Contents

List of Contributors XIII
Preface XXI

1 Forensic Science – Chemistry, Physics, Biology, and Engineering – Introduction 1
Evgeny Katz and Jan Halámek
References 3

2 Forensic Applications of Vibrational Spectroscopy 5
Claire K. Muro, Kyle C. Doty, Justin Bueno, Lenka Halámková, and Igor K. Lednev

2.1 Introduction 5
2.1.1 Chemometrics 6
2.2 Trace Evidence 8
2.2.1 Hair Analysis 8
2.2.2 Fibers 11
2.2.3 Paint Analysis 12
2.3 Ink Analysis 16
2.4 Forensic Biology and Anthropology 18
2.4.1 Body Fluids 18
2.4.2 Forensic Anthropology 22
2.5 Gunshot Residue 23
2.6 Controlled Substances 29
2.6.1 Illicit Drugs 29
2.6.2 Pharmaceuticals 32
2.7 Counterterrorism and Homeland Security 36
2.7.1 Explosives 36
2.7.2 Chemical Agents 39
2.7.3 Bioagents 39
2.8 Emerging Technologies 41
2.9 Conclusions 43
3 Applications of Internal Reflection Spectroscopy in Forensic Analysis 55
Ali Koçak
3.1 Introduction 55
3.2 Principles and Theory 56
3.3 Accessories for ATR 59
3.4 Forensic Applications of ATR 60
3.4.1 Packing Materials and Adhesive Tapes 60
3.4.2 Paint Samples 61
3.4.3 Drugs 63
3.4.4 Explosives 65
3.4.5 Soil and Minerals 66
3.4.6 Other Developments 67
3.5 Conclusion 68
References 68

4 Applications of Mass Spectrometry in Forensic Science: A Brief Introduction 71
Roshanak Aslebagh, Pooya Estifaee, Selma Mededovic Thagard, and Costel C. Darie
4.1 Introduction 71
4.2 Mass Spectrometry 72
4.2.1 Instrumentation 72
4.2.1.1 Ionization Source 73
4.2.1.2 Mass Analyzer 75
4.2.1.3 Detector 75
4.2.2 Tandem MS (MS/MS) 75
4.2.3 Combination of MS with Other Separation Techniques 76
4.2.4 Applications of MS 77
4.3 Applications of MS in Forensic Science 77
4.3.1 Drugs and Toxicology 77
4.3.2 Chemical Warfare Agents and Explosives 79
4.3.3 Hair 79
4.3.4 Residues of Gunshots 80
4.3.5 Fingermarks 80
4.3.6 Dyes 80
4.3.7 Glass 81
4.3.8 Drug Packages 81
4.3.9 Paint Analysis 81
4.4 Conclusions 82
References 82
5 An Introduction to Forensic Electrochemistry 89
Jamie P. Smith, Edward P. Randviir, and Craig E. Banks
5.1 Introduction 89
5.2 Electrochemical Methods 90
5.3 Voltammetric Methods 91
5.4 Electrochemical Methods in Forensic Science 93
5.4.1 Poisons 93
5.4.2 Gunshot Residues 94
5.4.3 Drugs 96
5.4.4 Fingerprinting 99
5.4.5 DNA 100
5.5 Outlook for Forensic Electrochemistry 101
References 101

6 Electrochemical Detection of Gunshot Residue for Forensic Analysis 103
Joseph Wang and Aoife M. O’Mahony
6.1 Overview of Gunshot Residue Detection 103
6.2 Electrochemical Detection of Inorganic GSR 107
6.3 Electrochemical Detection of Organic GSR 115
6.4 Next Steps in GSR Analysis: Chemometric Data Treatment and Complementary Orthogonal Methods 118
6.5 Future Prospects for Electroanalytical Detection of GSR 121
References 122

7 From Optical to Hyperspectral Imaging Techniques in Forensic Sciences 125
Maria Ángeles Fernández de la Ossa, María Lopez-López, Matías Calcerrada, and Carmen García-Ruiz
7.1 Added Value of Imaging Techniques in Forensic Sciences 125
7.2 Optical Examination in Forensic Sciences: A Step Before Hyperspectral Imaging 126
7.3 Hyperspectral Imaging: A Flourishing Technique in Forensic Sciences 130
7.3.1 Fundamentals 131
7.3.2 Hyperspectral Imaging Applied in Forensic Sciences 139
7.4 Conclusions and Future Prospects of Hyperspectral Imaging in Forensic Sciences 145
References 146
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Biochemical Analysis of Biomarkers for Forensic Applications</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Evgeny Katz, Jan Halámek, Lenka Halámková, Saira Bakshi, Juliana Agudelo, and Crystal Huynh</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>8.2</td>
<td>Biocatalytic Analysis of Biomarkers for Forensic Identification of Ethnicity Between Caucasian and African American</td>
<td>152</td>
</tr>
<tr>
<td>8.3</td>
<td>Biocatalytic Analysis of Biomarkers for Forensic Identification of Sex</td>
<td>160</td>
</tr>
<tr>
<td>8.4</td>
<td>Biocatalytic Assay to Determine Age of Blood Sample</td>
<td>166</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>173</td>
</tr>
<tr>
<td>9</td>
<td>Processing Skeletal Samples for Forensic DNA Analysis</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Stacey Klempner, Desiree Williams, Kelsha Sanchez, and Richard Li</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>Bone Evidence in Forensic Investigations</td>
<td>178</td>
</tr>
<tr>
<td>9.3</td>
<td>The Sources of DNA from Skeletal Remains</td>
<td>179</td>
</tr>
<tr>
<td>9.4</td>
<td>Postmortem Taphonomic Effects of Skeletal Remains</td>
<td>181</td>
</tr>
<tr>
<td>9.5</td>
<td>Contamination of Challenged Bone Specimens</td>
<td>183</td>
</tr>
<tr>
<td>9.6</td>
<td>Sample Preparation and Processing of Bone Evidence for Forensic DNA Analysis</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>DNA Damage and Repair in Forensic Science</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Ashley Hall, Lynn Sims, Ashley Foster, and Jack Ballantyne</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Mechanisms of DNA Damage</td>
<td>193</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Ultraviolet Radiation-Mediated and Oxidative DNA Damage</td>
<td>194</td>
</tr>
<tr>
<td>10.1.2</td>
<td>DNA Damage in Forensic-Type Samples</td>
<td>197</td>
</tr>
<tr>
<td>10.2</td>
<td>DNA Damage in Forensic Samples</td>
<td>198</td>
</tr>
<tr>
<td>10.2.1</td>
<td>DNA Damage at the Molecular Level</td>
<td>199</td>
</tr>
<tr>
<td>10.3</td>
<td>DNA Repair Mechanisms</td>
<td>206</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Base Excision Repair/Single Strand Break Repair (BER/SSBR)</td>
<td>206</td>
</tr>
<tr>
<td>10.4</td>
<td>DNA Repair in Forensic Science</td>
<td>208</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Commercialization of DNA</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>211</td>
</tr>
<tr>
<td>11</td>
<td>Biosensors in Forensic Analysis</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Paloma Yáñez-Sedeño, Lourdes Agüí, and José Manuel Pingarrón</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>11.2</td>
<td>The Use of Biosensors in Forensic Toxicological Analysis</td>
<td>216</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Inorganic Poisons</td>
<td>216</td>
</tr>
<tr>
<td>11.2.1.1</td>
<td>Cyanide</td>
<td>219</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Organic Toxins: Alcohol, Drugs, Doping Agents</td>
<td>222</td>
</tr>
<tr>
<td>11.2.2.1</td>
<td>Alcohol</td>
<td>222</td>
</tr>
</tbody>
</table>
11.2.2.2 Illicit Drugs 224
11.2.3 Doping 230
11.2.4 Toxins 233
11.2.5 Microorganisms 238
11.3 Biosensors for Chemical and Biological Weapons 241
11.3.1 Chemical Warfare Agents (CWAs) 241
11.3.2 Explosives 245
11.3.3 Biological Weapons 248
11.4 Conclusions and Future Perspectives 254

Acknowledgments 257
References 257

12 Recent Advances in Bloodstain Pattern Analysis 263
Bethany A. J. Larkin and Craig E. Banks
12.1 Introduction 263
12.1.1 Blood Components 264
12.1.2 Blood Drying 266
12.1.3 Bloodstain Formation 269
12.1.4 Surfaces Interactions 273
12.1.5 Surface Manipulation 274
12.1.6 Blood Aging 277
12.1.7 Future Research 279
References 279

13 Detection of Cocaine on Paper Currency 283
Susan van der Heide and David A. Russell
13.1 Cocaine 283
13.2 Cocaine on Banknotes as Forensic Evidence 284
13.3 Methods of Analysis 287
Acknowledgments 296
References 297

14 The Forensic Analysis of Glass Evidence: Past, Present, and Future 299
Brooke Weinger Kammrath, Andrew C. Koutrakos, Meghann E. McMahon, and John A. Reffner
14.1 Glass as Forensic Evidence 299
14.2 A Brief History of Forensic Glass Analysis 300
14.2.1 Physical Properties 301
14.2.2 Optical Properties 305
14.2.3 Chemical Composition 313
14.3 Current Methods of Forensic Glass Analysis 317
14.4 Future Directions of Forensic Glass Analysis 320
14.4.1 New Developments in Windows 320
14.4.2 Future Methods of Glass Analysis 325
14.5 Conclusions 329
Acknowledgment 329
References 329

15 Forensic Examination of Trace Evidence 337
Virginia M. Maxwell
15.1 What Is Trace Evidence? 337
15.2 Major Types of Trace Evidence 342
15.2.1 Hairs 342
15.2.2 Fibers 347
15.2.3 Paint 351
15.2.4 Glass 355
15.2.5 Soil 357
15.2.6 Tape 360
15.2.7 Structural Materials 362
15.2.8 Lamp Filaments 363
15.2.9 Physical Match 364
15.2.10 Miscellaneous Trace Materials 365
15.3 Limitations and Significance of Trace Evidence 365
References 366

16 Fingerprint Spoofing and Liveness Detection 373
Peter Johnson and Stephanie Schuckers
16.1 Introduction 373
16.2 Fingerprint Spoofing 374
16.2.1 Spoofing Methods 374
16.2.2 Spoofing AFIS 376
16.2.3 Spoofing in Forensics 376
16.2.4 Documented Spoof Attempts in the Field 377
16.3 Liveness Detection 377
16.3.1 Hardware-Based Liveness Detection 379
16.3.2 Software-Based Liveness Detection 380
16.4 Summary 381
References 381

17 Engineering as a Forensic Science 383
Steven C. Batterman and Scott D. Batterman
17.1 Introduction 383
17.2 Accident Reconstruction 385
17.3 Biomechanics of Injuries 388
17.4 Products Liability 391
17.4.1 Design Defects 392
17.4.2 Manufacturing Defects 394
17.4.3 Failure to Warn and Instruct 394
17.4.4 General Product Design Considerations 395
17.5 Conclusion 397
References 397
Further Reading 398

18 Unmanned Systems Technology Use by Law Enforcement 401
Anthony Hallett and Victor Weedn
18.1 Evolution and Anatomy of Unmanned Systems 402
18.2 Law Enforcement Applications 403
18.2.1 Bomb Disposal Applications 404
18.2.2 Search and Rescue Applications 404
18.2.3 Standoff and Hostage Negotiation Applications 405
18.2.4 Crime Scene Imaging and Reconstruction Applications 405
18.3 Legal Issues 405
18.3.1 Regulations 406
18.3.2 Privacy 407
18.3.3 Weaponization 408
18.4 Unmanned Systems Deployment 409
18.4.1 Top Reasons Law Enforcement Agencies Hesitate to Deploy Drones 409
18.4.2 Deployment Models 410
18.4.3 SIDEBAR – Law Enforcement Applications 411
References 412

19 Forensic Science – Conclusions and Perspectives 415
Evgeny Katz and Jan Halámk

Index 417