Index

ADDITION, 168
Adjacency, 162
Adjacency matrix, 162
 power, 163
Altium Designer®, 184
AND, 200
 operation, 200
ASIC (Application Specific Integrated Circuit), 10
Association, 162
Basic inverting RSC converter, 34
 sneak circuit condition, 36
 sneak circuit mode, 45
 sneak circuit path, 36
Basic RSC converter, 37, 224, 225
 inverting, 38, 224, 225
 step-down, 38, 224, 225
 step-up, 38, 224, 225
Basic step-down RSC converter, 20, 173, 174
 current path, 173
 normal operating mode, 21
 sneak circuit condition, 26, 27
 sneak circuit mode, 23
 sneak circuit path, 23
Basic step-up RSC converter, 27
 normal operating mode, 27
 sneak circuit condition, 33
 sneak circuit mode, 30
 sneak circuit path, 30
Binary operation, 200
Boolean algebra, 168
Boolean algorithm, 168
Boost converter, 63, 170, 178
 adjacency matrix, 170
 CCM, 63
 CCM condition, 66
 current loop, 179
 DCM, 65
 DCM condition, 66
 directed graph, 170
 edge, 170
 generalized connection matrix, 178
 operating condition, 66
 sneak circuit condition, 71
 sneak circuit path, 66
 vertex, 170
 voltage ratio, 66, 71
Boost PFC converter, 263
Boost ZCT PWM converter, 243
 current path, 253
 improved control method, 250
 modified topology, 253
 sneak circuit, 248
 zero current switching, 308, 311
Branch, 184
 generalized switching, 187
Index

Branch (continued)
 non-switching, 187
 switching, 187
Buck-boost converter, 67
 CCM, 67
 DCM, 68
 DCM condition, 70
 operating condition, 70
 sneak circuit condition, 71
 sneak circuit path, 70
 voltage ratio, 70, 71
Buck converter, 59, 188
 boundary condition, 62
 CCM, 59
 DCM, 61
 DCM condition, 62
 operating condition, 62
 sneak circuit condition, 71
 sneak circuit mode, 63
 switching Boolean matrix, 188, 189
 voltage ratio, 62, 71
Buck ZVS MR converter, 123
 normal operating mode, 123
 sneak circuit condition, 127
 sneak circuit mode, 127
Buck ZVT PWM converter, 128, 233
 composite switch, 234
 normal operating mode, 130
 sneak circuit mode, 162
 sneak circuit path, 234
 sneak circuit phenomenon, 133
 topology improving scheme, 234, 236
Capacitor, 105, 169, 173, 180, 187
CCM (continuous conduction mode), 59
Characteristic impedance, 22, 43, 53
Circuit principle, 173, 181
Complexity, 2, 9
Composite switch, 149
 antiparallel diode, 149
 bi-directed switch, 149
 parallel capacitor, 149
Conducting direction criterion, 190
Connected graph, 200
Connecting piece, 200
 see also Piece
Connection matrix, 164
 cofactor, 166
 determinant, 166
 generalized, 178
 power, 164
Connectivity, 200
Control sequence, 211
Control strategy, 199, 210
CPLD (Complex Programmable Logic Device), 10
Cuk converter, 71, 101, 103, 204, 258
 constraint condition, 205
 DCM, 76, 81
 mesh, 204
 operating condition, 101–103
 PFC, 258
 sneak circuit phenomenon, 74, 101, 102
 voltage ratio, 101, 102
Cuk PFC converter, 262
 current ripple, 264
 duty cycle, 262
 isolated, 264
 operating condition, 263
 output voltage, 263
 zero-current, 264
Current direction, 210
Current loop, 178
 basic, 180
 effective, 181
 false, 180
 normal, 181
 sneak, 181
Current path, 2, 161, 173
 available, 173
 effective, 174
 invalid, 174
 normal, 174
Index

possible, 174
sneak, 174
Current source, 173, 180

DC-DC converter, 59
 basic, 59
 buck-boost converter, 67
 buck converter, 59
 boost converter, 63
 Cúk converter, 71
 high-order, 59
 low-order, 59
 non-isolated, 59
 Sepic converter, 84
 Zeta converter, 92
DCM (discontinuous conduction mode), 59
DIFFERENCE, 200
 operation, 200
Digital sneak circuit analysis, 11
Diode, 148, 170
 rectifier, 148
 Schottky, 148
 see also Power diode
Diode-clamped three-level HB inverter, 265
 adjacency matrix, 265
 electrical variable, 267, 268
 normal operating mode, 267, 268
 open-circuit, 266
 open-circuit criterion, 270
 short-circuit, 266
Directed graph, 162
 see also Digraph, 162
Duty ratio, 61
 see also Cúk PFC converter:duty cycle
Edge, 162
 endpoint, 162
 parallel, 162
 sequence, 162
 see also Line, 162
Electric circuit, 10, 11
Electric system, 162
Electrical path, 2, 11, 272
Electrical system, 161
Electricity, 1
EMI (Electro Magnetic Interference), 19, 105
Energy storage element, 173

Failure, 1, 264
 component, 1, 2, 264
 part, 1
 physical, 2
 rate, 1
 system, 1
Fault diagnosis, 264
Fault identification, 264
FB (Full-bridge), 105
FB ZVS PWM converter, 105
 dead time, 110–2
 duty ratio, 106
 effective duty ratio, 106
 lagging leg, 106
 leading leg, 106
 normal operating mode, 106
 operating condition, 118, 119
 phase shift, 105
 sneak circuit phenomenon, 113–17
 ZVS condition, 112
 ZVS current condition, 113, 119
 ZVS time condition, 113, 119
FMEA (Failure Mode and Effect Analysis), 14
Functional Failure Analysis (FFA), 13

Graph, 161
 see also Abstract graph, 161
Graph algorithm, 199
Graph theory, 161
Graph traversal, 170
 breadth-first search algorithm, 170, 171
 depth-first search algorithm, 170, 171
GTO (gate-turn-off thyristor), 169
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard-switching converter, 105, 137</td>
<td></td>
</tr>
<tr>
<td>HAZOP (Hazard and Operability Analysis), 13</td>
<td></td>
</tr>
<tr>
<td>HB (half-bridge), 265</td>
<td></td>
</tr>
<tr>
<td>High-order RSC converter, 226</td>
<td></td>
</tr>
<tr>
<td>improved topology, 226</td>
<td></td>
</tr>
<tr>
<td>power switch, 225</td>
<td></td>
</tr>
<tr>
<td>High-order step-down RSC converter, 38, 226</td>
<td></td>
</tr>
<tr>
<td>normal operating mode, 38, 39</td>
<td></td>
</tr>
<tr>
<td>sneak circuit condition, 46</td>
<td></td>
</tr>
<tr>
<td>sneak circuit mode, 43</td>
<td></td>
</tr>
<tr>
<td>sneak circuit path, 43</td>
<td></td>
</tr>
<tr>
<td>see also n-order step-down RSC converter, 38</td>
<td></td>
</tr>
<tr>
<td>High-order step-up RSC converter, 47, 226</td>
<td></td>
</tr>
<tr>
<td>normal operating mode, 47</td>
<td></td>
</tr>
<tr>
<td>sneak circuit condition, 55</td>
<td></td>
</tr>
<tr>
<td>sneak circuit mode, 51</td>
<td></td>
</tr>
<tr>
<td>sneak circuit path, 51</td>
<td></td>
</tr>
<tr>
<td>see also n-order step-up RSC converter, 48</td>
<td></td>
</tr>
<tr>
<td>IGBT (Insulated Gate Bipolar Transistor), 14, 169</td>
<td></td>
</tr>
<tr>
<td>Impedance network, 139</td>
<td></td>
</tr>
<tr>
<td>Impedance-source, 139</td>
<td></td>
</tr>
<tr>
<td>see also Impedance-fed, 139</td>
<td></td>
</tr>
<tr>
<td>Inductor, 105, 169, 173, 180, 187</td>
<td></td>
</tr>
<tr>
<td>INTERSECTION, 200</td>
<td></td>
</tr>
<tr>
<td>operation, 200</td>
<td></td>
</tr>
<tr>
<td>KCL (Kirchhoff’s current law), 180</td>
<td></td>
</tr>
<tr>
<td>KVL (Kirchhoff’s voltage law), 180</td>
<td></td>
</tr>
<tr>
<td>Logic flow, 2</td>
<td></td>
</tr>
<tr>
<td>see also Signal flow</td>
<td></td>
</tr>
<tr>
<td>Loop, 162, 166</td>
<td></td>
</tr>
<tr>
<td>MATLAB®, 228</td>
<td></td>
</tr>
<tr>
<td>Mesh, 200</td>
<td></td>
</tr>
<tr>
<td>Mesh combination, 201</td>
<td></td>
</tr>
<tr>
<td>MR (Multi-resonant) converter, 123</td>
<td></td>
</tr>
<tr>
<td>MRS (Multi-resonant switch), 123</td>
<td></td>
</tr>
<tr>
<td>MULTIFICATION, 168</td>
<td></td>
</tr>
<tr>
<td>Open-circuit, 142, 264, 266</td>
<td></td>
</tr>
<tr>
<td>adjacency matrix, 266</td>
<td></td>
</tr>
<tr>
<td>Operating mode, 199</td>
<td></td>
</tr>
<tr>
<td>available, 199</td>
<td></td>
</tr>
<tr>
<td>normal, 199</td>
<td></td>
</tr>
<tr>
<td>sneak circuit, 199</td>
<td></td>
</tr>
<tr>
<td>Operating stage, 199</td>
<td></td>
</tr>
<tr>
<td>Operating unit, 199, 204</td>
<td></td>
</tr>
<tr>
<td>effective, 204</td>
<td></td>
</tr>
<tr>
<td>invalid, 204</td>
<td></td>
</tr>
<tr>
<td>normal, 204</td>
<td></td>
</tr>
<tr>
<td>sneak, 204</td>
<td></td>
</tr>
<tr>
<td>Operation, 12</td>
<td></td>
</tr>
<tr>
<td>Parasitic component, 234</td>
<td></td>
</tr>
<tr>
<td>Parasitic parameter, 14, 133</td>
<td></td>
</tr>
<tr>
<td>Path, 162</td>
<td></td>
</tr>
<tr>
<td>PFC (Power factor correction), 258</td>
<td></td>
</tr>
<tr>
<td>Power electronic converter, 169</td>
<td></td>
</tr>
<tr>
<td>branch, 184</td>
<td></td>
</tr>
<tr>
<td>control circuit, 169</td>
<td></td>
</tr>
<tr>
<td>directed graph, 169</td>
<td></td>
</tr>
<tr>
<td>edge, 169</td>
<td></td>
</tr>
<tr>
<td>generalized connection matrix, 178</td>
<td></td>
</tr>
<tr>
<td>vertex, 169</td>
<td></td>
</tr>
<tr>
<td>Piece, 200</td>
<td></td>
</tr>
<tr>
<td>PLD (Programmable Logic Device), 10</td>
<td></td>
</tr>
<tr>
<td>Power electronic component, 14</td>
<td></td>
</tr>
<tr>
<td>Power electronic system, 1, 14</td>
<td></td>
</tr>
<tr>
<td>Power electronics, 1</td>
<td></td>
</tr>
<tr>
<td>Power element, 173</td>
<td></td>
</tr>
<tr>
<td>start point, 173</td>
<td></td>
</tr>
<tr>
<td>target point, 173</td>
<td></td>
</tr>
<tr>
<td>terminal, 173</td>
<td></td>
</tr>
<tr>
<td>Power diode, 14</td>
<td></td>
</tr>
<tr>
<td>see also Diode</td>
<td></td>
</tr>
<tr>
<td>Power MOSFET (metal oxide semiconductor field effect transistor), 14</td>
<td></td>
</tr>
</tbody>
</table>
Index

body diode, 149
conduction loss, 148
drain-to-source capacitance, 149
on-resistance, 148
parasitic capacitor, 149
RMS current, 148
Power supply, 148, 169, 173, 187
low voltage, 148
PSIM®, 128, 136, 147, 155, 233, 240, 263, 271
Push-pull, 47
PWM (pulse-width modulation), 105
Quasi-resonant (QR) converter, 105, 122
Reliability, 1
Reliability engineering, 1
Resistor, 169, 180, 187
Resonant angular frequency, 22, 43, 53
Resonant component, 105
Resonant frequency, 21, 39
Resonant tank, 19, 128
RING SUM, 200
operation, 201
RSC (Resonant switched capacitor), 19
RSC converter, 19, 224
basic, 19
inverting, 34
step-down, 20, 38
step-up, 27, 47
high-order, 37
high-order step-down, 38
high-order step-up, 47
RSC unit, 19, 20
elementary, 19
inverting, 20
step-down, 20
step-up, 20
Safety technique, 13
SC (Switched capacitor), 19
SC converter, 19
SC unit, 38, 47
independent capacitor, 38
n-order, 38
step-up, 47
SCA (Sneak circuit analysis), 10, 15
benefit, 12
definition, 10
history, 10
method, 11
SCR (semiconductor controlled rectifier), 169
Self-loop, 162
Sepic converter, 84, 101, 103
DCM, 85
operating condition, 101, 102
sneak circuit phenomenon, 85, 101, 102
voltage ratio, 101, 102
Sepic PFC converter, 264
Set, 161
Short-circuit, 264, 266
adjacency matrix, 266
Short circuit criterion, 190
Signal flow, 2
see also Logic flow
Simple contacting network, 169
Simple graph, 162
Sneak circuit, 2
cause, 9
definition, 2
Sneak circuit elimination, 224, 230, 233
operating condition, 230
parameter design, 223, 224
topology improvement, 223, 225, 230
Sneak circuit loop analysis software, 184
flow chart, 184
generalized connection matrix, 184
Sneak circuit mode analysis, 199
Sneak circuit operating mode analytical method, 210
Sneak circuit path analysis, 169, 178, 184
Sneak circuit path analysis
adjacency matrix, 169
collection matrix, 178
switching Boolean matrix, 184
Sneak circuit path analysis software, 174, 195
adjacency matrix, 174
flow chart, 174, 175, 195
path judgement, 175
path searching, 175
switching Boolean matrix, 195
Sneak circuit phenomenon, 210
current direction, 210
topology, 210
Sneak condition, 2
Sneak indication, 3
Sneak label, 3
Sneak path, 2
Sneak path analysis, 11
Sneak timing, 3
Soft-switching Converter, 105, 137, 233, 243
Software sneak path analysis, 11
SSWA (sneak software analysis), 10
SPWM (sine pulse-width modulation), 143
Sub-circuit, 199, 204
see also Equivalent circuit, 199, 204
see also Operating unit
Sub-graph, 200, 204
Substring criterion, 191
Switched-mode system, 14
Switching Boolean matrix, 167, 184
complete, 188
normal, 189
row vector, 188
sneak, 189
valid, 189
Switching component, 161, 168, 169, 180, 210
Switching constraint criterion, 191
Switching frequency, 61
Switching function, 166
generalized, 166
Switching loss, 105, 128
Switching network, 167
Switching period, 61
see also Switching cycle
Switching state, 188
Synchronous Buck converter, 149
composite switch, 149
dead time, 150
sneak circuit phenomenon, 152
Synchronous DC-DC converter, 156
boost, 156
buck, 149
buck-boost, 156
flyback, 156
Synchronous rectifier, 149
power MOSFET, 149
Three-order step-down RSC converter, 46, 175, 226
improved topology, 227
sneak circuit path, 178
Three-order step-up RSC converter, 55, 181, 191, 226
improved topology, 228
sneak circuit loop, 184
sneak circuit path, 194
Three-phase Inverter, 140
active state, 140
nonshoot-through state, 140
shoot-through state, 140
shoot-through zero state, 140
switching state, 140
traditional zero state, 140
voltage vector, 140
Three-phase Z-source inverter, 140
Transfer matrix, 166
Transformer, 180
Undirected graph, 162, 167
Vertex, 161
see also Node, or point, 161
Vertex pair, 162
Voltage source, 173, 180

Index

<table>
<thead>
<tr>
<th>Z-source converter, 139</th>
</tr>
</thead>
<tbody>
<tr>
<td>power conversion, 139</td>
</tr>
<tr>
<td>see also Impedance-source converter, 139</td>
</tr>
<tr>
<td>Z-source inverter, 139, 230</td>
</tr>
<tr>
<td>boost factor, 143</td>
</tr>
<tr>
<td>buck-boost factor, 144</td>
</tr>
<tr>
<td>duty cycle, 142</td>
</tr>
<tr>
<td>load impedance, 146</td>
</tr>
<tr>
<td>load power factor, 145</td>
</tr>
<tr>
<td>modulation index, 143</td>
</tr>
<tr>
<td>normal operating status, 144</td>
</tr>
<tr>
<td>sneak circuit condition, 230</td>
</tr>
<tr>
<td>sneak circuit status, 144</td>
</tr>
<tr>
<td>three-phase inverter, 140</td>
</tr>
<tr>
<td>topology improvement, 230</td>
</tr>
<tr>
<td>ZCS (Zero current switching), 19, 243, 258</td>
</tr>
<tr>
<td>ZCS PWM converter, 128</td>
</tr>
<tr>
<td>ZCT (Zero current transition), 243</td>
</tr>
<tr>
<td>ZCT PWM converter, 243</td>
</tr>
<tr>
<td>Zero-switching PWM converter, 105</td>
</tr>
<tr>
<td>Zero-transition PWM converter, 105</td>
</tr>
<tr>
<td>Zeta converter, 92, 101, 103</td>
</tr>
<tr>
<td>DCM, 93</td>
</tr>
<tr>
<td>operating condition, 101, 102</td>
</tr>
<tr>
<td>sneak circuit phenomenon, 93, 101, 102</td>
</tr>
<tr>
<td>voltage ratio, 101, 102</td>
</tr>
<tr>
<td>ZV MRS (Zero-voltage multi-resonant switch), 123</td>
</tr>
<tr>
<td>ZVS (Zero voltage switching), 105</td>
</tr>
<tr>
<td>ZVS PWM converter, 128</td>
</tr>
<tr>
<td>ZVS synchronous Buck converter, 152</td>
</tr>
<tr>
<td>ZVT (Zero voltage transition), 128</td>
</tr>
<tr>
<td>ZVT converter, 128</td>
</tr>
</tbody>
</table>