial clustering and cluster management 464–466
economic incentives 461
industrial ecology 461
total site integration and site management 462–464
business parks 461
business parks management 462

c
CasADi 281
CEN/CENELEC Sector Forum 30
Chemometrics 137–138
China’s economic growth 23
circular economy 465
cleaning-in-place (CIP) subsystem 136
closed loop methods 235
CO$_2$-emissions
 Agenda 21, 21
 UNFCCC 21
Communication on Progress (COP) 51
composite curves 406
continuous improvement process (CIP) 76
continuous stirred tank reactor (CSTR) 269
cost functions 425
Covestro 318
cross-sectorial symbiosis 465
cumulated energy demand (CED) 394
cyber physical systems 160

d
Danish Kalundborg eco-industrial park 450
data extraction 355
data pre-treatment
 “control” pyramid 182
data reconciliation
 maximum likelihood principle 188
 mixing streams 191–194
 non-Gaussian measurements
 errors 189
data pre-treatment (contd.)
 parametric uncertainty 192
 structural uncertainty 192
 dynamic data reconciliation 208–209
 gross errors detection and removal
 Robust M-estimators 202–205
 statistical methods 195–202
 measurement errors and variable estimation
 accuracy 183
 EcosimPro window 186
 Gaussian distribution 182
 liquid junction 183
 precision 183
 redundant data 184
 temperature measurements 184
 and steady state detection 205–208

decision support systems (DSS)
 aggregated tiles 220
 analysis, of optima 231
 Bullet chart 216–217
 dashboard concept, sugar plant case-study 223–224
 difference charts 218–220
 exemplary application 226–228, 232–235
 flexibility 225–226
 graphical guidance 225
 information 213
 multicriterial optimization 231–232
 plant sections 215
 real-time performance 231
 Sankey diagrams 215–216
 scenario database 226
 stacked bars and stacked area plots 217–218
 variability bar 217
 visual feedback 226
 visualization elements 220–221
 visualization techniques 213
 what-if analysis 224–228

demand side response (DSR)
 additional conventional power plants 299
 ancillary services 309–310
 business-motivated goals 294
 climate issue 295
 dispatchable demand response 296
 dynamic demand 296
 electrical energy 294
 electricity grid 295
 energy consumption 294
 energy efficiency (EE) 301–303
 energy industry 294
 energy portfolio optimization 305–306
 energy sector 294
 energy shortage 305
 energy storage capacity 299
 grid capacity 300
 history 296–297
 load management 304
 load shedding 309
 load shifting 309
 market drivers and market barriers 300–301
 market options 300
 nondispatchable demand response 295–296
 peak shaving 309
 power production and consumption 299
 renewable energy sources 299–300
 technology-driven innovations 295
 utility trigger and price changes 305
 valorization 310–313
 differential-algebraic ones (DAE) 208
 differentiation 479–480
 distributed control systems (DCS) 167, 265
 district clusters 465
 district networks, using process waste heat 443
 dynamic optimization (DO) 209, 280

e
 eco-industrial parks 442
 eco-management and audit scheme (EMAS) 49
 economic evaluation constraints 360–361
 economic incentives 461
 EcosimPro 186
Index

electricity 423–424
investment and operating costs 425–428
life-cycle assessment 428
nomenclature 424
non-negativity of grid interactions 423
transportation 424–425
electricity laws 28
EN 16247 29–31
energy and resource
company-specific environmental
indicator systems 7
definition 4
energy efficiency 6–8, 11
ISO 50001
2011 and standards ISO 50002 to
50015 12
primary energy 5
real-time, concept of 8
resource efficiency 6–8, 11–15
energy and resource efficiency 404
energy and resource management
continual improvement process (CIP)
34
employee participation 38
energy storage 36
EnPI development 34–36
ISO 50001 38
low usage/consumption 36
self-generation 37
energy balance constraints 358–360
Energy-Capital trade-off 407
energy clustering, at business parks 462
energy conversion units 435–437
energy efficiency
CO₂-emissions 20–21
EN 16247 and ISO 50002 29–31
EnMS standards 25
EU concern 23–24
EU goals 21–22
in worldwide 22–23
IPMVP 31
ISO 17741 and ISO 50047 31
ISO 50001 28
and dissemination 26–27
precursors towards 25–26
ISO 50004 28
measurement and verification plan
(M&V plan) 31
energy efficiency audits
basis analysis 67–69
current energy status 66–67
detailed analysis and collection of
ideas 69–72
energy performance 65
evaluation and selection of measures
72–76
extension to resource consumption
77
realization and monitoring 76–77
Energy Efficiency Check 318
energy flow analysis (EFA) 83, 85, 86
energy influencing variables (EIVs)
321, 329, 336
energy laws 28
Energy Management and Production
Planning approach 311
Energy Performance Indicators (EnPI)
332
energy portfolio optimization 305–306
energy requirement, of process unit
operation 416
electricity 416
exergy analysis 417
heat transfer 416
support materials 416
energy savings portfolio 326
energy shortage 305
enterprise resource planning (ERP)
162
environmental declarations 55
e-constraint scheme 428
EU Commission 24
EU-EMAS Regulation 46
Europe 2020 strategy 446
European Commission 33
European Energy Efficiency Directive 463
European R&D 151–152
European Strategic Energy Technology
(SET) plan 460
exergy analysis 405, 417
f	fossil fuel sources 23
g	Gaussian distribution 132
	German power grid 294
	German Renewable Energy Act 27
	GHG Protocol Corporate Standard 54
	Global Reporting Initiative (GRI) 7, 51–52
	Goldbeck’s circus model 475
	graphene-based sensors 150
	greenhouse gas (GHG) emissions 11, 340
	greenhouse gas (GHG) Protocol 47, 54
	GreenPAT strategies 146
h	H2020’s SPIRE programme 151
	heat cascade 420
	heat exchanger network 350
	heat integration 405–416
	advanced heat integration technology application 413–416
	chemical production site 413–416
	composite and grand composite curves 409–411
	ΔT_{min} determination 406–408
	energy conversion units, optimization of 435–437
	heat recovery targets, improvements of 412–413
	penalising heat exchangers 411–412
	heat pump (HP) 412
	heat recovery improvement potentials 432–435
	heat recovery system 70
	heat transfer requirements 418
	detailed-model analysis 419
	black-box analysis 418
	grey-box analysis 418
	simple-model analysis 418–419
	white-box analysis 418
	hybrid methods 364
	hydrogen pinch analysis 351
	hyperspectral imaging (HSI) 138–139

i	industrial ecology 460
	industrial process, description 404
	industrial symbiosis (IS) 449
	business clustering, see business clustering 460
	European Strategic Energy Technology (SET) plan 460
	innovation potential 458
	multidisciplinary nature 459
	industrial symbiosis parks 450
	industrial symbiosis policies 454
	industrial symbiosis research 454
	industrial symbiosis services 453
	industrial symbiosis technologies 451
	information technology context awareness 167–168
	process industries control and monitoring algorithms 160
	control and supervisory functions 160
	cyber physical systems 160
	ERP and SCM systems 162
	internal sensors and embedded logic controller 160
	material and energy efficiency 162
	plant control strategies 162
	sensors and actuators 160
	resource managed units 163–164
	3-tier information modelling approach meta model 164
	properties 167
	RMU 165–166
	Type Model 164
	integrated development environment (IDE) 168
	Intelligent Manufacturing Systems (IMS) 130
	Interior point methods 278
	International Energy Agency 10
	International Integrated Reporting Council (IIRC) 52
	Internet-of-Things (IoT) devices 148
investment and operating costs 425–428
ISO 14000 series 54
ISO 14000 standards 55
ISO 14001 46
ISO 50002 30
ISO 50006 34
ISO 50015 34
ISO labelling standards 55

k
Kalundborg collaboration 451
key performance indicators (KPIs) 59, 83, 181, 326, 332

l
LESTS survey 456
life cycle assessment methodology 405
life cycle impact assessment indicator 428
linear multivariable model predictive control (LMPC) 247
load shifting 309
low-carbon economy 447
low grade heat 70

m
Management Systems (MSs) 24–25
market barriers 300
market-corrected energy consumption (MEC) 332
market drivers 300
mass balance constraints 357–358
mass integration 420–423
material flow analysis (MFA) 83, 85, 86
maximum energy recovery (MER) 412
maximum likelihood principle 188
mechanical vapour recompression (MVR) 412, 413–416
MEMS-based sensors 147–148
MILP model 421
MISO Energy 305
mixed integer linear programming (MILP) formulation 419
model predictive control (MPC) 266
Modern consumption meters 70
MORE RACER evaluation framework
contribution factor 101–102
interdependent influencing factors 102
performance contribution 100
performance indicators 101
utility integration and energy provider 105–106
moving horizon estimation (MHE) 209
multi-level energy requirement
definition 418–419
multivariable predictive control (MPC) technology
base-layer controllers 258–259
constraint control
additive constraints 245–246
closed-loop optimization 246–247
depropanizer column 240–244
graphical representation 244–245
large-scale continuous chemical processes 240
skilled and experienced operators 240
control solution 260
features 249–254
financial benefits 254–256
justification and benefit estimation 256–258
limitations 259
ongoing maintenance and training 261–262
product quality measurement and inferentials 259–260
utility and product values 260

n
NAMUR survey 73
NAMUR Worksheet NA140 70
necessary conditions of optimality (NOC) 281
non-linear programming
interior point methods 278–279
KKT optimality conditions 276–277
Lagrange multipliers 275
non-linear programming (contd.) sequential quadratic programming (SQP) 277–278
non-renewable energy resources 22

o
OCAP project 452
offline real-time optimization 247
oil crisis 22
online approach 136
Organisation Environmental Footprint (OEF) 59
oxygen depolarized cathode (ODC) technology 320

p
Pareto curve 429
Pareto principle 476
People-Planet-Profit triangle 446
pinch analysis principles 406
pinch technology 350–351
piping and instrumentation diagrams (PandID) 66
Plant Information Management Systems 162
plus-minus principle 412
power consumption 72
principal component analysis (PCA) 195
Principles and Guidance on Communication of Footprint Information 55
process analytical technologies (PAT) 130
data mining of historians 143
definition 142
GreenPAT strategies 146
integration tasks 145
maintenance and after-sales support policies 145
metrological constraints 144
online/in-line analytical probes 143
output data format 145
parameters 144
QbD procedure 143
ranges 144
sample nature and features 144
sampling frequency 144–145
scope 144
sources of problems 145
timeframe 145
validation 144
wider business context 145
process flow diagram 404
process industry
chemical industry 9
definition 8
EU chemical industry 9
primary and secondary energy 5
raw materials 5, 9–10
resource-efficient production 4
separation processes 4
Product Environmental Footprint (PEF) 59
ProPAT 151
Pyomo 281

q
Quality Management Systems (QMS) 26
quality-by-design (QbD) 143, 151

r
real-time energy indicators 311
real-time optimization (RTO) systems
continuous stirred tank reactor (CSTR) 269
data reconciliation (DR) 272
DCS 265
dynamic optimization (DO) 280–281
economic optimizer 269
global process efficiency and economy 271
gross errors 272
implementation, of solutions 274
MPC 266, 268
multiple-effect evaporation process
data reconciliation 286–289
optimal operation 289–290
resource efficiency indicators 290
steady-state modelling 283–285
non-linear programming
interior point methods 278–279
KKT optimality conditions 276–277
Lagrange multipliers 275
sequential quadratic programming (SQP) 277–278
non-linear programming (NLP) problem 271
process-model gap problem 274
software and practice 279–280
real-time resource efficiency indicators baseline indicators 91
baseline, definition 88, 91
batch resource efficiency indicators 113–114
energy efficiency 114–115
energy performance indicator (EnPI) 88
environmental impact 86
evaluation method 93
external economic factors 87
gate-to-gate approach 85
generic indicators 88
generic resource efficiency indicators 87
key production phases 116–117
life-cycle analysis (LCA) 87–88
long-term storage effects 86
material and energy flow analysis 85
material efficiency 115–116
MORE RACER evaluation framework aggregation 98–105
application 95–98
definition 93–95
non-influenceable factors 91
plant-wide contributions 118–119
pre-selected indicators 92–93
process analytical technology 84
process industries 84
product-oriented REI 106–107
propagation and aggregation 119
purification efficiency 117–118
questionnaire method 92
reaction efficiency 117
transition from batch to continuous operation 122–124
transition from batch to continuous production 124
water and waste efficiency 116
reporting mechanisms, resource efficiency
eco-management and audit scheme (EMAS) 49
environmental challenges 46
environmental labels and declarations 55–59
environmental management systems 46
EU-directive on industrial emissions (IED) 47–48
EU-directive on non-financial reporting 48–49
European Union 46
Global reporting Initiative (GRI) 51–52
greenhouse gas (GHG) Protocol 47, 54
International Integrated Reporting Council (IIRC) 52, 54
KPI 59–60
OECD Guidelines for multinational enterprises 49–50
PEF and OEF guidelines 59
sustainability reporting 46
United Nation's Global Compact Initiative 50–51
resource and energy integration formulation 419
resource efficiency 82
normative approach 32–33
resource efficiency indicators (REI) 36, 181
application design process 168–171
industrial installations
batch-continuous-process 171–175
integrated chemical production complex 175–178
supplementary model-based approaches 224
what-if analysis 224
resource integration, constraints for 421
resource optimal chemical processes
applications, of synthesis 363–364
biological and thermochemical
biomass conversion processes 348
crude oil and natural gas reserves 347
data extraction 355–356
development procedure 352
environmental factors 365–366
global consumptions, of fossil fuels 348
hybrid methods 364–365
liquid transportation fuel 349
mathematical model
 economic evaluation constraints 360–361
 energy balance constraints 358–360
 mass balance constraints 356–358
 objective function 361–362
 optimal kind 349
 optimal quantity 349–350
 Pinch technology 350–351
resource crisis 347
social factors 366
solution methods 362–363
superstructure generation 353–355
uncertainty issue 366
responsibility diffusion 488
Rio Earth Summit 1992, 20
Russian Federation 22–23

sensing technology
 accuracy 132–134
 electricity consumption 136
 European R&D 151–152
 graphene-based sensors 150
 industrial energy metering 137
 “Industry-4.0-grade” sensing 132
 milling process 131
 PAT technologies 131
 precision 132
 production process 130
quantum cascade lasers (QCL) 149–150
sampling 135–136
spectroscopy technology,
 process-monitoring-based
 efficiency
 chemometrics 137
 hyperspectral imaging (HSI) 138–139
 MEMS-based sensors 147–148
 process analytical technologies (PAT) 142–146
 soft-sensors 146–147
 time-gated Raman 139–142
 standard IR thermometer 134–135
sequential approach 281
sequential quadratic programming (SQP) 277
single process integration (SPI) 430–432
site scale integration
 heat recovery improvement potentials 432–435
 single process integration 430–432
 total site integration 430, 432
small and medium-sized enterprises (SME) 74
smart grids 295
soft-sensors 146–147
SPIRE 445
standard 486
steady state detection 205–208
steam loss cascades 335
steel and petrochemical symbiosis 458
steel production 312–213
strokes 478
STRUCTese™ system
 best demonstrated practice (BDP)
 values 330
 current energy consumption of the plant (CEC) 328
 energy consumption 323
 Energy Efficiency Check (EE Check) 321, 323–327
 energy loss cascade 327–336
 energy loss cascade and online monitor 334
energy management cycle 322
energy scope 322
implementation results 338–341
improvement plan 325
integrated energy efficiency
management tool 333
ISO 50001 certification 320, 321
online monitor (OM) and daily energy
protocol (DEP) 322, 336–338
open issues and research topics
341–342
operational energy optimum (OEO)
328
PDCA-cycle for Energy Management
Systems 321
PDCA-cycle of energy 320
real-time energy efficiency 319
simple data analysis 320
theoretical energy optimum (TEO)
328
superstructure configuration constraints
356–357
supply chain management (SCM)
systems 162
sustainability management 444
sustainability reporting 46
Swedish Standards Institute (SIS) 25
symbiosis and synergy 441

\(t \)
tax cap Efficiency System Regulation
(\(\text{SpaEfV} \)) 28
thermal imaging camera 70
time-gated Raman 139–142
Total Polyphenol Index (TPI) 136
Total Site Analysis 463
total site integration (TSI) 430, 432
Type Model 164

\(u \)
ultrasound-measuring instrument 70
United Nations Framework Convention
on Climate Change (UNFCCC) 21
utility systems
computational effort 376
conventional optimization models 390
cost savings 373
decision support 387–390
definition 375
design and operation strategy 373
energyPRO 390
industrial case study
multi-objective optimization
394–395
near-optimal solutions 395–396
optimal solution 393
plant layout 392
TOP-Energy\(^\circledR\) 390
MINLP problems 376
model complexity
decomposition 380–381
part-load performance 379–380
time representation 378–379
multi-objective optimization 388
near-optimal solutions 388–390
optimal synthesis 376
superstructure-based synthesis
383–385
superstructure-free synthesis
385–387
synthesis of 376
time-series aggregation 381–382

\(v \)
VDI 4800, 33
visualization method 220
visualization techniques 213

\(w \)
working/company culture
appreciation 479
common sense 477
criticism 479
desired result 481–485
differentiation 479–480
fairness 476
feedback loops 491
incentives 489–490
integration 485–486
justice 476
leadership principles 481
Index

working/company culture (contd.) measures 486, 487
motivation 475
orientation 479
performance 488
personal comfort zone 475
praise 478

resistance 488–489
rules 487
standard 486
strokes 478
trust 474, 476, 477

World Business Council for Sustainable Development (WBCSD) 83