INDEX

Note: Italicized page locators refer to figures; tables are noted with \(t \).

Aanderaa RCM 11, 141
Absolute dynamic topography, 8
Tyrrenian Sea surface circulation and, 64
 monthly mean for, February, May, August, October, 66
AC. See Algerian Current
ADCP time series, zooplankton migration and, 141
Adriatic Deep Water, 114, 139
Adriatic-Ionian Bimodal Oscillation System, 126
Adriatic Sea, 75, 77, 86, 107, 114, 134. See also North Adriatic
 Sea; South Adriatic Sea
 average pre-EMT outflow of, 76
 Bora wind in, 139, 149
 computing lateral net salt and heat fluxes for, 132
 datasets referring to, 115–116
 deep-water mass formation in, 85
 DWF and role of lateral advection in, 131
 as main source of EMDW, 86
 physiographic structure of, 113
 potential temperature, salinity, and density at various depth
 layers, 96
 temperature oscillations in, 90
 temporal evolution, 1960–2000, of air temperature, sea
 surface temperature, evaporative fluxes, and total heat
 fluxes over, 127
 temporal evolution, 1960–2000, of air temperature, wind
 intensity, and precipitation over, 125
 temporal evolution, 1960–2000, of net volume of water
 exchanged at different density values through Otranto
 Strait, 118, 119
 time series of average potential temperature, salinity,
 potential density, and log(N) binned at half-year
 intervals in, 89
 trends in water properties at selected depth intervals in,
 1948–2010, 109t
 ADT. See Absolute dynamic topography
 Advection, lateral, role in circulation patterns of eastern
 Mediterranean Sea, 129–132
 ADW. See Adriatic Deep Water
 Aegean Basin, 102, 115
 Aegean Sea, 75, 107, 108, 134, 138. See also North Aegean
 Sea; South Aegean Sea
 air temperature, surface heat fluxes, and NCP dipole
 pattern in, 110
 behavior of subdomains within, 98–102
 Dardanelles Strait parameterization and, 117
 deep-water mass formation in, 85
 DWF and role of lateral advection in, 131
 DWF mechanisms involved in, 118
 evolution of hydrological characteristics in, 121
 histogram of dense-water outflow rates from, 76
 history of dense-water release from, 75–76
 islands, islets, depressions, and sills within, 98
 lateral net salt and heat fluxes for, computing, 132
 as new source of EMDW, 86
 outflow of dense water from, into Ionian Sea during
 EMT, 96
 physiographic structure of, 113
 potential temperature, salinity, and density at various depth
 layers, 95
 production of very dense waters in, 113–114
 salinity lateral redistribution in, 126
 temperature oscillations in, 90, 91–92
 temporal evolution, 1960–2000, of air temperature, sea
 surface temperature, evaporative fluxes, and total heat
 fluxes over, 127
 temporal evolution, 1960–2000, of air temperature, wind
 intensity, and precipitation over, 125
 temporal evolution, 1960–2000, of net volume of water
 exchanged at different density values through Cretan
 Arc Straits, 118, 119
 time series of average potential temperature, salinity,
 potential density, and log(N) binned at half-year
 intervals in, 89
 trends in water properties at selected depth intervals in,
 1948–2010, 109t
 Aegean Straits, 94
 Air-sea heat fluxes
 calculation of, ECMWF data and, 141, 143
 intense DWF in Aegean and, 133
 AIS. See Atlantic Ionian Stream
 Alborán Basin, 13
 altimetry-based mean circulation in, 8–9
 altimetry EKE time series for, 12
 eddy kinetic energy in, 10
 NM8 EKE time series for, 14
 surface circulation variability using EOFs for, 11
 Alborán Sea
 first EOF for, with amplitude and pattern; altimetry ADT,
 NM8 SSH, 15
 second EOF for, with amplitude and pattern; altimetry
 ADT, NM8 SSH, 16
Algerian Basin
- altimetry EKE time series for, 12
- eddy kinetic energy in, 10
- first EOF for, with amplitude and pattern; altimetry ADT, NM8 SSH, 17
- NM8 EKE time series for, 14
- second EOF for, with amplitude and pattern; altimetry ADT, NM8 SSH, 16
- surface circulation variability using EOFs, 11–12

Algerian Current, 8, 9, 13
Almería-Orán Front, 8, 9
Altimetric measurements, limitations with, 21
Altimetry ADT
- first EOF for Alborán Sea, 1993–2007, 15
- first EOF for Algerian Basin, 1993–2007, 17
- first EOF for NWMED, 1993–2007, 19
- second EOF for Alborán Sea, 1993–2007, 16
- second EOF for Algerian Basin, 1993–2007, 18
- second EOF for NWMED, 1993–2007, 20

Altimetry EKE time series, for Alborán Basin, Algerian Basin, and North Balearic Sea, 12

AMC. See Asia Minor Current
Anticyclonic eddies, 149, 150, 152, 153
Antikithira Strait, 105, 106, 113
bathymetry of EMed, 78
dense waters exiting at, 77
ARGO floats data, 87
ARPEGE-Climate model, 5, 116
ARPERA dataset, 116, 121
Asia Minor Current, 86
Athos Basin, 98
Atlantic Ionian Stream, 126, 130, 134

Atlantic layer (AL)
- difference MITgcm-POM for time-averaged thickness of, 36
- POM and MITgcm simulation of SoG circulation and, 31, 33
- time-averaged thickness, as simulated by MITgcm numerical model, 35
- time evolution of transport at Espartel, Camarinal Sill, Tarifa, and Gibraltar sections, 38
- water transport and thickness computation for, 34
- transports of, 70–72
- zonal vertical circulation in, 85

Atmospheric forcing, 134
- air-sea heat fluxes, DWI in Aegean and, 133
- Cretan Deep Water and role of, 121
- derived from ARPERA dataset, 116
- thermohaline variability in Southern Adriatic between, 34
- triggering of DWF in eastern Mediterranean and, 121–124, 126

AVISO dataset, for Tyrhenian Sea surface circulation, 64, 66–67
AW. See Atlantic water

AW pathway
- horizontal distribution of salinity minimum in upper 250m during preconditioning and decay phase of EMT event, 128
- during preconditioning and decay phase of 1970s event, 129
- salinity lateral redistribution and evolution of, 126

Balearic Current, 9
Balearic Sea, 12
Bari-Dubrovnik section
E2M3A site and, 141, 149
vertical distribution of potential temperature, salinity, density, and dissolved oxygen acquired along, 2007–2008, 150

Baroclinic tides, reproduced in POM and MITgcm models, 31
Baroclinic velocities, internal bore evolution, POM and MITgcm and calculation of, 31
Barotropic tides, reproduced in POM and MITgcm models, 30–31
BETACF, 89
BETA1, 89
BiOS. See Adriatic-Ionian Bimodal Oscillation System
Black Sea Water, 86, 99
Bonifacio cyclone-anticyclone system
Tyrrhenian Sea
- intermediate circulation, 67, 69
- surface circulation, 62, 64, 66
- water masses and transports, 69
Bonifacio Strait, 61
Bora wind, in Adriatic Sea, 139, 149
Boundary conditions
eastern Mediterranean circulation studies
- Dardanelles Strait parameterization, 117
- Gibraltar Strait, 117
- relaxation schemes, 117
- temperature and salinity climatology, 117
- Brunt-Väisälä frequency, stability of water columns in, 143, 146
- southern Adriatic expressed by, 146
BSW. See Black Sea Water
Buoyancy fluxes, in Mediterranean Sea, 1, 2

Camarinal Sill
- barotropic velocity over, MITgcm simulation, 33
- barotropic velocity over, POM simulation, 32
- barotropic velocity over, time-evolution of isohalines simulated by POM, 43
- presence of provisional supercritical flow as simulated by MITgcm with respect to one mode and with respect to both modes in, 41
- section of, original bottom topography, 37
- time-evolution of Atlantic layer, interfacial-mixed layer, and Mediterranean layer transport at, 38

CDW. See Cretan Deep Water
Central Aegean Sea
- potential temperature, salinity, and density at various depth layers in, 100–102
- role of, in thermohaline circulation and deep-water formation, 101–102
Chios basin, 98
Chlorophyll-a distribution, eddylike structures observed at E2M3A and analysis of, 151, 153
CIW. See Cretan Intermediate Water
Climate forcing, complex Mediterranean response to, 110
Conductivity-temperature-depth dataset, for thermohaline and mesoscale dynamics in Southern Adriatic, 141
Consignio Nazionale delle Ricerche (CNR), 52
Convective events
 deep, mesoscale eddies and, 149
 DWF processes in eastern Mediterranean and, 118–121
Coriolis effect, cyclonic circulation of LIW/CIW and, 132
Corsica Channel, 62, 64, 72
 as opening to Tyrrhenean Sea, 59, 60
 transports of, 72
Cretan Arc Straits, 113, 114, 115, 121, 128
 annual net heat and salt exchange through, 132
 annual net transport in upper 0-200m in Levantine Sea and corresponding net flows through, 131
 flows through—salinity and heat, 132–133
 stratification of Aegean Sea and exchange fluxes in, 104–105
Cretan Basin
 intrabasin variability in Aegean Sea and, 98
 temperature, salinity, and density interdecadal oscillations in, 99
Cretan Deep Water, 99, 114, 118
 atmospheric forcing and, 121
 formation of, 115
Cretan Dense Water, 86
Cretan Intermediate Water, 75, 134
 Coriolis effect and cyclonic circulation of, 132
 formation of, 115
 production of, 114
Cretan Island Arc, 77
Cretan Passage, 113
 bathymetry of EMed, 78
 shallow EMR in, 77
Cretan Sea, 101, 102, 113, 120, 121, 130
 eastern, density compared with time curve in, 79, 80
 eastern, signatures of Aegean dense-water outflow event in, 78
 synthesis of datasets referring to, 116
 temperature at 1900–2100-m depth interval binned and averaged at 0.1° x 0.1° latitude-longitude intervals during 1970–1990 period, 107
 during 1990–2012 period, 108
Cretan Sea Basin, 86
Cretan Sea Straits, 86
Cretan Strait, 99
 Critical flow, condition for, 38
 Cyclonic eddies, 149, 150, 152, 153
Dardanelles Strait, 86, 99, 117
Deep convection, 1
Deep Water Formation, 115
 in Adriatic Sea, two types of mechanisms for, 117
 in Aegean Sea, complicated case of, 118
 evolution of atmospheric forcing in eastern Mediterranean and, 121–124, 126
 evolution of hydrological characteristics in eastern Mediterranean and, 121
 flows through straits—salinity and heat fluxes, 132–133
 lateral advection in Adriatic and Aegean seas and efficiency of, 131
 winter convection phases (2008–2010), thermohaline circulation in Southern Adriatic and, 146
 winter spells and triggering of, 139
Dense Water Formation, in Southern Adriatic, observations at E2M3A site, 146, 149
Density gradients, dispersion and, 27–28
Diapycnal mixing, POM simulation and, 34, 42, 49
DieCAST model, 5
Diffusive mixing processes, in western Mediterranean deep waters, 55–56
Digital Bathymetric Data Base (DBDB5), 116
Dispersion, density gradients and, 27–28
Double diffusive convection, mixing in western Mediterranean deep waters and, 52, 56
DWF. See Deep Water Formation
Eastern Alborán Basin (EAG), 8
Eastern Mediterranean Deep Water, sources and formation of, 86, 113
Eastern Mediterranean Sea
 Aegean Sea’s role in largest event of deep-water variability in, 98
 basins comprising, 113
 bathymetric map of, 114
 deep-water variability and interbasin interactions in, 85–110
 basinwide and interbasin variability, 90–97
 bathymetry with overlaid station positions and subdomain bounds, 88
 discussion and conclusions, 108, 110
 intrabasin variability, 98–107
 introduction, 85–87
 methodology, 87, 89
 simple statistics, 107–108
 internal mechanism driving alternation of dense/deep water sources in, 113–134
 atmospheric forcing, 116
 boundary conditions, 117
 data series, 115–116
 evolution of atmospheric forcing, 121–126
 evolution of hydrological characteristics, 121
 flows through straits—salinity and heat, 132–133
 introduction, 113–115
 model description, 116
 model run, 117
 results and discussion, 117–133
 river discharge data, 116
 role of lateral advection, 129–132
 salinity lateral redistribution, 126, 128–129
 summary and conclusion, 133–134
 renewal time of deep and bottom waters in, 114–115
Eastern Mediterranean Sea (cont’d)
time series of average potential temperature, salinity, potential density and Log(N), in Adriatic Sea, 90
time series of average potential temperature, salinity, potential density and Log(N), in Aegean Sea, 89
trends in water properties at selected depth intervals, in selected subdomains of, 109
Eastern Mediterranean Transient, 1–2, 6, 113, 115, 134
actual, lessons learned from, 75–78
atmospheric forcing, cyclone activity over Aegean and, 133
bathymetry of EMed, 78
causes of, 75, 115
discussion and conclusion of analysis, 80–82
Aegean events producing EMR overflow, 80–81
contradictions of EMT as a recurrent phenomenon, 81
evolution of atmospheric forcing and, 121–124, 126
evolution of eastern Mediterranean deep-water characteristics, various subbasins and, 108, 110
evolution of hydrological characteristics and, 121
historic T-S signatures compared with potential effects of EMT-type events, 78–80
Levantine Basin area and influence of, 105–107
salinity and temperature in northwestern Levantine Sea and, 94
T-S diagrams of 1955 Calypso and 1978 Meteor cruise M5O/3, 81
verifying, new dense water formation in Aegean and, 91
Eastern Mediterranean Water, 139
East Mediterranean Ridge, 77, 78
ECMWF. See European Center for Medium Range Forecasting
Eddy kinetic energy (EKE) calculating, 8
NM8 EKE time series for Alborán Basin, Algerian Basin, and North Balearic Sea, 14
values for TYREM and MFS, 61
WMED mean geostrophic, calculated from altimetry, 1993–2007, 10, 11
WMED mean geostrophic, calculated from NM8, 1993–2007, 13
Eddylike patterns, in Adriatic Sea, thermodynamic forcing, current excitation and, 149–151
EMDW. See Eastern Mediterranean Deep Water
Empirical orthogonal functions
first, for Algerian Basin, with amplitude and pattern; altimetry ADT, NM8 SSH, 17
first, for NWMed with amplitude and pattern; altimetry ADT, NM8 SSH, 19
first for Alborán Sea, with amplitude and pattern; altimetry ADT, NM8 SSH, 15
second, for Algerian Basin, with amplitude and pattern; altimetry ADT, NM8 SSH, 18
second, for NWMed with amplitude and pattern; altimetry ADT, NM8 SSH, 20
second for Alborán Sea, with amplitude and pattern; altimetry ADT, NM8 SSH, 16
spatial and temporal variability quantified with, 8
surface circulation variability using, 11–13
Alboran Basin, 11
Algerian Basin, 11–12
Northwestern Mediterranean Basin, 12–13
EMR. See East Mediterranean Ridge
EMT. See Eastern Mediterranean Transient
EMT-like event, description of, 115
Entrainment, in Strait of Gibraltar, 25
Envisat, 6, 7
EOFs. See Empirical orthogonal functions
ERA40, 6, 116
ERS-1, 6, 7
ERS-2, 6, 7
Espartel section
original bottom topography, 37
time evolution of Atlantic layer, interfacial-mixed layer, and Mediterranean layer transport at, 38
Espartel Sill, presence of provisional supercritical flow as simulated by MITgcm with respect to one mode and with respect to both modes in, 41
E2M3A deep-ocean observatory
Adriatic Sea bathymetry and location of in Southern Adriatic Sea, 140
thermohaline variability and mesoscale dynamics in Southern Adriatic Sea, 139–153
accuracies of oceanographic instruments, 142
conclusions, 151–153
daily wind data and wind speed, 2006–2010, 144
datasets and methods, 141, 143
dense water formation episodes, 146, 149
heat and salt content changes, 146
identification of eddylike patterns, 149–151
introduction, 139–141
oceanographic buoy configurations, 142
stability of water column calculations, 146, 148
temporal evolution of total heat and salt content, 147–148
time series of in situ temperature and salinity recorded by CT and CTD sensors, 145
time series of vertical component cleaned by DVM of zooplankton, 151
between 2006 and 2010, 143–144, 146
European Center for Medium Range Forecasting, 61, 141
Evaporation flux, TYREM and, 61
FP7-EuroSITES (European Ocean Observatories Network) project, 140
GAMMLN, 89
Geosat Follow-On, 6
Gibraltar Experiment, 1
Gibraltar section, time evolution of Atlantic layer, interfacial-mixed layer, and Mediterranean layer at, 38
Gibraltar Strait functioning of, 2
open boundary conditions, eastern Mediterranean circulation studies, 117
GLORYS, 6
Index 161

Gulf of Iskenderun, 86
Gulf of Lion, 9, 12, 51, 139, 149
ARPERA dataset and case study of, 116
deep-water mass formation in, 85

Haline buoyancy, Southern Adriatic, expression of, 143
Halocline-thermocline
mixing in western Mediterranean deep water and
discussion, 56–57
mixing estimates, 53–55, 54
mixing processes, 55–56
overall environment, 51–52, 52

HCMR. See Hellenic Center for Marine Research

Heat fluxes
lateral, DWF activity, flows through straits and, 133
NM8 and, 6
TYREM and, 61

Hellenic Center for Marine Research, 116
Hellenic National Oceanographic Data Center, 116
Hellenic Navy Hydrographic Service (HNHS) database, 116

Hellenic Trench, 113, 114
bathymetry of EMed, 78
EMR and boundaries of, 77
T-S diagrams for, 76, 77

Hellenic Trough, signatures of Aegean dense-water outflow event in, 78

Herodotus Trough, 77, 78

HNODC. See Hellenic National Oceanographic Data Center

Hydraulics
exchange flow through Strait of Gibraltar and, 36–41
critical flow, 38
definition sketch of three-layer flow, 39
subcritical flow, 39, 40
supercritical flow, 39, 39, 40, 41, 41

Ibiza Channel, 9

Infrared radiation budget, computing, 73

Interface layer (IL)
difference MITgcm-POM for time-averaged thickness of,
depth of midpoint for, 36
POM and MITgcm simulation of SoG circulation and, 31
time-averaged thickness, as simulated by MITgcm numerical model, 35
water transport and thickness computation for, 34

Interfacial-mixed layer,
time evolution of transport at Espartel, Camarinal Sill, Tarifa, and Gibraltar sections, 38

Intergovernmental Oceanographic Commission (IOC/
UNESCO Ocean Sciences), 1

Internal bore evolution, SoG circulation simulated by POM and MITgcm and, 31

Internal tides, evolution/generation of, MITgcm model and, 31

INVBETAL, 89

Ionian abyss, 2

Ionian Basin, 113, 115, 130
analysis of spatial variations across, 102–103
temperature oscillations in, 91

Ionian Sea, 86, 107, 134, 139
annual net transport in upper 0–400m in, 131
bathymetry of EMed, 78
central, T-S diagrams for, 76, 77
complex interpretation of T-S diagrams in, 78
deep temperature and salinity data for, 91
density variations at 4-km depth in deepest troughs of, 97
normalized anomalies of the temporal evolution, 1960–2000, of mean salinity in upper layers for, 130
northeastern, cooling and salinity peaks in, 96
northeastern, potential temperature, salinity, and density at various depth layers, 98
potential density in 3900–4100-m depth interval in, 99
potential temperature in 0900–1100-m depth in northeastern, northwestern, southeastern, and central subdomains of, 104
potential temperature in 1900–2100-m depth level in northeastern, northwestern, southeastern, and central subdomains of, 106
salinity lateral redistribution in, before/during EMT event (1986–1996), 126, 128–129
temperature oscillations in, 91
time series of average potential temperature, salinity, potential density, and log(N) binned at half-year intervals in, 93
time series of average temperature at depths of 2900–3100 m binned at half-year intervals in, 94
trends in water properties at selected depth intervals in, 1948–2010, 109r

Ionian upper-layer circulation reversals, 2

Isohalines
time evolution of, and velocity currents simulated by MITgcm during one tidal cycle, 33
time-evolution of, and velocity currents simulated by MITgcm using model grid initially used for POM (EXP5), 48
time evolution of, and velocity currents simulated by POM during one tidal cycle, 32

ISRAMAR, 87

Italian Space Agency (ASI), 60

Jason-1, 6, 7

Karpathos Strait, 113
Kasos Strait, 79, 104, 105, 106, 107, 113
bathymetry of EMed, 78
dense waters exiting at, 77
Kondo scheme, eastern Mediterranean circulation studies and, 116

Latent heat flux, computing, 73

Lateral mass exchange, 1

Lemnos Basin, 98

Levantine Basin, 86, 113, 115, 120
analysis of spatial variations across, 102–103
deep temperature data for, 91
temperature oscillations in, 91
Levantine Intermediate Water, 57, 114, 134, 139

cold winters and formation of, on periphery of Rhodes Gyre, 86

Coriolis effect and cyclonic circulation of, 132

increased salinity in, 2

salinity and temperature of WMDW compared with, 51–52

and, 146

signature of, throughout western Mediterranean, 53

transports of, 70–72

TYREM simulations and, 67, 69

zonal vertical circulation and, 85

Levantine Sea, 77, 85, 86, 107, 130, 134

annual net transport in upper 0-200 m in, 131

bathymetry of EMed, 78

central, T-S diagrams for, 76, 77

central and southern, family plot of T-S diagrams, 1910-2011, 79, 79

density variations at 4-km depth in deepest troughs of, 97

northwestern, cooling event in, 94

northwestern, potential temperature, salinity, and density at various depth layers, 97

potential density in 3900–4100-m depth interval in, 99

potential temperature in 0900–1100-m depth in

northwestern, southwestern, southeastern, and northeastern subdomains, 103

potential temperature in the 1900–2100-m depth level in

northwestern, southwestern, and southeastern subdomains, 105

salinity lateral redistribution in, before/during EMT event

signatures of Aegean dense-water outflow event in, 78

temperature oscillations in, 91

time series of average potential temperature, salinity, potential density, and log(N) binned at half-year intervals in, 92

time series of average temperature at depths of 2900–3100 m

binned at half-year intervals in, 94

trends in water properties at selected depth intervals in, 1948–2010, 109r

Ligurian Basin, 12

LIW. See Levantine Intermediate Water

LIW/CIFW pathway

horizontal distribution of salinity maximum in intermediate layer 100–500 m

during preconditioning and decay phase of EMT event, 128

during preconditioning and decay phase of 1970s event, 129

salinity lateral redistribution and evolution of, 126

LODYC model, 5

Longwave radiation, computing for eastern Mediterranean circulation studies, 116

MARMER project, 87

Maximal regime, Strait of Gibraltar dynamics driven toward, 25

MDT

Mean Dynamic Topography (MDT)

synthetic, 8

Tyrrhenian Sea surface circulation and, 64

Mean surface circulation of Western Mediterranean, satellite altimetry vs. NM8 datasets, 8–9, 13

MEDAR data set, T and S data extracted from, 78–79

MEDAR MEDATLAS, 28, 117

MEDAR/MEDATLAS II, 87

MEDATLAS 2002

eastern Mediterranean circulation studies and

Adriatic Sea data derived from, 116

temperature and salinity climatology, 117

Mediterranean Sea

as basin for ocean modeling, 5

timescale in, 21

Rossby radius of deformation in, 59

salinity increase in, 2

MEDMEX project, 5

MED16 simulation, 6

Mellor-Yamada turbulence scheme, 28

Mesoscale eddies

deep convection and, 149

eastern Mediterranean Sea, monitoring, 21

Meteor cruise M25, hydrographic surveys of 1994–1995, 86

MFS, TYREM nested one way with, 60–61

MITgcm (z-coordinate nonhydrostatic model)

baroclinic horizontal velocity simulated by, during arrival of internal waves train at TN, 34

bathymetry in Strait of Gibraltar represented in z-level, 36

partial cells of, 26

Espartel, Camarinal, and Tarifa Narrows cross sections, 37

evolution of horizontal velocity field along longitudinal Section E during arrival of internal wave train to TN, 40, 41

exchange flow through Strait of Gibraltar simulated by description of, 28–30

discussion and conclusion, 46, 48–49

hydraulics, 36–41

internal bore evolution, 31
Physical Oceanography of the Eastern Mediterranean (POEM) program, 1, 85, 86, 87, 121
POEM-Biology and Chemistry (POEM-BC), 1

POM (α-coordinate hydrostatic model)
baroclinic horizontal velocity simulated by, during arrival of internal waves train at TN, 34
bathymetry in Strait of Gibraltar represented in, 26
eastern Mediterranean circulation studies, 116
Espartel, Camarinal, and Tarifa Narrows cross sections, 37
evolution of horizontal velocity field along longitudinal Section E during arrival of internal wave train to TN, 40, 41
exchange flow through Strait of Gibraltar simulated by description of, 27–28
discussion and conclusion, 46, 48–49
hydraulics, 36–41
internal bore evolution, 31
sensitivity experiments, 42
three-layer definition and properties, 31, 33–36
validation of, 30–31
frequency of occurrence, over tropical month period, of supercritical flow with respect to, 39, 39–41

MITgcm compared with, for time-averaged Atlantic, interface, and Mediterranean layer thickness, and depth of midpoint of interface layer, 36
nesting, tidal amplitudes and phases of barotropic currents simulated by, 30

POM and MITgcm simulation of SoG circulation and, 31
relaxation schemes, eastern Mediterranean circulation studies, 117
temporal evolution, 1960–2000, of temperature and, for South Adriatic and South Aegean Seas, 121, 123
temporal evolution of, at South Aegean Sea and South Adriatic Pit, 122
temporal evolution of temperature and, at different densities, 1960–2000, for South Adriatic and South Aegean Seas, 123–124
thermohaline variability in Southern Adriatic between 2006–2010 and, 143–144, 146
time series of in situ recorded by CT and CTD sensors installed at E2M3A, 145
uniform increase in Aegean Sea, at deep layers of, 92–93
vertical distribution of, of and for South Adriatic and South Aegean Seas, 123–124

POEM-Biology and Chemistry (POEM-BC), 1

POEM (α-coordinate hydrostatic model)

POM (α-coordinate hydrostatic model)
baroclinic horizontal velocity simulated by, during arrival of internal waves train at TN, 34
bathymetry in Strait of Gibraltar represented in, 26
eastern Mediterranean circulation studies, 116
Espartel, Camarinal, and Tarifa Narrows cross sections, 37
evolution of horizontal velocity field along longitudinal Section E during arrival of internal wave train to TN, 40, 41
exchange flow through Strait of Gibraltar simulated by description of, 27–28
discussion and conclusion, 46, 48–49
hydraulics, 36–41
internal bore evolution, 31
sensitivity experiments, 42
three-layer definition and properties, 31, 33–36
validation of, 30–31
frequency of occurrence, over tropical month period, of supercritical flow with respect to, 39, 39–41
horizontal grid used in, 29
MITgcm compared with, for time-averaged Atlantic, interface, and Mediterranean layer thickness, and depth of midpoint of interface layer, 36
nesting, tidal amplitudes and phases of barotropic currents simulated by, 30

time evolution of isohalines and velocity currents simulated by, during one tidal cycle, 32
time-evolution of isohalines and velocity currents simulated by, with horizontal diffusivity set to zero (EXP3), 45
time-evolution of isohalines and velocity currents simulated by, with increased number of iterations for Smolarzkevicz advection scheme (EXP2), 44
time-evolution of isohalines and velocity currents simulated by, with vertical diffusivity set to zero (EXP1), 43

TYREM based on, 60
vertical current simulated by, during arrival of internal waves train at TN, 34

PRIMI, 60
Princeton Ocean Model. See POM

Rhodes Gyre, 85
River discharge data, for major Mediterranean rivers, 116–117

Salinity
 Adriatic Sea, interannual to decadal oscillations in, 93–94
 in Aegean Sea waters, 75
 Cretan Basin, interdecadal oscillations in, 99
 CTD dataset and measurement of, 141
 in deep layers of Aegean Sea, uniform increase of, 92–93
 density in Levantine Sea and peaks of, 91
 differences in potential temperature and, 2010 minus 2008 for stations across southern western Mediterranean Sea, 55
 Eastern Mediterranean impact and, 76–77, 77
 evolution of western Mediterranean deep waters and, 52–53
 increase in Mediterranean Sea, 2
 Levantine series and observations of, 78–79
 profiles of
 below 500 dbar at station M9 for 2006, 2008, and 2010 surveys, 54
 POM and MITgcm simulation of SoG circulation and, 31
 relaxation schemes, eastern Mediterranean circulation studies, 117
 temporal evolution, 1960–2000, of temperature and, for South Adriatic and South Aegean Seas, 121, 123
 temporal evolution of, at South Aegean Sea and South Adriatic Pit, 122
 temporal evolution of temperature and, at different densities, 1960–2000, for South Adriatic and South Aegean Seas, 123–124
 thermohaline variability in Southern Adriatic between 2006–2010 and, 143–144, 146
 time series of in situ recorded by CT and CTD sensors installed at E2M3A, 145
 uniform increase in Aegean Sea, at deep layers of, 92–93
 vertical distribution of, of and for South Adriatic and South Aegean Seas, 123–124

Satellite altimetry and NM8 dataset comparison, WMED data, 6–8
methods
eddy kinetic energy, 8
empirical orthogonal functions, 8

results
eddy kinetic energy, 10–11
mean surface circulation, 8–9
summary and conclusion, 13–14, 21
surface circulation variability using EOFs, 11–13
Alborán Basin, 11
Algerian Basin, 11–12
Northwestern Mediterranean Basin, 12–13
SeaDataNet CTD and bottle database, 87
Sea Level Anomaly
TYREM simulations and, 64
for August 2009, 67
Seasonal climatology, eastern Mediterranean circulation studies, 117
Sea surface height, satellite altimetry data and, 7
Sea Surface Temperature (SST) fields, Tyrrenian Sea, 64
Sensible heat flux, computing, 73
SESAME cruises, 141
SESAME EU project, 87
Sicily Strait, 59, 60, 60, 72, 114, 130
Skiros basin, 98
SLA. See Sea Level Anomaly
Smagorinsky diffusion scheme, 28
Smolarkiewicz advection scheme (EXP2), time-evolution of isohalines and velocity currents simulated by POM, with increased number of iterations for, 44
SoG. See Strait of Gibraltar
South Adriatic Pit, 113, 118, 139, 151
MODIS chlorophyll-a distribution in, April 2008, 153
temporal evolution of potential temperature, salinity, and potential density in, 122
temporal evolution of potential temperature, salinity, and potential density of deep layers at, 120
South Adriatic Sea
bathymetry and location of E2M3A in, 140
Bora and dense water formation in, 139
daily wind data and wind speed moving average over 3 days in, 2006–2010, 144
deep-water outflow in, 117
normalized anomalies of the temporal evolution, 1960–2000, of mean salinity in upper layers for, 130
temporal evolution, 1960–2000, of salinity and temperature for, 121, 123
temporal evolution, 1960–2000, of salinity and temperature for, at different densities, 123–124
thermohaline variability and mesoscale dynamics observed at E2M3A, 139–153
accuracies of oceanographic instruments, 142
conclusions, 151–153
datasets and methods, 141, 143
dense water formation episodes, 146, 149
heat and salt content changes, 146
identification of eddylike patterns, 149–151
introduction, 139–141
oceanographic buoy configurations, 142
stability of water column calculations, 148
temporal evolution of total heat and salt content, 147–148
thermohaline variability between 2006–2010, 143–144, 146
South Aegean Sea, 98, 113, 134
normalized anomalies of the temporal evolution, 1960–2000, of mean salinity in upper layers for, 130
potential temperature, salinity, and density at various depth layers in, 100–102
temporal evolution, 1960–2000, of salinity and temperature for, 121, 123
temporal evolution, 1960–2000, of salinity and temperature for, at different densities, 123–124
temporal evolution of potential temperature, salinity, and potential density in, 122
temporal evolution of potential temperature, salinity, and potential density of deep layers at, 120
Southern Oscillation (SO), Mediterranean response to climate forcing and, 110
Southern Western Mediterranean Sea, differences in salinity and potential temperature 2010 minus 2008 for stations across, 55r
Space Academy Foundation, 2
Sporades Basin, 98
Strait of Gibraltar, exchange flow through
bathymetry represented in alpha-coordinate POM, 26
bathymetry represented in z-level, partial cells MITgcm, 26
discussion and conclusion, 46, 48–49
introduction, 25, 27
models description and initialization, 27–30
MITgcm (nonhydrostatic), 28–30
POM (hydrostatic), 27–28
models validation, 30–31
original bathymetric chart of, 26
results, 31–45
characteristics/parameterizations used for seven experiments performed, 42r
hydraulics, 36–41
internal bore evolution, 31
three-layer definition and properties, 31, 33–36
sensitivity experiments advection and diapycnal mixing, 42
hydrostatic vs. nonhydrostatic regime, 42
resolution, 42
Strait of Otranto, 139, 146
Subcritical flow, exchange flow through SoG, hydraulic analysis and, 39, 40
Submaximal regime, Strait of Gibraltar dynamics driven toward, 25
Submesoscale eddies, 150
Supercritical flow, exchange flow through SoG, hydraulic analysis and, 39, 39, 40, 41, 41
Surface buoyancy flux, Southern Adriatic, expression of, 143
Surface circulation variability, EOF mode of altimetry
Alborán Basin, 11
Algerian Basin, 11–12
Northwestern Mediterranean Basin, 12–13
Surface heat fluxes, net, latent and sensible, methods for deriving, 73
Surface wind forcing, 1
Tarifa Narrows
original bottom topography, 37
presence of provisional supercritical flow as simulated by MITgcm with respect to one mode and with respect to both modes in, 41
time evolution of Atlantic layer, interfacial-mixed layer, and Mediterranean layer transport at, 38

Temperature
in Adriatic Sea, increases in, 94
in Aegean Sea waters, 75
CTD dataset and measurement of, 141
differences in salinity and, 2010 minus 2008 for stations across southern western Mediterranean Sea, 55/
Eastern Mediterranean impact and, 76–77, 77
evolution of Mediterranean deep waters and, 52–53
Levantine series and observations of, 78–79
oscillations of
in Aegean and Adriatic Seas, 90–92
in Cretan Basin, 99
in Ionian Basin subdomains, 105
in Levantine and Ionian basins, 91
profiles of
below 500 dbar at station M9 for 2006, 2008, and 2010 surveys, 54
relaxation schemes, eastern Mediterranean circulation studies, 117
temporal evolution of, at South Aegean Sea and South Adriatic Pit, 122
temporal evolution of salinity and, at different densities, 1960–2000, for South Adriatic and South Aegean seas, 121, 123–124
thermohaline variability in Southern Adriatic between 2006–2010 and, 143–144, 146
time-series in Levantine Basin subdomains, 103–104
time series of in situ recorded by CT and CTD sensors installed at E2M3A, 145
vertical distribution of, along Bari-Dubrovnik section, 2007–2008, 150
water masses in ocean and, 85
western Mediterranean deep waters
discussion, 56–57
mixing estimates, 53–55
mixing processes, 55–56
vertical distribution of salinity, 51
Temperature climatology, eastern Mediterranean circulation studies, 117
THC. See Total heat content
Thermal buoyancy, in Southern Adriatic, expression of, 143
Thermohaline cells, DWF and driving of, 139
Thermohaline circulation
in Eastern Mediterranean Sea, 86, 87
overview of deep-water sources for, 113–115
in Strait of Gibraltar, 25
Thermohaline mixing processes, importance of, in Mediterranean compared with open ocean, 51

Thermohaline variability
observed at E2M3A in Southern Adriatic Sea, 139–153
conclusions, 151–153
datasets and methods, 141, 143
dense water formation episodes, 146, 149
heat and salt content changes, 146
identification of eddylike patterns, 149–151
introduction, 139–143
stability of water column calculations, 148
temporal evolution of total heat content at E2M3A, 147–148
between 2006–2010, 143–144, 146
Three-layer hydraulic theory, Strait of Gibraltar and, 25
Tidal forcing, hydrostatic POM model and, 28
Tides, in Mediterranean Sea compared with greater ocean, 51, 57
TMW. See Transitional Mediterranean Water
TOPEX/Poseidon, 6, 7
Total heat content, in Southern Adriatic, calculation of, 143
Total salt content, in Southern Adriatic, calculation of, 143
Transitional Mediterranean Water
freshening of Aegean water column and, 134
weakening of DWF processes in Cretan Sea and, 121
TSC. See Total salt content
T-S signatures, historic, compared with potential effects of EMT-type events, 78–80
Two-layer hydraulic theory, Strait of Gibraltar and, 25
Tyrrhenian Sea (TYS)
large steplike features observed in, 53
salt finger fluxes in, 57
seasonal variability of circulation, 2009
barotropic stream function, February, 69
intermediate circulation, 67, 69
monthly mean of ADT for February, May, August, October, 66
surface circulation, 61–62, 64, 66, 67
time variation of basin average of wind-stress curl, 62
velocity field at 10m for February, May, August, October, 63
velocity field at 400 m for February, April, August, and September, 68
weekly averaged TYREM velocity fields at 10m, 65
wind stress from ECMWF, 62
three openings of, 59, 60
TYREM
boundary conditions and hindcast procedure, 60–61
description of, 60
summary of results, 72
water masses and transports, 69–72
meridional transect of salinity along 10.5° E for February, 2009, 70
spatial distribution of salinity maximum, February, August, September, and October, 71
spatial distribution of salinity minimum, for February and August, 2009, 70
transports at Corsica Channel, 72
winter 2009 time series of daily EKE computed from TYREM and MFS, 61
Urania, surveys of western Mediterranean and, 52, 52

Vavilov Seamount, 60
VECTOR cruises, 141
VECTOR project, 140

WAG. See West Alborán Gyre
Water columns
 in southern Adriatic, Brunt-Väisälä frequency and stability of, 143, 146
 in southern Adriatic gyre, determining stability of, during winter periods, 146, 148
Water fluxes, TYREM and, 61
Water masses and transports, Tyrrhenian Sea, 69–72
West Alborán Gyre, 13
Western Mediterranean Circulation Experiment, 1
Western Mediterranean Deep Water, 139
 double diffusive convective mixing processes, 52
 evolution of, 52–53
 increased salinity in, 2
 mixing estimates for, 53–55
 mixing processes in, 55–56
 overall mixing environment in, 51
Western Mediterranean Sea
 altimetry mean geostrophic circulation in, 9
 data
 NEOMED8 numerical simulation, 6–7
 satellite altimetry, 7–8
 introduction, 5–6
 mean geostrophic EKE
 calculated from altimetry, 1993–2007, 11
 calculated from NM8, 1993–2007, 13
 methods
 Eddy kinetic energy, 8
 empirical orthogonal functions, 8
 NM8 mean geostrophic circulation in, derived from Sea Surface Height, 1993–2007, 10
 results
 Eddy kinetic energy, 10–11
 mean surface circulation, 8–9
 spatiotemporal variability of surface circulation, 5–21
 summary and discussion, 13–14, 21
 surface circulation variability using EOFs
 Alborán Basin, 11
 Algerian Basin, 11–12
 Northwestern Mediterranean Basin, 12–13
 Wind forcing, in eastern Mediterranean, 2
 Winds, in Mediterranean Sea compared with greater ocean, 51, 57
 Wind stress, from ECMWF, 2009, 61, 62
WMDW. See Western Mediterranean Deep Water
Zonal vertical circulation belts, in Mediterranean basin, decadal timescales of, 85
Zooplankton
 migration of, ADCP time series and, 141
 time series of vertical component w at 300-m depth, cleaned by DVM of, measured at E2M3A, 151