Contents

Preface xxiii

1 Radio Frequency (RF) Filter Networks for Wireless Communications—The System Perspective 1

Part I Introduction to a Communication System, Radio Spectrum, and Information 1

1.1 Model of a Communication System 1
1.1.1 Building Blocks of a Communication System 3
1.1.1.1 Information Source 3
1.1.1.2 Transmitter 3
1.1.1.3 Communication Channel 3
1.1.1.4 Receiver 5
1.1.1.5 Information Destination 5
1.2 Radio Spectrum and its Utilization 6
1.2.1 Radio Propagation at Microwave Frequencies 6
1.2.2 Radio Spectrum as a Natural Resource 8
1.3 Concept of Information 8
1.4 Communication Channel and Link Budgets 10
1.4.1 Signal Power in a Communication Link 10
1.4.1.1 RF Power 11
1.4.2 Transmit and Receive Antennas 11
1.4.2.1 Antenna Gain 12
1.4.2.2 Effective Aperture and Antenna Gain 12
1.4.2.3 Power Flux Density 13
1.4.2.4 Power Radiated and Received by Antennas in a Communication System 13

Part II Noise in a Communication Channel 15

1.5 Noise in Communication Systems 15
1.5.1 Adjacent Copolarized Channel Interference 16
1.5.2 Adjacent Cross-Polarized Channel Interference 16
1.5.3 Multipath Interference 17
1.5.4 Thermal Noise 17
1.5.4.1 Effective Input Noise Temperature 20
1.5.4.2 Noise Figure 21
1.5.4.3 Noise of a Lossy Element 22
1.5.4.4 Attenuators 22
1.5.5 Noise in Cascaded Networks 23
1.5.6 Intermodulation (IM) Noise 25
1.5.7 Distortion Due to Channel Imperfections 26
1.5.8 RF Link Design 29
1.5.8.1 Carrier-to-Noise Ratio (C/N) 29
1.5.8.2 Multiple RF Links in Tandem 30
1.6 Modulation–Demodulation Schemes in a Communication System 32
1.6.1 Amplitude Modulation 32
1.6.2 Formation of a Baseband Signal 34
1.6.3 Angle-Modulated Signals 35
1.6.3.1 Spectra of Analog Angle-Modulated Signals 35
1.6.4 Comparison of FM and AM Systems 37
1.7 Digital Transmission 39
1.7.1 Sampling 40
1.7.2 Quantization 41
1.7.3 PCM Systems 41
1.7.4 Quantization Noise in PCM Systems 41
1.7.5 Error Rates in Binary Transmission 42
1.7.6 Digital Modulation and Demodulation Schemes 44
1.7.6.1 Amplitude Shift Keying (ASK) 44
1.7.6.2 Frequency Shift Keying (FSK) 44
1.7.6.3 Phase Shift Keying (PSK) 45
1.7.7 Advanced Modulation Schemes 45
1.7.7.1 Bandwidth Efficiency 46
1.7.7.2 Power Efficiency 48
1.7.7.3 Bandwidth and Power Efficient Modulation Schemes 48
1.7.8 Quality of Service and S/N Ratio 50

Part III Impact of System Design on the Requirements of Filter Networks 50
1.8 Communication Channels in a Satellite System 50
1.8.1 Receive Section 53
1.8.2 The Channelizer Section 53
1.8.3 High-Power Amplifiers (HPAs) 56
1.8.4 Transmitter Section Architecture 58
1.8.4.1 Output Multiplexer 58
1.8.4.2 Harmonic Rejection Filters 60
1.8.4.3 PIM Requirements for High-Power Output Circuits 60
1.9 RF Filters in Cellular Systems 62
1.10 Ultra Wideband (UWB) Wireless Communication 66
1.11 Impact of System Requirements on RF Filter Specifications 68
1.11.1 Frequency Plan 68
1.11.2 Interference Environment 69
1.11.3 Modulation Schemes 69
1.11.4 HPA Characteristics 69
1.11.5 Location of RF Filter in the Communication Link 70
1.11.6 Operating Environment 70
1.11.6.1 Space Environment 70
1.11.6.2 Terrestrial Environment 70
1.11.7 Limitations of Microwave Filter Technology 70
1.12 Impact of Satellite and Cellular Communications on Filter Technology 72
Summary 72
References 72
Appendix 1A 74
Intermodulation Distortion Summary 74

2
Fundamentals of Circuit Theory Approximation 75
2.1 Linear Systems 75
2.1.1 Concept of Linearity 75
2.2 Classification of Systems 76
2.2.1 Time-Invariant and Time- Variant Systems 76
2.2.2 Lumped and Distributed Systems 76
2.2.3 Instantaneous and Dynamic Systems 77
2.2.4 Analog and Digital Systems 77
2.3 Evolution of Electrical Circuits: A Historical Perspective 77
2.3.1 Circuit Elements 78
2.4 Network Equation of Linear Systems in the Time Domain 78
2.5 Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function 80
2.5.1 Complex Frequency Variable 80
2.5.2 Transfer Function 81
2.5.3 Signal Representation by Continuous Exponentials 82
2.5.4 Transfer Functions of Electrical Networks 82
2.6 Steady-State Response of Linear Systems to Sinusoidal Excitations 83
2.7 Circuit Theory Approximation 84
Summary 85
References 86

3
Characterization of Lossless Lowpass Prototype Filter Functions 87
3.1 The Ideal Filter 87
3.1.1 Distortionless Transmission 87
3.1.2 Maximum Power Transfer in Two-Port Networks 88
3.2 Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks 88
3.2.1 Reflection and Transmission Coefficients 90
3.2.2 Normalization of the Transfer Function and Characteristic Polynomials 92
3.3 Characteristic Polynomials for Idealized Lowpass Prototype Networks 93
3.4 Lowpass Prototype Characteristics 95
3.4.1 Amplitude Response 95
3.4.2 Phase Response 95
3.4.3 Phase Linearity 96
3.5 Characteristic Polynomials versus Response Shapes 96
3.5.1 All-Pole Prototype Filter Functions 97
3.5.2 Prototype Filter Functions with Finite Transmission Zeros 97
3.6 Classical Prototype Filters 98
5 Analysis of Multiport Microwave Networks 147
 5.1 Matrix Representation of Two-Port Networks 147
 5.1.1 Impedance $[Z]$ and Admittance $[Y]$ Matrices 147
 5.1.2 The $[ABCD]$ Matrix 149
 5.1.3 The Scattering $[S]$ Matrix 150
 5.1.4 The Transmission Matrix $[T]$ 155
 5.1.5 Analysis of Two-Port Networks 157
 5.2 Cascade of Two Networks 160
 5.3 Multiport Networks 167
 5.4 Analysis of Multiport Networks 169

6 Synthesis of a General Class of the Chebyshev Filter Function 177
 6.1 Polynomial Forms of the Transfer and Reflection Parameters $S_{21}(S)$ and $S_{11}(S)$ for a Two-port network 177
 6.1.1 Relationship Between ε and ε_R 183
 6.1.2 Relationship Between the Polynomials of the $[ABCD]$ Transfer Matrix Parameters and the S-Parameters 184
 6.1.2.1 Short-Circuit Admittance Parameters 186
 6.2 Alternating Pole Method for the Determination of the Denominator Polynomial $E(S)$ 186
 6.3 General Polynomial Synthesis Methods for Chebyshev Filter Functions 189
 6.3.1 Polynomial Synthesis 189
 6.3.2 Recursive Technique 193
 6.3.3 Polynomial Forms for Symmetric and Asymmetric Filtering Functions 196
 6.3.4 Finding the Positions of the In-Band Reflection Maxima and the Out-of-Band Transmission Maxima of the Generalized Chebyshev Prototype 198
 6.3.4.1 In-Band Reflection Maxima 198
 6.3.4.2 Out-of-Band Transmission Maxima 199
 6.4 Predistorted Filter Characteristics 200
 6.4.1 Synthesis of the Predistorted Filter Network 205
 6.5 Transformation for Symmetric Dual-Passband Filters 208

Summary 211
References 211
Appendix 6A 212
Complex Terminating Impedances in Multiport Networks 212

6A.1 Change of Termination Impedance 213
References 213

7 Synthesis of Network-Circuit Approach 215
 7.1 Circuit Synthesis Approach 216
 7.1.1 Buildup of the $[ABCD]$ Matrix for the Third-Degree Network 217
 7.1.2 Network Synthesis 218
 7.2 Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass Filters 221
7.2.1 Synthesis of [ABCD] Polynomials for Circuits with Inverters 222
7.2.1.1 Form 225
7.2.1.2 Equations 226
7.2.2 Synthesis of [ABCD] Polynomials for the Singly Terminated Filter Prototype 227
7.3 Ladder Network Synthesis 229
7.3.1 Parallel-Coupled Inverters: Extraction Process 233
7.3.2 Extraction of Parallel Admittance Inverters 233
7.3.3 Summary of the Principal Components of the Prototype Network 235
7.4 Synthesis Example of an Asymmetric (4–2) Filter Network 235
7.4.1 Scaling at Resonator Nodes 241
7.4.2 Scaling of Inverters to Unity 242
Summary 244
References 245

8 Synthesis of Networks: Direct Coupling Matrix Synthesis Methods 247
8.1 The Coupling Matrix 247
8.1.1 Bandpass and Lowpass Prototypes 248
8.1.2 Formation of the General \(N \times N \) Coupling Matrix and Its Analysis 250
8.1.2.1 "\(N \times N \)" and "\(N + 2 \)" Coupling Matrices 251
8.1.3 Formation of the Coupling Matrix from the Lowpass Prototype Circuit Elements 253
8.1.4 Analysis of the Network Represented by the Coupling Matrix 255
8.1.5 Direct Analysis 257
8.2 Direct Synthesis of the Coupling Matrix 258
8.2.1 Direct Synthesis of the \(N \times N \) Coupling Matrix 259
8.3 Coupling Matrix Reduction 261
8.3.1 Similarity Transformation and Annihilation of Matrix Elements 261
8.3.1.1 Reduction Procedure: Full Coupling Matrix to Folded Canonical Form 264
8.3.1.2 Example of Usage 265
8.4 Synthesis of the \(N + 2 \) Coupling Matrix 268
8.4.1 Synthesis of the Transversal Coupling Matrix 269
8.4.1.1 Synthesis of Admittance Function \([Y_N]\) from the Transfer and Reflection Polynomials 269
8.4.1.2 Synthesis of Admittance Function \([Y_N]\): Circuit Approach 270
8.4.1.3 Synthesis of the Two-Port Admittance Matrix \([Y_N]\) 272
8.4.1.4 Synthesis of the \(N + 2 \) Transversal Matrix 273
8.4.2 Reduction of the \(N + 2 \) Transversal Matrix to the Folded Canonical Form 275
8.4.3 Illustrative Example 276
8.4.4 \(N + 2 \) Coupling Matrix Synthesis for Networks with Complex Terminations 278
8.4.4.1 Fully Canonical Characteristics with Complex Terminations 280
8.5 Even- and Odd-Mode Coupling Matrix Synthesis Technique: the Folded Lattice Array 282
8.5.1 "Straight" Cross-Couplings 284
8.5.2 Diagonal Cross-Couplings 284
8.5.3 Odd-Degree Network: Bisection of the Central Resonant Node 285
8.5.4 Even-Mode and Odd-Mode Circuits of the Symmetric Lattice Network 285
8.5.5 Development of the Even- and Odd-Mode Admittance Polynomials from the Transfer and Reflection Polynomials 287
8.5.5.1 Canonical and Bandstop Cases 288
8.5.5.2 Construction of the Even- and Odd-Mode Admittance Polynomials 289
8.5.6 Example of the Synthesis of the Coupling Matrix for a Symmetric Lattice Network 289
Summary 292
References 293

9 Reconfiguration of the Folded Coupling Matrix 295
9.1 Symmetric Realizations for Dual-Mode Filters 295
9.1.1 Sixth-Degree Filter 297
9.1.2 Eighth-Degree Filter 298
9.1.3 10th-Degree Filter 298
9.1.4 12th-Degree Filter 299
9.1.4.1 Conditions for Symmetric Realizations 300
9.2 Asymmetric Realizations for Symmetric Characteristics 300
9.3 "Pfitzenmaier" Configurations 301
9.4 Cascaded Quartets (CQs): Two Quartets in Cascade for Degrees Eight and Above 304
9.5 Parallel-Connected Two-Port Networks 306
9.5.1 Even-Mode and Odd-Mode Coupling Submatrices 310
9.6 Cul-de-Sac Configuration 311
9.6.1 Further Cul-de-Sac Forms 312
9.6.1.1 Proof-of-Concept Model 314
9.6.2 Sensitivity Considerations 319
Summary 321
References 321

10 Synthesis and Application of Extracted Pole and Trisection Elements 323
10.1 Extracted Pole Filter Synthesis 323
10.1.1 Synthesis of the Extracted Pole Element 324
10.1.1.1 Removal of Phase Length 324
10.1.1.2 Removal of Resonant Pair 325
10.1.2 Example of Synthesis of Extracted Pole Network 327
10.1.3 Analysis of the Extracted Pole Filter Network 330
10.1.4 Direct-Coupled Extracted Pole Filters 333
10.2 Synthesis of Bandstop Filters Using the Extracted Pole Technique 335
10.2.1 Direct-Coupled Bandstop Filters 338
10.2.1.1 Cul-de-Sac Forms for the Direct-Coupled Bandstop Matrix 341
10.3 Trisections 343
10.3.1 Synthesis of the Trisection: Circuit Approach 344
10.3.2 Cascade Trisections: Coupling Matrix Approach 349
10.3.2.1 Synthesis of the Arrow Canonical Coupling Matrix 350
10.3.2.2 Synthesis of the Arrow Coupling Matrix Form 350
10.3.2.3 Creation and Repositioning of Trisections within the Arrow Coupling Matrix 351
10.3.2.4 Illustrative Example 352
10.3.2.5 Trisections Realizing Complex Transmission Zeros 355
10.3.3 Techniques Based on the Trisection for Synthesis of Advanced Circuits 356
10.3.3.1 Synthesis Procedure for Cascade Quartets, Quintets, and Sextets 357
10.3.3.2 Cascaded Quartets 357
10.3.3.3 Formal Procedure for Cascade Quartets, Quintets, and Sextets 357
10.3.3.4 Cascaded Quintets 358
10.3.3.5 Cascaded Sextets 358
10.3.3.6 Multiple Cascaded Sections 360

10.4 Box Section and Extended Box Configurations 361

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1 Box Sections</td>
<td>362</td>
</tr>
<tr>
<td>10.4.2 Extended Box Sections</td>
<td>364</td>
</tr>
</tbody>
</table>

Summary 371

References 371

11 Microwave Resonators 373

11.1 Microwave Resonator Configurations 373

11.2 Calculation of Resonant Frequency 376

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1 Resonance Frequency of Conventional Transmission-Line Resonators</td>
<td>376</td>
</tr>
<tr>
<td>11.2.2 Resonance Frequency Calculation Using the Transverse Resonance Technique</td>
<td>378</td>
</tr>
<tr>
<td>11.2.3 Resonance Frequency of Arbitrarily Shaped Resonators</td>
<td>380</td>
</tr>
</tbody>
</table>

11.2.3.1 Eigenmode Analysis 380

11.2.3.2 S-Parameter Analysis 381

11.3 Resonator Unloaded Q Factor 383

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.1 Unloaded Q Factor of Conventional Resonators</td>
<td>384</td>
</tr>
<tr>
<td>11.3.1.1 A Coaxial λ/2 Resonator Terminated in a Short Circuit</td>
<td>384</td>
</tr>
<tr>
<td>11.3.1.2 A λ/2 Microstrip Resonator</td>
<td>385</td>
</tr>
<tr>
<td>11.3.2 Unloaded Q of Arbitrarily Shaped Resonators</td>
<td>386</td>
</tr>
</tbody>
</table>

11.4 Measurement of Loaded and Unloaded Q Factor 387

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1 Measurement of Unloaded Q Using Polar Display of Reflection Coefficient</td>
<td>392</td>
</tr>
<tr>
<td>11.4.2 Measurement of Unloaded Q Using Linear Display of Reflection Coefficient</td>
<td>392</td>
</tr>
</tbody>
</table>

Summary 393

References 393

12 Waveguide and Coaxial Lowpass Filters 395

12.1 Commensurate-Line Building Elements 395

12.2 Lowpass Prototype Transfer Polynomials 396

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.1 Chebyshev Polynomials of the Second Kind</td>
<td>397</td>
</tr>
<tr>
<td>12.2.2 Achieser–Zolotarev Functions</td>
<td>399</td>
</tr>
</tbody>
</table>

12.2.2.1 Synthesis of Achieser–Zolotarev Functions 400

12.3 Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter 401

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.1 Mapping the Transfer Function S_{21} from the ω Plane to the θ Plane</td>
<td>401</td>
</tr>
<tr>
<td>12.3.1.1 Form of $S_{21}(t)$ for the Circuit Approach</td>
<td>402</td>
</tr>
<tr>
<td>12.3.2 Synthesis of the Stepped Impedance Lowpass Prototype Circuit</td>
<td>404</td>
</tr>
<tr>
<td>12.3.2.1 Network Synthesis</td>
<td>404</td>
</tr>
<tr>
<td>12.3.3 Realization</td>
<td>405</td>
</tr>
<tr>
<td>12.3.3.1 Realization of the Impedance Inverters</td>
<td>408</td>
</tr>
</tbody>
</table>

12.4 Short-Step Transformers 410

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filters</td>
<td>411</td>
</tr>
<tr>
<td>12.5.1 Formation of the Transfer and Reflection Polynomials</td>
<td>413</td>
</tr>
</tbody>
</table>

12.5.2 Synthesis of the Tapered–Corrugated Lowpass Prototype Circuit 415

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2.1 Network Synthesis</td>
<td>416</td>
</tr>
<tr>
<td>12.5.3 Realization</td>
<td>418</td>
</tr>
<tr>
<td>12.5.3.1 Synthesis Accuracy Considerations</td>
<td>419</td>
</tr>
</tbody>
</table>
12.5.3.2 Spurious Responses 421
12.5.3.3 Repeat Passbands 421
12.5.3.4 Higher-Order TE_{m0} Modes in Waveguide 421
12.5.3.5 Mode Conversion 422
12.5.3.6 Example of Synthesis 422
 Summary 425
 References 426

13 Waveguide Realization of Single- and Dual-Mode Resonator Filters 427
13.1 Synthesis Process 428
13.2 Design of the Filter Function 428
13.2.1 Amplitude Optimization 429
13.2.2 Rejection Lobe Optimization 429
13.2.3 Group Delay Optimization 431
13.2.3.1 Group Delay and Attenuation Slope Calculation 432
13.2.3.2 Group Delay Optimization Procedure 432
13.3 Realization and Analysis of the Microwave Filter Network 434
13.4 Dual-Mode Filters 440
13.4.1 Virtual Negative Couplings 441
13.5 Coupling Sign Correction 442
13.6 Dual-Mode Realizations for Some Typical Coupling Matrix Configurations 444
13.6.1 Folded Array 444
13.6.2 Pfitzenmaier Configuration 445
13.6.3 Propagating Forms 446
13.6.4 Cascade Quartet 446
13.6.5 Extended Box 447
13.7 Phase- and Direct-Coupled Extracted Pole Filters 447
13.7.1 Pole Cavity and Interconnecting Stub 449
13.7.2 Phase Lengths between the Filter Body and Pole Cavities 450
13.7.3 Phase Lengths between Adjacent Pole Cavities 450
13.8 The "Full-Inductive" Dual-Mode Filter 450
13.8.1 Synthesis of the Equivalent Circuit 452
 Summary 454
 References 454

14 Design and Physical Realization of Coupled Resonator Filters 457
14.1 Circuit Models for Chebyshev Bandpass Filters 459
14.2 Calculation of Interresonator Coupling 463
14.2.1 The Use of Electric Wall and Magnetic Wall Symmetry 463
14.2.2 Interresonator Coupling Calculation Using S-Parameters 465
14.3 Calculation of Input/Output Coupling 467
14.3.1 Frequency Domain Method 467
14.3.2 Group Delay Method 468
14.4 Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model 468
14.4.1 Calculation of Dielectric Resonator Cavity Configuration 470
14.4.2 Calculation of Iris Dimensions for Interresonator Coupling 471
14.4.3 Calculation of Input/Output Coupling 472
14.5 Design Example of a Waveguide Iris Filter Using the Impedance Inverter Model 475
14.6 Design Example of a Microstrip Filter Using the \(J \)-Admittance Inverter Model 478
Summary 483
References 484

15 Advanced EM-Based Design Techniques for Microwave Filters 485
15.1 EM-Based Synthesis Techniques 485
15.2 EM-Based Optimization Techniques 486
15.2.1 Optimization Using an EM Simulator 487
15.2.2 Optimization Using Semi-EM-Based Simulator 488
15.2.3 Optimization Using an EM Simulator with Adaptive Frequency Sampling 490
15.2.4 Optimization Using EM-Based Neural Network Models 491
15.2.5 Optimization Using EM-Based Multidimensional Cauchy Technique 495
15.2.6 Optimization Using EM-Based Fuzzy Logic 495
15.3 EM-Based Advanced Design Techniques 496
15.3.1 Space Mapping Techniques 496
15.3.1.1 The Original Space Mapping Approach 498
15.3.1.2 Aggressive Space Mapping (ASM) Approach 500
15.3.2 Calibrated Coarse Model (CCM) Techniques 504
15.3.3 Generalized Calibrated Coarse Model Technique for Filter Design 510
Summary 513
References 514

16 Dielectric Resonator Filters 517
16.1 Resonant Frequency Calculation in Dielectric Resonators 517
16.2 Rigorous Analyses of Dielectric Resonators 521
16.2.1 Mode Charts for Dielectric Resonators 521
16.3 Dielectric Resonator Filter Configurations 524
16.4 Design Considerations for Dielectric Resonator Filters 528
16.4.1 Achievable Filter \(Q \) Value 528
16.4.1.1 Size of Enclosure 528
16.4.1.2 Support Structure 528
16.4.1.3 Effect of Tuning Elements 528
16.4.2 Spurious Performance of Dielectric Resonator Filters 529
16.4.3 Temperature Drift 530
16.4.4 Power Handling Capability 531
16.5 Other Dielectric Resonator Configurations 531
16.6 Cryogenic Dielectric Resonator Filters 534
16.7 Hybrid Dielectric/Superconductor Filters 536
16.8 Miniature Dielectric Resonators 538
16.8.1 A Quadruple-Mode Dielectric Resonator Using a Single Traditional Cylindrical Dielectric Resonator 538
16.8.2 A Dual-Mode Dielectric Resonator Using a Half-Cut Dielectric Resonator 539
Summary 542
References 543

17 Allpass Phase and Group Delay Equalizer Networks 545
17.1 Characteristics of Allpass Networks 545
17.2 Lumped-Element Allpass Networks 547
17.2.1 Resistively Terminated Symmetric Lattice Networks 548
17.2.2 Network Realizations 549
17.2.2.1 First-Order Lattice Section 550
17.2.2.2 Second-Order Lattice Section 550
17.3 Microwave Allpass Networks 551
17.4 Physical Realization of Allpass Networks 554
17.4.1 Transmission-Type Equalizers 555
17.4.2 Reflection-Type Allpass Networks 556
17.5 Synthesis of Reflection-Type Allpass Networks 557
17.6 Practical Narrowband Reflection-Type Allpass Networks 558
17.6.1 C-Section Allpass Equalizer in Waveguide Structure 559
17.6.2 D-Section Allpass Equalizer in Waveguide Structure 560
17.6.3 Narrowband TEM Reactance Networks 560
17.6.4 Multiple Coupled Cavity Reactance Networks 561
17.7 Optimization Criteria for Allpass Networks 561
17.8 Dissipation Loss 566
17.9 Equalization Tradeoffs 567
 Summary 567
 References 568

18 Multiplexer Theory and Design 569
18.1 Background 569
18.2 Multiplexer Configurations 571
18.2.1 Hybrid-Coupled Approach 571
18.2.2 Circulator-Coupled Approach 571
18.2.3 Directional Filter Approach 571
18.2.4 Manifold-Coupled Approach 574
18.3 RF Channelizers (Demultiplexers) 575
18.3.1 Hybrid Branching Network 576
18.3.2 Circulator-Coupled MUX 577
18.3.3 En Passant Distortion 578
18.3.3.1 En Passant Distortion for a Noncontiguous Multiplexing Scheme 579
18.3.3.2 En Passant Distortion with Contiguous Channels 579
18.4 RF Combiners 581
18.4.1 Circulator-Coupled MUX 582
18.4.2 Hybrid-Coupled Filter Module (HCFM) Multiplexer 582
18.4.2.1 En Passant Distortion 584
18.4.3 Directional Filter Combiner 586
18.4.4 Manifold Multiplexer 586
18.4.4.1 Star Junction Multiplexer 587
18.4.4.2 Manifold-Coupled Multiplexer 587
18.4.4.3 Design Methodology 588
18.4.4.4 Analysis of Common Port Return Loss and Channel Transfer Characteristics 589
18.4.4.5 Common Port Return Loss 592
18.4.4.6 Channel Transfer Characteristics 592
18.4.4.7 Channel Filter Design 593
18.4.4.8 Optimization Strategy 594
18.4.4.9 Demonstration of the Piecewise Optimization Process and Stages in the Optimization of a Four-Channel Contiguous OMUX 598
18.5 Transmit–Receive Diplexers 601
18.5.1 Internal Voltage Levels in Tx/Rx Diplexer Filters 603
Summary 606
References 607

19 Computer-Aided Diagnosis and Tuning of Microwave Filters 609
19.1 Sequential Tuning of Coupled Resonator Filters 610
19.1.1 Tuning Steps 612
19.2 Computer-Aided Tuning Based on Circuit Model Parameter Extraction 615
19.3 Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient 619
19.4 Time-Domain Tuning 622
19.4.1 Time-Domain Tuning of Resonator Frequencies 623
19.4.2 Time-Domain Tuning of Interresonator Coupling 624
19.4.3 Time-Domain Response of a Golden Filter 627
19.5 Filter Tuning Based on Fuzzy Logic Techniques 627
19.5.1 Description of Fuzzy Logic Systems 628
19.5.2 Steps in Building the FL System 629
19.5.3 Comparison between Boolean Logic and Fuzzy Logic 632
19.5.4 Applying Fuzzy Logic to Filter Tuning 634
19.6 Automated Setups for Filter Tuning 637
Summary 639
References 640

20 High-Power Considerations in Microwave Filter Networks 643
20.1 Background 643
20.2 High-Power Requirements in Wireless Systems 643
20.3 High-Power Amplifiers (HPAs) 645
20.4 Gas Discharge 645
20.4.1 Basics 646
20.4.2 Breakdown in Air 647
20.4.3 Power Rating of Waveguides and Coaxial Transmission Lines 649
20.4.4 Derating Factors 650
20.4.5 Impact of Thermal Dissipation on Power Rating 650
20.5 Multipaction Breakdown 651
20.5.1 Dependence on Vacuum Environment 652
20.5.2 Dependence on Surface Conditions of Materials 653
20.5.3 Dependence on Signal Amplitude, Signal Frequency, and Geometry of the Device 654
20.5.4 Dependence on Number of Carriers and Modulation 654
20.5.5 Two-Surface Theoretical Analysis, Simulation, and Prediction 654
20.5.5.1 Single-Carrier Theory 654
20.5.5.2 Multi-Carrier Theory 656
20.5.6 Multipactor Breakdown Levels 657
20.5.7 Detection and Prevention of Multipaction 659
20.5.8 Design Margins in Multipaction 660
20.6 High-Power Bandpass Filters 662
20.6.1 Bandpass Filters Limited by Thermal Dissipation 663
20.6.2 Bandpass Filters Limited by Voltage Breakdown 664
20.6.3 Filter Prototype Network 664
20.6.4 Lumped to Distributed Scaling 666
20.6.5 Resonator Voltages from Prototype Network 666
20.6.6 Example and Verification via FEM Simulation 667
20.6.7 Example of High Voltages in a Multiplexer 668
20.6.8 Summary of Multipactor Breakdown Evaluation Methodologies 669
20.7 Passive Intermodulation (PIM) Consideration for High-Power Equipment 670
20.7.1 PIM Measurement 672
20.7.2 PIM Control Guidelines 673
Summary 674
Acknowledgment 675
References 675

21 Multiband Filters 679
21.1 Introduction 679
21.2 Approach I: Multiband Filters Realized by Having Transmission Zeros Inside the Passband of a Bandpass Filter 681
21.3 Approach II: Multiband Filters Employing Multimode Resonators 683
21.3.1 Combline Multiband Filters Employing Multimode Resonators 685
21.3.2 Waveguide Multiband Filters Employing Multimode Resonators 686
21.3.3 Dielectric Resonator Multiband Filters Employing Multimode Resonators 693
21.4 Approach III: Multiband Filters Using Parallel Connected Filters 700
21.5 Approach IV: Multiband Filter Implemented Using Notch Filters Connected in Cascade with a Wideband Bandpass 701
21.6 Use of Dual-Band Filters in Diplexer and Multiplexer Applications 703
21.7 Synthesis of Multiband Filters 705
21.7.1 Introduction 705
21.7.2 Multi-passband Characteristics: Prototype Design 707
21.7.3 Limitations and Restrictions 711
21.7.4 Coupling Matrix Synthesis 712
21.7.5 Dual-Band Filters with Transmission Zeros at Zero Frequency 712
21.7.5.1 Multiple Transmission Zeros at Zero Frequency 713
21.7.6 Synthesis of Multiband Coupled-Resonator Filters Using Reactance Transformations 718
21.7.6.1 Synthesis of the Compound Resonator Network 720
21.7.6.2 Multiband Bandstop Filters 722
21.7.6.3 Alternative Configurations for the Compound Resonator 724
Summary 727
References 728

22 Tunable Filters 731
22.1 Introduction 731
22.2 Major Challenges in Realizing High-Q 3D Tunable Filters 733
22.2.1 Maintaining Constant Bandwidth and a Reasonable Return Loss Over a Wide Tuning Range 733
22.2.2 Maintaining a Constant High Q Value Over a Wide Tuning Range 733
22.2.3 Integration of Tuning Elements with 3D Filters 733
22.2.4 Linearity and Power Handling Capability 734
22.3 Combline Tunable Filters 734
22.3.1 Comblne Tunable Filters with a Constant Absolute Bandwidth 734
22.3.1.1 Coupling Iris Design for Constant Bandwidth 737
22.3.1.2 Input/Output Coupling Design for Constant Bandwidth 738
22.4 Tunable Dielectric Resonator Filters 752
22.4.1 Tunable Dielectric Resonator Filters Employing Mechanical or Piezoelectric Actuators 752
22.4.2 MEMS-Based Tunable Dielectric Resonator Filters 759
22.5 Waveguide Tunable Filters 772
22.6 Filters with Tunable Bandwidth 776

23 Practical Considerations and Design Examples 785
Chandra M. Kudsia, Vicente E. Boria, and Santiago Cogollas
23.1 System Considerations for Filter Specifications in Communication Systems 785
23.1.1 Equivalent Linear Frequency Drift (ELFD) 786
23.1.1.1 Material Selection Tradeoffs and ELFD 787
23.1.2 Synchronous versus Asynchronous Resonator Filters 788
23.1.2.1 Synchronously Tuned Filters 788
23.1.2.2 Asynchronously Tuned Filters 789
23.2 Filter Tradeoffs in the Characterization of RF Channels 789
23.3 Multiplexers 827
23.4 High-Power Considerations 839
23.5 Tolerance and Sensitivity Analysis in Filter Design 851
23.5.1 Manufacturing Tolerance Analysis 851
23.5.2 Sensitivity Analysis of a Dielectric-Loaded Cavity 853
23.5.3 Degradation Caused by Tuning Screws in Filter Design 856
23.5.3.1 Degradation of Quality Factor (Q) 856
23.5.3.2 Degradation of Spurious-Free Window 856
Summary 858
Acknowledgments 858
Appendix 23A 858
Thermal Expansion 858
References 859

A Physical Constants 861

B Conductivities of Metals 863

C Dielectric Constants and Loss Tangents of Some Materials 865

D Rectangular Waveguide Designation 867

E Impedance and Admittance Inverters 869
E.1 Filter Realization with Series Elements 869
E.2 Normalization of the Element Values 872
E.3 General Lowpass Prototype Case 873
E.3.1 Coupling Coefficient: Lowpass Prototype 874
E.4 Bandpass Prototype 874
E.4.1 Slope Parameter 875
E.4.2 Coupling Matrix Parameter M 875
E.4.3 Coupling Coefficient: Bandpass Prototype 876
E.4.4 Slope Parameter of Transmission-Line Resonators 876
E.4.5 Slope Parameter for Waveguide Resonators 877
E.4.6 Practical Impedance and Admittance Inverters 878

References 878

Index 879