Contents

Preface xiv

PART ONE HARDWARE 1

1 About PLCs 3
 1.1 History 4
 1.1.1 More Recent Developments 6
 1.2 Structure 7
 1.2.1 Inputs and Outputs 10
 1.3 PLC Operation 13
 1.3.1 Process Knowledge 14
 1.3.2 Standard Operations 16
 1.3.3 Cyclic, Freewheeling, or Event-Controlled Execution 18
 1.4 Test Problems 19

2 Digital Signals and Digital Inputs and Outputs 20
 2.1 Introduction 20
 2.2 Terminology 21
 2.2.1 Discrete, Digital, Logical, and Binary 21
 2.2.2 Sensors, Transducers, and Transmitters 22
 2.3 Switches 24
 2.3.1 Limit Switches 24
 2.3.2 Safety Devices 24
 2.3.3 Magnetic Switches 25
 2.4 Logical Sensors 26
 2.4.1 Inductive Sensors 27
 2.4.2 Capacitive Sensors 29
 2.4.3 Photocells 30
2.4.4 Ultrasonic Sensors 33
2.4.5 Rotating Sensors (Encoders) 34
2.4.6 Other Detection Principles and Sensors 37

2.5 Connection of Logical Sensors 39
2.5.1 Sink/Source 41
2.5.2 Selecting a Sensor with the Proper Type of Output 43

2.6 Properties of Discrete Inputs 44

2.7 Discrete Actuators 45
2.7.1 Relays and Contactors 46
2.7.2 Solenoids and Magnetic Valves 47
2.7.3 Transistor Outputs versus Relay Outputs 49

2.8 Test Problems 50

3 Analog Signals and Analog I/O 52

3.1 Introduction 52
3.2 Digitalization of Analog Signals 53
3.2.1 Filtering 53
3.2.2 A/D Conversion 55
3.3 Analog Instrumentation 58
3.3.1 About Sensors 58
3.3.2 Standard Signal Formats 59
3.3.3 On the 4–20 mA Standard 59
3.3.4 Some Other Properties of Sensors 61
3.4 Temperature Sensors 61
3.4.1 Thermocouple 61
3.4.2 PT100/NI1000 62
3.4.3 Thermistors 64
3.5 Connection 64
3.5.1 About Noise, Loss, and Cabling 64
3.5.2 Connecting Sensors 67
3.5.3 Connection of a PT100 (RTD) 68
3.5.4 Connecting Thermocouples 72
3.6 Properties of Analog Input Modules 72
3.6.1 Measurement Ranges and Digitizing: Resolution 72
3.6.2 Important Properties and Parameters 74
3.7 Analog Output Modules and Standard Signal Formats 75
3.8 Test Problems 76

PART TWO METHODIC 79

4 Structured Design 81
4.1 Introduction 81
4.2 Number Systems 82
4.2.1 The Decimal Number Systems 82
4.2.2 The Binary Number System 82
PART THREE IEC 61131-3

5 **Introduction to Programming and IEC 61131-3**
5.1 Introduction
5.1.1 Weaknesses in Traditional PLCs
5.1.2 Improvements with IEC 61131-3
5.1.3 On Implementation of the Standard
5.2 Brief Presentation of the Languages
5.2.1 ST
5.2.2 FBD
5.2.3 LD
5.2.4 IL
5.2.5 SFC
5.3 Program Structure in IEC 61131-3
5.3.1 Example of a Configuration
5.4 Program Processing
5.4.1 Development of Programming Languages
5.4.2 From Source Code to Machine Code
5.5 Test Problems

6 **IEC 61131-3: Common Language Elements**
6.1 Introduction
6.2 Identifiers, Keywords, and Comments 153
 6.2.1 Identifiers 153
 6.2.2 Keywords 154
 6.2.3 Comments 154
6.3 About Variables and Data Types 156
6.4 Pragmas and Literals 156
 6.4.1 Literal 157
6.5 Data Types 158
 6.5.1 Numerical and Binary Data Types 158
 6.5.2 Data Types for Time and Duration 161
 6.5.3 Text Strings 163
 6.5.4 Generic Data Types 164
 6.5.5 User-Defined Data Types 166
6.6 Variables 169
 6.6.1 Conventional Addressing 170
 6.6.2 Declaration of Variables with IEC 61131-3 171
 6.6.3 Local Versus Global Variables 174
 6.6.4 Input and Output Variables 175
 6.6.5 Other Variable Types 176
6.7 Direct Addressing 176
 6.7.1 Addressing Structure 176
 6.7.2 I/O-Addressing 178
6.8 Variable versus I/O-Addresses 179
 6.8.1 Unspecified I/O-Addresses 179
6.9 Declaration of Multielement Variables 180
 6.9.1 Arrays 181
 6.9.2 Data Structures 182
6.10 Test Problems 184

7 Functions 187
 7.1 Introduction 187
 7.2 On Functions 188
 7.3 Standard Functions 189
 7.3.1 Assignment 190
 7.4 Boolean Operations 191
 7.5 Arithmetic Functions 192
 7.5.1 Overflow 193
 7.6 Comparison 194
 7.7 Numerical Operations 195
 7.7.1 Priority of Execution 196
 7.8 Selection 197
 7.9 Type Conversion 197
 7.10 Bit-String Functions 199
 7.11 Text-String Functions 200
 7.12 Defining New Functions 202
 7.13 EN/ENO 203
 7.14 Test Problems 204
8 Function Blocks 206
8.1 Introduction 206
 8.1.1 The Standard’s FBs 207
8.2 Declaring and Calling FBs 207
8.3 FBs for Flank Detection 208
8.4 Bistable Elements 209
8.5 Timers 210
8.6 Counters 211
 8.6.1 Up-Counter 212
 8.6.2 Down-Counter 212
 8.6.3 Up/Down-Counter 212
8.7 Defining New FBs 213
 8.7.1 Encapsulation of Code 214
 8.7.2 Other Nonstandardized FBs 216
8.8 Programs 217
 8.8.1 Program Calls 218
 8.8.2 Execution Control 219
8.9 Test Problems 220

PART FOUR PROGRAMMING 221

9 Ladder Diagram (LD) 223
9.1 Introduction 223
9.2 Program Structure 224
 9.2.1 Contacts and Conditions 225
 9.2.2 Coils and Actions 226
 9.2.3 Graphical Elements: An Overview 227
9.3 Boolean Operations 227
 9.3.1 AND/OR-Conditions 227
 9.3.2 Set/Reset Coils 230
 9.3.3 Edge Detecting Contacts 233
 9.3.4 Example: Control of a Mixing Process 234
9.4 Rules for Execution 237
 9.4.1 One Output: Several Conditions 237
 9.4.2 The Importance of the Order of Execution 238
 9.4.3 Labels and Jumps 239
9.5 Use of Standard Functions in LD 240
9.6 Development and Use of FBs in LD 242
9.7 Structured Programming in LD 244
 9.7.1 Flowchart versus RS-Based LD Code 248
 9.7.2 State Diagrams versus RS-Based LD Code 253
9.8 Summary 259
9.9 Test Problems 260

10 Function Block Diagram (FBD) 262
10.1 Introduction 262
12.6 Control of Diagram Execution 322
12.7 Good Design Technique 323
12.8 Test Problems 326

13 Examples 331
13.1 Example 1: PID Controller Function Block: Structured Text 331
13.2 Example 2: Sampling: SFC 333
 13.2.1 List of Variables 334
 13.2.2 Possible Solution 334
13.3 Example 3: Product Control: SFC 337
 13.3.1 Functional Description 338
 13.3.2 List of Variables 338
 13.3.3 Possible Solution 339
13.4 Example 4: Automatic Feeder: ST/SFC/FBD 342
 13.4.1 Planning and Structuring 344
 13.4.2 Alternative 1: SFC 345
 13.4.3 Alternative 2: ST/FBD 347

PART FIVE IMPLEMENTATION 351

14 CODESYS 2.3 353
14.1 Introduction 353
14.2 Starting the Program 354
 14.2.1 The Contents of a Project 356
14.3 Configuring the (WAGO) PLC 357
14.4 Communications with the PLC 360
 14.4.1 The Gateway Server 361
 14.4.2 Local Connection via Service Cable 362
 14.4.3 Via Ethernet 363
 14.4.4 Communication with a PLC Connected to a Remote PC 364
 14.4.5 Testing Communications 365
14.5 Libraries 365
14.6 Defining a POU 367
14.7 Programming in FBD/LD 368
 14.7.1 Declaring Variables 369
 14.7.2 Programming with FBD 371
 14.7.3 Programming with LD 372
14.8 Configuring Tasks 375
14.9 Downloading and Testing Programs 376
 14.9.1 Debugging 377
14.10 Global Variables and Special Data Types 379

15 CODESYS Version 3.5 381
15.1 Starting a New Project 381
 15.1.1 Device 382
 15.1.2 Application 384
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>Programming and Programming Units (POUs)</td>
<td>386</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Declaration of Variables</td>
<td>388</td>
</tr>
<tr>
<td>15.3</td>
<td>Compiling and Running the Project</td>
<td>389</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Start Gateway Server and PLS and Set Up Communications</td>
<td>390</td>
</tr>
<tr>
<td>15.4</td>
<td>Test Problems</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>396</td>
</tr>
</tbody>
</table>