INDEX

Abscissa scale, 46
Absorbance(s), 13, 197, 205, 210, 211, 219, 255, 259
Absorbance matrix, 214, 220
Absorbance spectrum, 110, 212–216, 225, 255
Absorption, 33
 band(s), 33, 46, 198, 254
 coefficient, 208
 index, 14
 index spectra, 14, 281
 spectra, 35
 spectrometry, 373
Absorptivity, 13, 211, 251, 256, 257, 259
Absorptivity matrix, 209
ac advantage, 264
Acceptance angle, 129
Accessory aperture, 200
ac-coupled mode, 405
Acetone, 259, 333, 478
Acoustooptic tunable filters (AOTFs), 360
Acquisition, 476
 time, 51, 63
Active scanning time, 396
Actual signals, 65
AgBr, 253
AgCl, 253
Air bearing, 98
Air-conditioning equipment, 368
Aliasing, 59, 62
 conceptual discussion of, 58
 mathematical discussion of, 60
Alkali halide(s), 252–254
Alkane solvent molecule, 403
All-trans hydrocarbon, 295
Alumina-supported rhodium catalyst, 358
American Chemical Society, 179, 317
American Society for Testing and Materials (ASTM), 185
Amorphous material that transmits infrared radiation (AMTIR), 253
Amplification(s), 23
Amplifier(s), 23, 62
 characteristics, 23
 circuitry, 52
Amplitude(s), 23–25, 29, 30, 33, 34, 58, 64, 108, 126, 133, 254, 255
 of high-intensity signals, 64
 of the white-light interferogram, 107
Analog interferogram, 61, 412
Analog-to-digital converter(s) (ADC), 58, 64, 67, 71, 104, 143, 166, 352, 397, 402
 conventional, 163
 specifications, 64
Analyte, 255
Angle of incidence, 284
Angle of refraction, 133
Angular acceptance, 125
Angular velocity, 121, 122
Anharmonicity constant, 4
Anharmonic potential function, 4
Anomalous dispersion, 15
Anti-Stokes scattering, 16
Anti-Stokes spectrum, 380
Aperture, 118, 124
 stop, 98
Apodization, 30, 32, 33, 35, 44, 69
Apodization functions, 32, 34, 36, 181, 235
 Blackman–Harris, 34
 boxcar, 28–32, 198
 Happ–Genzel, 33–35
 Norton–Beer, 34, 88, 165, 181, 198
 triangular, 32, 165, 180
Apparent mirror position, 123
Archival-quality spectra, 2
Array detector(s), 131
Artificial neural network(s) (ANN), 221
applications of, 222
design, 222
Artificial neuron or node, 221
Atmospheric monitoring, 463
Atmospheric windows, 472
Atomic emission spectrometry (AES), 171
Atomic emission spectrum, 105
Attenuated total reflection (ATR), 200, 312, 321
correction, 325
internal reflection, 345
spectra, 201
spectrometry, 322
Audio-frequency range, 415
Automated peak picking, 229
Automated spectral isolation, 219
Automated subtraction, 204
Automatic baseline functions, 226
Avatar spectrometer, 103
Axiom gas cell, 259

Background limit for infrared photons (BLIP), 152
Bacteriorhodopsin, 404, 406
BaF₂, 253
Balmer line, 26
Band fitting, 235
Band intensity, 66, 251
Band-fitting procedure, 235
Band-fitting software, 236
Bandpass, 59
Bandshape, 200
Bandwidth(s), 35, 59, 61, 62, 204
Barbiturates, 490
Baseline-corrected spectral regions, 227
Baseline correction, 225
Baseline discontinuities, 226
Baseline noise, 483
Beam(s), 20, 22, 116, 119, 159, 255
aperture, 201
condenser, 303
diameter, 303
divergence, 45, 49

Beamsplitter(s), 22, 132
efficiency, 23, 132, 133, 137
efficiency curve, 137
stop, 98
Bearings, 98
Beat frequency, 27
Beat signal, 25, 27
Beer’s law, 12, 197, 204, 206, 209, 210, 219, 249, 299, 300
Bench-top instruments, 100
Bending mode, 8, 9
Benzene vapor, emissivity (E) and transmittance (T) spectra of, 365
Bessel functions, 270
Biased cosine wave, 128
Binary chop approximation, 71
Binary mixture(s), 208, 220
Biochemical system, complex, 402
Biological and biomedical spectroscopy, 1
Biological systems, 221
Birefringent prisms, 127
Birefringent waveplate, 271
Bisignate bands, 436
Bit path, 73
Blackbody emission spectrum, 370
Blackbody-type source, 40
Blackman function, 35
Blackman–Harris function, 34
Block engineering model, 100
Boiler furnaces, 368
Boltzmann population, 16, 463
Bomem interferometer, 116
Bomem MB-100 spectrometer, 116
Bouguer–Lambert–Beer law, 199
Boxcar function, 28, 29
Boxcar integrator, 408
Boxcar truncation, 32, 198
function, 28, 30
Brewster’s angle, 254, 262, 278, 293, 300
polarizer, 262
Brick-wall, 168
filters, 106
British thermal units, 221
Broadband continuous source, 32
Broadband spectral sources, 26
Bruker 120 HR spectrometer, performance of a, 105
INDEX

Bühler interferometer, 127
Built-in stress and strain transducers, 453
2-Butanone, 478
2-tert-Butyl maleic anhydride, 481
Butyl methacrylate (BMA), 373

C=O stretching, 268, 464
C≡C stretching band, 390
CaF_2 lenses, 439
Calcium fluoride, 137
Calibration, 220
 matrix, 218
 set, 217
 spectra, 211, 213, 214, 216
Calibration data sets, general guidelines for, 220
Capillarity, 251
Capillary electrophoresis (CE), 504
Capillary gas chromatograph, 259
Capillary GC/FT-IR, 260
Carbohydrate, 218
Carbon-black reference, 422
Carbon disulfide, 256
Carbon-filled polymer(s), 420, 422, 426, 430
Carbon tetrachloride, 256
Cassegrain condenser, 305
Cassegrain objective, 337
Cat’s eye(s), 118
 interferometer, 110, 118
 retroreflectors, 118
Cavity effect, 138
CCD-Raman spectrometry, 388
C–C ring stretches, 447
C–C stretching vibration, 405
CdTe, 253
CE/FT-IR interface, 505
Cell windows, 205
Centerburst, 40, 108, 110, 131
Center-of-gravity approach, 232
Center-of-gravity method, 229
Central fringe, 42
Central light fringe, 41
Central lobe, 33
Central ray, 42, 45
Centrifugal distortion, 7
Cesium iodide (CsI), 137, 252
C–H stretches, aliphatic, 451
C–H stretching region, aliphatic, 446

Chalcogenides, 252, 253, 343
Charge-coupled device (CCD), 385
 array detector, 171, 387
Chebyshev recursion formula, 77
Chemical component(s), 214
Chemical mass balance equation(s), 219
Chemometrics, 217, 218
Chemometric techniques, 197
Chiral compounds, 263
Chirped interferogram, 70
Chirping, 69, 134
Circle accessory, 334
Circular dichroism (CD), 263
Circular interference fringes, 41
Circularly polarized radiation, 263
Circular piston, 112
Circular polarization, 263
Classical least-squares (CLS), 207, 210–212, 216, 472
 regression, 209, 211, 213
CO_2, 255
Coal, 221
Coating thickness, 429
Cold gas, jet of, 372
Collimated beam, 19, 47, 49, 126
Collimated radiation, 138
Collinearity, 212
Colthup charts, 5
Coma, 156
Commercial Fourier transform spectrometers, 66
Commercial FT-IR spectrometers, 69, 109
Commercial interferometers, 105
Comparator, 72
 circuit, 108
Compensator, 124
 plate, 136
Complex Fourier transform(s), 38, 227
 of the microphone signal, 427
Component(s)
 ac, 133
 calibration coefficients, 215
 chemical, 214
 cosinusoidal, 38
 dc, 133
 modulated (ac), 23
 orthogonal, 261
 out-of-phase, 448
Deuterated triglycerine sulfate (DTGS), 147
Doppler effect, 10
Detector, 72, 144, 173, 397
Double-beam grating spectrometer, 159
Pyroelectric detector, 53
Double-pendulum design(s), 116, 118
Diamond, 252, 253
Double-pendulum interferometer, 116, 117
Anvil cells, 308, 309
Double-sided complex transform, 78
Dichroic difference, 268, 436
Double-sided interferograms, 40, 50, 86, 395
detector, 144, 173, 397
Dichroic ratio, 268, 436
Double-sided mirror, 115, 116
Difference spectrum, 46, 203, 204, 436
Double-sided phase correction, 131
differential spectrometer, 264
Drive mechanism, 49
Diffraction-limited grating
Dry-air purge, 331
monochromator, 31, 32
Double-pendulum interferometers, 100
Diffraction-limited grating
double-sided interferograms, 40, 50, 86, 395
spectrometer, 30
electronics, 427
dynamic dichroism spectra, 438
Diffraction-limited spatial resolution, 306
Dynamic alignment, 110, 111
diffuse reflection (DR), 349, 353
approach, 110
time response of, 349
spectra, 361
process, 112
digital filter, 72
Dynamically aligned interferometer,
digital filtering, 106
112, 192
Diffraction-limited spectrometer, 30
Dynamic balance, 116
digitizer, 69
dynamic balance, 116
Digilab Stingray, 316
dynamic range, 64–67, 69
digital filter, 72
digital-to-analog converter(s)
electronics, 427
(DAC), 71, 72, 431
dynamic range, 64–67, 69
Digitization, 65
dynamic range, 64–67, 69
noise, 66, 166
digitization, 65
rate, 71
dynamic range of the ADC, 104
Digitizer, 69
dynamic range of the interferogram, 65
diisobutyl ketone, 478
dynamic mechanical analysis
Diluent, 355
dynamic mechanical analysis, 435
dimerization, 199
dynamic mechanical analyzer, 435
dimethyl sulfoxide (DMSO), 344
dynamic range, 64–67, 69
diode array, 129
dynamic range of the interferogram, 65
drive mechanism, 49
dynamic strain frequency, 437
dual-beam grating spectrometer, 159
dual-pendulum design(s), 116, 118
diffuse reflection (DR), 349, 353
Duty-cycle efficiency, 51, 98, 108,
mirror, 478
differential spectrometer, 264
diffuse reflection (DR), 349, 353
mismatch, 46
of the J-stop diameter, 155
dynamic range, 64–67, 69
diffuse reflection (DR), 349, 353
of mirror misalignment, 46
Doppler effect, 10
diffuse reflection (DR), 349, 353
of mirror drive, 49
Doppler effect, 10
of resolution and throughput
dynamic range, 64–67, 69
on SNR, 164
dynamic range, 64–67, 69
of sample diameter and thickness, 186
dynamic range, 64–67, 69
of spectral resolution, 177
dynamic range, 64–67, 69
Effective focal length (EFL), 153, 303
INDEX

Eigenvalues, 214
Eigenvectors, 213
Eight-point Savitsky–Golay filter function, 439
Electrical frequencies, 62
Electric field, 133
vector(s), 261, 294
Electric vector, 138
Electrical line frequency, harmonics of the, 184
Electrochemical process(es), mechanism of, 460
Electromagnetic actuators, 110, 111
Electromagnetic field, 261
Electromagnetic radiative noise, 74
Electromagnetic transducer, 97
Electromagnetic waves, 21
Electronic(s), 36, 109
filter(s), 38, 52, 62, 63
Electronic and software designs, 105
Electron ionization (EI), 481
Elementary concepts, 75
Ellipsoids, toroids, and other aspherical mirrors, 155
Elliptically polarized light (EPL), 265
Emery paper, 357
Emissivity, 363
Emittance, 363
spectra, 369
Empirical boundary relation, 33
Enantiomeric excess (ee), 273
Entrance aperture, 124, 258
Entrance pupil, 98
Entrance slit, 131
Equidistant background, 472
Error interferogram, 189
Error matrix, 214, 219
Euclidean distance method, 246
Evanescent wave, 324, 327
Evanescent wave spectrometry (EWS), 321
Even function, 26
Evolving factor analysis (EFA), 219
External beam, 158
External chopper, 52
External forces, 118
External reflection spectrometry, 297
Extractive monitoring, 463
Extreme ray(s), 43, 45
Fair alignment, 47
False-color images, 319
False-color two-dimensional image, 318
Far-infrared beamsplitter, 136
Far-infrared FT-IR spectrometers, 136
Far-infrared measurements, 134
Far-infrared sources, 146
Far-infrared spectra, 127
Far-infrared spectral regions, 262
Far-infrared spectrometry, 48, 126, 127
Fast Fourier transform (FFT), 78
Fellgett’s advantage, 69, 169, 171
Fermi resonance, 500
Ferrocyanide bands, 461
Fiber–air interface, critical angle at the, 342
Field mirror, 258
Field plane, 99
Field stop, 98
Field widening, 123, 129
Field-widened interferometer, 124
Field-widening approach, 123
Fifth-order comparators, 72
Film thickness, 136
Fingerprint bands, 5
Fingerprint region, 226
Finite conjugate-image planes, 308
First-derivative-shaped bands, 204
Fixed arm, 121
Fixed mirror, 19, 22, 46, 47, 69, 103, 108, 110, 116
Fixed plane mirror, 97, 119
Fixed-size moving window evolving factor analysis (FSMW-EFA), 219
Flame ionization detector (FID), 454
Flat folding mirror, 116
Flat mirror(s), 115, 118, 119
Flex pivot(s), 101, 117, 118
bearings, 101
Flexing parallelogram, 116
Flexure diaphragm, 103
Flexure pivots, 116
Flexure pivots, 116
Flip mirror, 158
Flow characteristics, 260
Fluctuation noise, 169
Fluorescence, 386
Fluorescent light bulbs, 184
Fluoride(s), 252, 253
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>258</td>
</tr>
<tr>
<td>Focal-length mirrors</td>
<td>154</td>
</tr>
<tr>
<td>Focal plane array(s) (FPA)</td>
<td>312</td>
</tr>
<tr>
<td>detector(s)</td>
<td>63, 309, 313</td>
</tr>
<tr>
<td>Folded Jamin interferometer</td>
<td>125</td>
</tr>
<tr>
<td>Folded path cell</td>
<td>257</td>
</tr>
<tr>
<td>Folding frequency</td>
<td>67</td>
</tr>
<tr>
<td>Folding mirror(s)</td>
<td>115, 116</td>
</tr>
<tr>
<td>Forward-feed neural network</td>
<td>222</td>
</tr>
<tr>
<td>Forward and reverse interferograms</td>
<td>52</td>
</tr>
<tr>
<td>Forward and reverse scans</td>
<td>108</td>
</tr>
<tr>
<td>Fourier domain</td>
<td>240</td>
</tr>
<tr>
<td>signal</td>
<td>235, 242</td>
</tr>
<tr>
<td>Fourier frequency</td>
<td>24, 58, 67, 111, 287, 412</td>
</tr>
<tr>
<td>Fourier self-deconvolution (FSD)</td>
<td>240</td>
</tr>
<tr>
<td>Fourier transform</td>
<td>24–26, 28, 29, 31, 57, 62, 105, 128, 266</td>
</tr>
<tr>
<td>classical, conventional, or discrete</td>
<td>75, 130</td>
</tr>
<tr>
<td>lens, 130</td>
<td></td>
</tr>
<tr>
<td>mathematics</td>
<td>58, 60</td>
</tr>
<tr>
<td>pictorial essay</td>
<td>88</td>
</tr>
<tr>
<td>spectrometer</td>
<td>19, 23, 24, 29, 41, 46, 49, 386</td>
</tr>
<tr>
<td>VCD spectrometer</td>
<td>269</td>
</tr>
<tr>
<td>Fourier transformation</td>
<td>28</td>
</tr>
<tr>
<td>Fourier transform photoacoustic</td>
<td>416</td>
</tr>
<tr>
<td>spectrometry</td>
<td></td>
</tr>
<tr>
<td>Four-point region</td>
<td>228</td>
</tr>
<tr>
<td>Fractional instability</td>
<td>109</td>
</tr>
<tr>
<td>Frame co-addition</td>
<td>318</td>
</tr>
<tr>
<td>Free-standing polymer</td>
<td>254</td>
</tr>
<tr>
<td>Fresnel design</td>
<td>340</td>
</tr>
<tr>
<td>Fresnel equations</td>
<td>133, 134, 277</td>
</tr>
<tr>
<td>Fresnel reflectance spectrum</td>
<td>281</td>
</tr>
<tr>
<td>Fresnel reflection</td>
<td>277, 281, 299, 340, 350</td>
</tr>
<tr>
<td>measurements</td>
<td>311</td>
</tr>
<tr>
<td>spectra</td>
<td>349</td>
</tr>
<tr>
<td>Frictional drag</td>
<td>98</td>
</tr>
<tr>
<td>Fringe(s)</td>
<td>69</td>
</tr>
<tr>
<td>contrast</td>
<td>44, 46</td>
</tr>
<tr>
<td>counting</td>
<td>108</td>
</tr>
<tr>
<td>pattern</td>
<td>41</td>
</tr>
<tr>
<td>referencing</td>
<td>104, 109</td>
</tr>
<tr>
<td>Front-surface reflectance</td>
<td>253</td>
</tr>
<tr>
<td>Front-surface reflection</td>
<td>360</td>
</tr>
<tr>
<td>Frustrated multiple internal reflection</td>
<td>(FMIR), 321</td>
</tr>
<tr>
<td>Frustrated total internal reflection</td>
<td>(FTIR), 321</td>
</tr>
<tr>
<td>FT-IR microspectrometry</td>
<td>145</td>
</tr>
<tr>
<td>FT-IR spectrometer(s)</td>
<td>2, 30, 68, 71, 99, 118, 119, 132, 161, 198, 257, 271, 303, 330, 392</td>
</tr>
<tr>
<td>bench-top</td>
<td>109</td>
</tr>
<tr>
<td>optics of an</td>
<td>98</td>
</tr>
<tr>
<td>optics and electronics of</td>
<td>100</td>
</tr>
<tr>
<td>optics of low-resolution</td>
<td>155</td>
</tr>
<tr>
<td>performance of</td>
<td>104</td>
</tr>
<tr>
<td>FT-IR spectrometry</td>
<td></td>
</tr>
<tr>
<td>asynchronous time-resolved,</td>
<td>408</td>
</tr>
<tr>
<td>photometric accuracy in</td>
<td>177</td>
</tr>
<tr>
<td>trading rules in</td>
<td>164</td>
</tr>
<tr>
<td>FT-Raman spectrometer(s)</td>
<td>387, 392</td>
</tr>
<tr>
<td>FT-Raman spectrometry</td>
<td>18, 377, 387</td>
</tr>
<tr>
<td>Full width at half-height (FWHH)</td>
<td>32–34, 177, 481</td>
</tr>
<tr>
<td>criterion</td>
<td>30</td>
</tr>
<tr>
<td>Functional group chromatogram</td>
<td>490</td>
</tr>
<tr>
<td>Fundamental frequency</td>
<td>4</td>
</tr>
<tr>
<td>Gain curve</td>
<td>109</td>
</tr>
<tr>
<td>Gain ranging</td>
<td>68, 73, 104</td>
</tr>
<tr>
<td>amplifier(s)</td>
<td>68, 167</td>
</tr>
<tr>
<td>radius</td>
<td>69</td>
</tr>
<tr>
<td>Gap-and-segment method</td>
<td>238</td>
</tr>
<tr>
<td>Gas cell</td>
<td>260</td>
</tr>
<tr>
<td>Gas chromatography interfaces</td>
<td>158</td>
</tr>
<tr>
<td>Gas-phase photochemical reactions</td>
<td>259</td>
</tr>
<tr>
<td>Gas-phase samples</td>
<td>256</td>
</tr>
<tr>
<td>Gaussian apodization</td>
<td>34</td>
</tr>
<tr>
<td>Gaussian bands</td>
<td>11</td>
</tr>
<tr>
<td>Gaussian function</td>
<td>33</td>
</tr>
<tr>
<td>GC/FT-IR</td>
<td>490</td>
</tr>
<tr>
<td>mobile-phase elimination</td>
<td>491</td>
</tr>
<tr>
<td>approaches for</td>
<td></td>
</tr>
<tr>
<td>GC/FT-IR interfaces, light-pipe-based</td>
<td>483, 486</td>
</tr>
<tr>
<td>GC/FT-IR/MS interface</td>
<td>483</td>
</tr>
<tr>
<td>Ge/KBr beamsplitters</td>
<td>138</td>
</tr>
<tr>
<td>Ge plate</td>
<td>262</td>
</tr>
<tr>
<td>Germanium</td>
<td>134, 253, 278, 279</td>
</tr>
<tr>
<td>film, 136</td>
<td></td>
</tr>
<tr>
<td>plate, 136</td>
<td></td>
</tr>
<tr>
<td>Glan–Taylor polarizer</td>
<td>262</td>
</tr>
<tr>
<td>Glass plate</td>
<td>103</td>
</tr>
<tr>
<td>Glass tube</td>
<td>103</td>
</tr>
<tr>
<td>Globar, 104, 143</td>
<td></td>
</tr>
<tr>
<td>Goodness-of-fit index</td>
<td>247</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Grafting</td>
<td>255</td>
</tr>
<tr>
<td>Gram–Schmidt algorithm</td>
<td>489</td>
</tr>
<tr>
<td>Gram–Schmidt chromatograms</td>
<td>489</td>
</tr>
<tr>
<td>Gram–Schmidt thermograms</td>
<td>504</td>
</tr>
<tr>
<td>Gram–Schmidt vector orthogonalization</td>
<td>487</td>
</tr>
<tr>
<td>Granite</td>
<td>123</td>
</tr>
<tr>
<td>graphite</td>
<td>103</td>
</tr>
<tr>
<td>composite bushings</td>
<td>103</td>
</tr>
<tr>
<td>Grating instruments</td>
<td>29</td>
</tr>
<tr>
<td>Grating monochromator(s)</td>
<td>178</td>
</tr>
<tr>
<td>for far-infrared spectrometry</td>
<td>138</td>
</tr>
<tr>
<td>Grating spectrometer</td>
<td>173</td>
</tr>
<tr>
<td>Grazing incidence reflection spectrometry</td>
<td>277</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>368</td>
</tr>
<tr>
<td>Ground-glass surfaces</td>
<td>112</td>
</tr>
<tr>
<td>Hädinger fringes</td>
<td>41</td>
</tr>
<tr>
<td>Half-angle</td>
<td>45, 99</td>
</tr>
<tr>
<td>Halides</td>
<td>252</td>
</tr>
<tr>
<td>Halogenated solvents</td>
<td>257</td>
</tr>
<tr>
<td>Halogen source</td>
<td>127</td>
</tr>
<tr>
<td>Happ-Genzel function(s)</td>
<td>33–35</td>
</tr>
<tr>
<td>Hardness</td>
<td>252</td>
</tr>
<tr>
<td>Harmonic oscillator</td>
<td>3</td>
</tr>
<tr>
<td>Heavy metal halides</td>
<td>253</td>
</tr>
<tr>
<td>Helium</td>
<td>259</td>
</tr>
<tr>
<td>Helium–neon (HeNe) laser(s)</td>
<td>53, 63, 74, 104, 105, 108–110, 127, 489</td>
</tr>
<tr>
<td>frequency</td>
<td>419</td>
</tr>
<tr>
<td>interferogram</td>
<td>200, 411</td>
</tr>
<tr>
<td>HeNe detector</td>
<td>73</td>
</tr>
<tr>
<td>HeNe frequency</td>
<td>53</td>
</tr>
<tr>
<td>HeNe interferogram</td>
<td>64, 194, 380</td>
</tr>
<tr>
<td>HeNe signal amplifier</td>
<td>73</td>
</tr>
<tr>
<td>HeNe wavelength</td>
<td>63</td>
</tr>
<tr>
<td>Herriott cell</td>
<td>258, 259</td>
</tr>
<tr>
<td>Hexacyanoferrate complex</td>
<td>461</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>256</td>
</tr>
<tr>
<td>Hexane extraction</td>
<td>218</td>
</tr>
<tr>
<td>Hexanitrophenyl</td>
<td>388</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>256</td>
</tr>
<tr>
<td>Hidden layer</td>
<td>222</td>
</tr>
<tr>
<td>High-amplitude broadband noise</td>
<td>427</td>
</tr>
<tr>
<td>Higher-order derivatives</td>
<td>239</td>
</tr>
<tr>
<td>Highest operating temperature</td>
<td>252</td>
</tr>
<tr>
<td>High-frequency signal</td>
<td>270</td>
</tr>
<tr>
<td>High-molecular-weight precursor</td>
<td>442</td>
</tr>
<tr>
<td>High optical velocity</td>
<td>51</td>
</tr>
<tr>
<td>High-pass filter</td>
<td>316</td>
</tr>
<tr>
<td>High-performance liquid chromatography (HPLC)</td>
<td>483</td>
</tr>
<tr>
<td>normal- and reverse-phase</td>
<td>498</td>
</tr>
<tr>
<td>High-precision roller bearings</td>
<td>112</td>
</tr>
<tr>
<td>High-pressure cells</td>
<td>253</td>
</tr>
<tr>
<td>High-reflectance diffuse coating</td>
<td>354</td>
</tr>
<tr>
<td>High-refractive-index material</td>
<td>325</td>
</tr>
<tr>
<td>High-resolution FT-IR spectrometers</td>
<td>110, 118</td>
</tr>
<tr>
<td>High-resolution interferometers</td>
<td>118</td>
</tr>
<tr>
<td>High-resolution scans</td>
<td>113</td>
</tr>
<tr>
<td>High-resolution spectra</td>
<td>62</td>
</tr>
<tr>
<td>High-resolution spectrometry</td>
<td>62, 111</td>
</tr>
<tr>
<td>High-resolution step-scan interferometers</td>
<td>127</td>
</tr>
<tr>
<td>High-resolution ultraviolet spectrum</td>
<td>104</td>
</tr>
<tr>
<td>High-spatial-frequency noise</td>
<td>165</td>
</tr>
<tr>
<td>High-speed time-resolved spectrometry</td>
<td>127</td>
</tr>
<tr>
<td>High-wavenumber region</td>
<td>268</td>
</tr>
<tr>
<td>H–O–H bending mode</td>
<td>10</td>
</tr>
<tr>
<td>of water</td>
<td>182</td>
</tr>
<tr>
<td>Horizontal attenuated total reflection (H-ATR)</td>
<td>331</td>
</tr>
<tr>
<td>HPLC/FT-IR interface</td>
<td>495</td>
</tr>
<tr>
<td>mobile-phase elimination techniques for</td>
<td>496</td>
</tr>
<tr>
<td>H-shaped swing arms</td>
<td>102</td>
</tr>
<tr>
<td>Hybrid imaging/mapping imaging spectrometer</td>
<td>315</td>
</tr>
<tr>
<td>Hybrid imaging/mapping instrument</td>
<td>317</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>259</td>
</tr>
<tr>
<td>Hydrogen bonding</td>
<td>210</td>
</tr>
<tr>
<td>Hydrogen spectrum</td>
<td>25</td>
</tr>
<tr>
<td>Hypercube</td>
<td>312</td>
</tr>
<tr>
<td>Hyperspectral FT-IR imaging</td>
<td>312, 319</td>
</tr>
<tr>
<td>Hyperspectral imaging</td>
<td>53, 127, 308</td>
</tr>
<tr>
<td>Ideal Beer’s law behavior, deviation from</td>
<td>179</td>
</tr>
<tr>
<td>Ideal phase-modulated interferometer</td>
<td>128</td>
</tr>
<tr>
<td>Identity matrix</td>
<td>215</td>
</tr>
<tr>
<td>Image co-addition</td>
<td>318</td>
</tr>
<tr>
<td>Image-contrasting optics</td>
<td>308</td>
</tr>
</tbody>
</table>
INDEX

Imaginary part, 39
Imaging measurements, 128
Impulse function, 60
Incidence, 120
Incident angle, 22, 112, 121, 123
Incident radiation, 133
Indium gallium arsenide (InGaAs), 376
Infinity corrected design, 308
Information-rich infrared spectra, 3
Infrared absorption coefficient, 418
Infrared beam, 104, 106, 200
divergence angle of the, 108
Infrared detector(s), 23, 52, 73, 104, 107
Infrared emission spectra
of condensed-phase samples, 366
of gases, 363
Infrared emission spectrometry, 363
Infrared grating spectrometer(s), 112
Infrared interferogram(s), 106, 107, 108, 123
Infrared microscope(s), 63, 158, 304
Infrared radiation, 106, 201
sources for transmission and reflection spectrometry, 143
Infrared reflection–absorption spectrometry (IRRAS), 277, 282, 312
measurement, 267
spectrometry, 298
spectrum, 291
Infrared signal, 105, 111
amplifier, 73
Infrared spectrum, 5, 19, 111, 303, 308
Infrared spectroelectrochemistry, 460
Infrared (IR) spectrometry, 1, 30, 19, 197, 221
Infrared spectroscopy, 256
Infrared transmission spectrometry, 254
Infrared-transmitting windows, 324
Infrared-transparent material(s), 252, 493
InGaAs detector, 383
In-phase (IP) channel(s), 426, 438
In-phase interferograms, 428
In-phase output, 456
In-phase spectrum, 427, 444
Input beam, 20, 259
Input channels, 73
Input layer, 221, 222
Input neurons, 222
Input voltage, 72
InSb detector, 114
Instrument artifacts, 214
Instrument line shape (ILS) algorithms, 212
Instrument line shape (ILS) function(s), 29, 33, 34, 200, 212, 216
Instrument line shape (ILS) method, 212
Instrument line shape (ILS) model, 215
Instrument response function, 364
Instrumental considerations, 400
Intensity, of diffracted light, 306
Interaction spectra, 213
Interfacial phenomena, 1
Interfacial species, 2
Interference, 19, 127
effects, 132
fringe(s), 134, 253–255
record, 22
Interferogram(s), 23–27, 32, 33, 36, 38, 48, 50, 57, 65, 110, 255
amplitudes, 73
centerburst, 189
clipped, 64
coherent signal-averaging (co-adding), 106
constant-in-reaction-time, 407
distribution of, 69
envelope of the, 26
generation of an, 20
measurement of, 108
sampling the, 57
voltage of the, 71
Interferometer(s), 19, 20, 23, 26, 28, 41, 46–48, 97, 99, 114, 119–121, 123, 129, 131, 258, 419
bidirectional rapid-scanning, 52
block, 102
construction of an, 116
continuous scan, 20
designs of, 97
drift, 183
mirror(s), 49, 111
versus grating spectrometers, 171
Interferometry, 19, 64
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s) or Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleaved mirrors</td>
<td>138</td>
</tr>
<tr>
<td>Intermolecular interactions</td>
<td>204</td>
</tr>
<tr>
<td>Internal reflectance</td>
<td>135</td>
</tr>
<tr>
<td>Internal reflection element (IRE)</td>
<td>200, 201, 203, 253, 323, 397</td>
</tr>
<tr>
<td>Internal reflection spectrometry (IRS)</td>
<td>253, 321</td>
</tr>
<tr>
<td>Internal reflection spectroscopy</td>
<td>253</td>
</tr>
<tr>
<td>Invar</td>
<td>123</td>
</tr>
<tr>
<td>Inverse Fourier transformation</td>
<td>243</td>
</tr>
<tr>
<td>Inverse least-squares (ILS) regression</td>
<td>210, 212</td>
</tr>
<tr>
<td>Isotactic polypropylene</td>
<td>440, 457</td>
</tr>
<tr>
<td>Iterative key set factor analysis (IKS-FA)</td>
<td>219</td>
</tr>
<tr>
<td>Iterative process</td>
<td>214</td>
</tr>
<tr>
<td>Iterative target transform factor analysis (ITTFA)</td>
<td>219</td>
</tr>
<tr>
<td>Jacquinot's advantage</td>
<td>2, 171, 172</td>
</tr>
<tr>
<td>Jacquinot stop (J-stop)</td>
<td>42, 44, 46, 99, 155</td>
</tr>
<tr>
<td>Jamin interferometer</td>
<td>126</td>
</tr>
<tr>
<td>Karl Fischer method</td>
<td>218</td>
</tr>
<tr>
<td>KBr</td>
<td>252</td>
</tr>
<tr>
<td>KBr pellets</td>
<td>251</td>
</tr>
<tr>
<td>KCl</td>
<td>252</td>
</tr>
<tr>
<td>Kinetic systems</td>
<td>219</td>
</tr>
<tr>
<td>Kirchhoff's law</td>
<td>365, 368</td>
</tr>
<tr>
<td>Kjeldahl titration</td>
<td>218</td>
</tr>
<tr>
<td>K-matrix method</td>
<td>209</td>
</tr>
<tr>
<td>Kramers–Kronig relations</td>
<td>280</td>
</tr>
<tr>
<td>Kramers–Kronig transform</td>
<td>279, 281, 311</td>
</tr>
<tr>
<td>KRS-5 crystals</td>
<td>253</td>
</tr>
<tr>
<td>Kubelka–Munk equation</td>
<td>350</td>
</tr>
<tr>
<td>Kubelka–Munk reflection</td>
<td>350</td>
</tr>
<tr>
<td>Kubelka–Munk theory</td>
<td>349</td>
</tr>
<tr>
<td>Lambert plots</td>
<td>199</td>
</tr>
<tr>
<td>Lamellae grating interferometer(s)</td>
<td>138–140</td>
</tr>
<tr>
<td>Laser beam(s)</td>
<td>106, 108, 110, 125, 258, 259</td>
</tr>
<tr>
<td>Laser detector(s)</td>
<td>104, 107, 125</td>
</tr>
<tr>
<td>Laser-drilled hole</td>
<td>483</td>
</tr>
<tr>
<td>Laser fringe</td>
<td>108</td>
</tr>
<tr>
<td>zero crossings</td>
<td>74</td>
</tr>
<tr>
<td>Laser interferogram(s)</td>
<td>71, 72, 105–108, 123, 127</td>
</tr>
<tr>
<td>frequency of the</td>
<td>72, 108</td>
</tr>
<tr>
<td>zero crossing of the</td>
<td>106</td>
</tr>
<tr>
<td>Laser-referenced interferometers</td>
<td>106</td>
</tr>
<tr>
<td>Laser signal</td>
<td>73, 109</td>
</tr>
<tr>
<td>Laser wavenumber</td>
<td>46</td>
</tr>
<tr>
<td>Lateral displacements</td>
<td>113</td>
</tr>
<tr>
<td>Lateral separation</td>
<td>100</td>
</tr>
<tr>
<td>LC Transform</td>
<td>498</td>
</tr>
<tr>
<td>Least-squares analysis</td>
<td>205</td>
</tr>
<tr>
<td>Least-squares fitting</td>
<td>206</td>
</tr>
<tr>
<td>Least-squares method</td>
<td>229</td>
</tr>
<tr>
<td>Least-squares regression</td>
<td>208–210</td>
</tr>
<tr>
<td>Leave-one-out method</td>
<td>218</td>
</tr>
<tr>
<td>Level zero tests</td>
<td>186</td>
</tr>
<tr>
<td>Levenberg–Marquardt method</td>
<td>236</td>
</tr>
<tr>
<td>Lever-arm system</td>
<td>110</td>
</tr>
<tr>
<td>Ligand-exchange reaction</td>
<td>402</td>
</tr>
<tr>
<td>Light-chopper frequency</td>
<td>437</td>
</tr>
<tr>
<td>Light-driven proton-pump membrane protein</td>
<td>404</td>
</tr>
<tr>
<td>Light-emitting diode</td>
<td>129</td>
</tr>
<tr>
<td>Light-pipe design</td>
<td>483</td>
</tr>
<tr>
<td>Light-pipe gas cells</td>
<td>260</td>
</tr>
<tr>
<td>Light-pipe-based interface</td>
<td>490</td>
</tr>
<tr>
<td>Limiting aperture</td>
<td>42, 156</td>
</tr>
<tr>
<td>Linear absorption coefficient</td>
<td>13, 327, 419, 421</td>
</tr>
<tr>
<td>Linear array detector</td>
<td>128</td>
</tr>
<tr>
<td>Linear dichroism</td>
<td>261</td>
</tr>
<tr>
<td>applications of</td>
<td>266</td>
</tr>
<tr>
<td>Linear least-squares fitting</td>
<td>205</td>
</tr>
<tr>
<td>methods</td>
<td>204</td>
</tr>
<tr>
<td>Linear least-squares regression</td>
<td>207, 208 model, 207</td>
</tr>
<tr>
<td>Linear molecule</td>
<td>8</td>
</tr>
<tr>
<td>Linear PLS techniques</td>
<td>223</td>
</tr>
<tr>
<td>Linear reciprocal coefficient</td>
<td>211</td>
</tr>
<tr>
<td>Linear systems</td>
<td>223</td>
</tr>
<tr>
<td>Liquid chromatographs</td>
<td>481</td>
</tr>
<tr>
<td>Liquid-crystal electroreorientation</td>
<td>458</td>
</tr>
<tr>
<td>Liquid-handling system</td>
<td>398</td>
</tr>
<tr>
<td>Liquid-nitrogen bath</td>
<td>369</td>
</tr>
<tr>
<td>Liquid-nitrogen-cooled helium</td>
<td>370</td>
</tr>
<tr>
<td>Liquid-nitrogen (LN2)-cooled ZnSe</td>
<td>493</td>
</tr>
<tr>
<td>Lissajous figures</td>
<td>259</td>
</tr>
<tr>
<td>Lithium tantalate</td>
<td>147</td>
</tr>
<tr>
<td>Lithium figures</td>
<td>259</td>
</tr>
<tr>
<td>LN2-cooled detectors</td>
<td>260</td>
</tr>
</tbody>
</table>
INDEX

Medium-resolution FT-IR spectrometers, 110
Melinex, 134
2-Mercaptoethanol, 240
Mercury cadmium telluride (MCT), 53, 150, 187, 198, 260, 264, 314, 344, 401, 443, 464
bolometers, 71
PbS, see Lead sulfide
photomultiplier tube (PMT), 170, 375
pneumatic detector, 146
pyroelectric, 66, 69, 146, 174
thermistor bolometer, 146
thermocouple, 146
Mertz method, 86
Mertz phase, 271
correction algorithm, 108, 189
Metal mesh beamsplitter, 139
N-(p-Methoxybenzoyl)sulfamethazine, 503
Methyl ethyl ketone (MEK), 477, 478
analytical-grade, 333
(S)-Methyl lactate, 273
Methyl methacrylate (MMA), 373
Methyl monochloroacetate, 399
Methyl phosphonic acid, 391
bis-Methyl styryl benzene, 381
Michelson interferometer, 19, 20, 22, 24, 41, 42, 46, 97, 98, 101, 110–112, 121, 124, 129, 138, 139
ray diagram of a, 132
Michelson interferometer with rotating retroreflector (MIROR), 121
Michelson-type interferometers, 97
Microsamples and trace analytes, 2
Microsampling, 255
with beam condensers, 303
Microscopic dissolution, 319
Microspectroscopy and hyperspectral imaging, 1
Microspectroscopy and imaging, 303
Midac interferometer, 102
Mid-infrared beamsplitters, 183
Mid-infrared energy, 183
Mid-infrared Fourier transform spectrometry, 174
Mid-infrared FT-IR spectrometer(s), 62, 63, 138, 262
Mid-infrared interferograms, 104
Mid-infrared measurements, 138, 425
Mid-infrared microspectrometry, 306

Loading vectors, 214, 216
Lock-in amplifier(s) (LIA), 128, 264, 426, 437, 456
train, 438
Longitudinal separation, 100
Long-path FT-IR measurements, 258
Long-path (multipass) gas cell, 486
Lorentzian band(s), 11, 25, 243
Lorentzian functions, 280
Lorentzian profile(s), 26, 472
Loudspeakers, 98
Low-amplitude phase modulation, 128
Low-amplitude strain, 436
Low-emissivity glass slides, 311
Low-expansion coefficient, 123
Low-frequency interferogram, 270
Low-frequency noise, 166, 464
Low-friction bearing interface, 103
Low-index material, 293
Low-pass electronic filter, 59, 105
Low-pass filter, 266, 408, 411
Low-pressure mercury lamp, 129
Low-resolution FT-IR spectrometer(s), 42, 157
Low-resolution measurements, 162
Low-resolution scans, 51
Low-resolution spectra, 395
Low-resolution spectrometers, 110
Low-resolution stationary interferometers, 131
Low-spatial-frequency noise, 165
Lubricant, 98

Macroscopic measurements, 307
Magnetic field, 98
Manual baseline correction, 226
Mapping imaging spectrometer, 315
Mapping instrument, 317
Mass spectrometry (MS), 1, 481
Matrix isolation approach, 492
Matrix isolation GC/FT-IR, 491
Matrix-isolation spectra, 492
Mattson interferometers, 112
Maximum-allowed divergence, 163
Maximum amplitude, 24
Measured digitized value, 72
Mechanical design, 105
Mechanical velocity, 105
Median ray, 19
Mid-infrared pyroelectric bolometer, 64
Mid-infrared region, 111
Mid-infrared spectra, 9, 65, 106, 109, 253, 256, 353, 440
Mid-infrared spectrometry, 62, 128, 161, 251, 253
Mid-infrared spectroscopy, 136, 222
Minuend spectrum, 204
Mirror carriage, 102
Mirror drive, 100, 115
Mirror motion, 121
Mirror scans, 109
Mirror shear effects, 118
Mirror tilt, 118
Mirror velocity, 57, 68, 108, 121
variations in the, 168
Mode hopping, 109
Modulated interferogram, 410
Modulated perturbation, 435
Modulated strain, 448
Modulation efficiency, 121
changes in, 191
Modulation frequency, 23, 105, 418, 428
Molecular vibrations, 3
Monochromatic beam, 41, 104
Monochromatic light, 42
source, 411
Monochromatic line, 29
Monochromatic radiation, 20, 22, 24, 44, 132
Monochromatic source, 23, 126
Monochromator(s), 30, 99, 129, 435
Monolithic common-path interferometer, 130
Monolithic designs, 129
Movable cube corner, 113
Movable facets, 139
Movable wedge, 124
Moving double-sided mirror, 116
Moving mirror, 22, 26, 47–50, 53, 54, 98, 102, 103, 105, 108–110, 127
assembly, 100
velocity of the, 51
Moving optical element(s), 116, 121
Moving plane mirror, 97
Multichannel spectrometer, 361
Multidimensional space, 219
Multifrequency waveform, 431
Multilayer beamsplitters, 138
Multipass gas cell, 258
Multiple-angle incidence resolution spectroscopy (MAIRS), 295
Multiple atmospheric layer transmission (MALT), 465
Multiple internal reflection (MIR), 321
Multiple linear regression (MLR), 212
Multiple-reflection accessories, 336
Multiplex advantage, 171
Multiplicative noise, 131
Multivariate curve resolution (MCR), 218, 219
Multivariate methods, 217, 223
Multivariate regression methods, 220
Multivariate system, 207
Multivariate technique(s), 197, 210
Mylar, 134
beam splitter, 138
film, 135
Nafie’s group, 271
Naperian logarithms, 256
Narrowband MCT detectors, 150
National Institutes of Health, 312, 486
Natural light, 261
Near-infrared analysis, 112
Near-infrared (NIR) diffuse reflection spectroscopy, 358
Near-infrared (NIR) DR spectra, 352
Near-infrared (NIR) interferograms, 104
Near-infrared measurements, 136, 138, 396
Near-infrared (NIR) spectrometry, 98, 127, 128, 248, 253
Near-infrared (NIR) spectrum, 6, 63, 104, 114, 300, 352, 358
Negative bands, 203
Negative transmittance, 198
Nernst glower, 144
Nesting mirrors, 258
Neural networks, 221, 223
Neuron, 221
Nitric oxide, 7
Noise band, 68
Noise equivalent power (NEP), 161
Noise-free signal, 67
Noise injection, 67
Noise power, 161
Noise-shaping filters, 72
Nominal resolution, 32, 114
of the spectrometer, 178
Index

Nonabsorbing gas, 417
Nonabsorbing materials, 278
Noncollimated beam, 42
Nonfactor analysis methods, 219
Noniterative partial least squares (NIPALS), 214
Nonlinear Beer’s law, 366
Nonlinear PLS techniques, 223
Nonlinear systems, 223
Nonpolar analytes, 251
Nonpolar molecules, 256
Normal coordinate, 4
Normal-phase separations, 499
Norton–Beer apodization functions, 37, 181
Norton–Beer medium, 35, 199
apodization, 198
function, 88
Norton–Beer strong apodization function, 34, 165
N-point interferogram, 227, 228
Nuclear magnetic resonance (NMR), two-dimensional, 1
Numerical aperture (NA), 306
Nyquist criterion, 50, 57, 58, 74
Nyquist frequency, 57, 58, 62, 68, 72, 189
Nyquist sampling criterion, 59, 270
Nyquist sampling theorem, 412
Nyquist wavenumber, 104–106, 168, 441

5 o’clock effect, 170
Octadecylsiloxane, 295
Off-axis accessories, 353
Off-axis ellipsoid, 156
Off-axis geometry, 354
Off-axis paraboloid(s), 125, 153
Off-axis ray, 42
O–H stretching bands, 256
O–H stretching region, 226
One-point baseline correction, 225
Open-path atmospheric monitoring, 466
Open-path FT-IR spectrometry, 463
Operator-selected spectral data points, 226
Optical absorption depth, 419, 421
Optical anisotropy, 439
Optical bench, 119, 136
Optical center, 131
Optical constants, 14, 15
Optical element(s), 69, 121, 128
Optical filters, 63

Optically opaque fibers, 424
Optical path, 119, 124
Optical path difference (OPD), 21, 24, 49,
98, 99, 110, 121, 127, 411
velocity, 24
Optical retardation, 21, 27
of the interferometer, 63
Optical Society of America, 34
Optical thickness, 255
Optical throughput, 98, 162
Optical train, 131
Optical velocity, 24, 53, 57, 105, 121
Optics, 109
Cassegrain or Schwartzschild, 305
Optimum absorbance, 256
Optimum pathlength, 256
Organic liquids, 254
Orthogonal components, 261
Orthogonal matrix, 215
Out-of-band energy, 189
Output beam(s), 20, 113, 117, 125
Output layer, 222
Output scalars, 222
Overlapped bands, 238
Oxyanions, 279

PA/FT-IR depth profiling, 428
PA/FT-IR spectrometry, 417
Paraboloidal mirrors, 152, 157
Parallel input beams, 21
Partial least squares (PLS), 223, 474
algorithms, 217
model, 112
regression, 112, 216
Partial pressure(s), 256, 257
PA spectrometry, 422
PA spectrum, of polycarbonate, 423
Passive solar heating devices, 368
Path difference, 19, 21, 24, 42, 43, 45, 48,
118, 119, 121, 138
Path-integrated concentration, 467
Pathlength(s), 22, 207, 208, 211, 253, 254,
257, 259, 260
Pathlength–concentration product, 486
PbS detector, 352
PC-MCT detectors, 315
Peak absorbance(s), 198, 200, 204
Peak picking, 229
Peak-to-peak detector noise, 65
INDEX

Peak-to-peak noise, 181, 198
level, 67, 163
Pendant group vibrations, 447
Pendant pentyl tail, 460
Pendulum, 116, 118
axis, 116, 118
Penetration depth, 54
4-Pentyl-4′-cyanobiphenyl (5CB), 459
Percent transmission, 252
Periscope interferometer, 119
Permanent magnet, 98, 103
Pharmacist’s method, 355
Phase angle, 36, 38
Phase-angle bandpass, 87
Phase-angle spectrum, 87
Phase change, 22
Phase-corrected interferogram, 87
Phase-corrected spectrum, 70
Phase-corrected transmittance spectrum, 92
Phase correction, 39, 85, 110
Phase difference, 111
Phase errors, 76
Phase-modulated mirror, 431
Phase-modulated step-scan interferometer, 425
Phase modulation (PM), 52, 128, 440
frequency, 432, 456, 457
measurements, 128
waveform, 456
Phase shift
plate, 125
reduction in, 429
Phase spectrum, 40
Phenolic antioxidants, 256
Photoacoustic (PA), 415, 454
effect, 415
phase shift, 428
phase spectrum, 430
saturation, 419, 432
spectroscopy, 127, 372
spectrum, 417
Photoacoustic spectrometry, 53, 371, 373
of gases, 415
Photochemical smog, 259
Photoconductive (PC) MCT detector, 314
conventional, 401

Photoelastic modulator (PEM), 265, 436
generated signal, 457
Photolysis-assisted pollution analysis (PAPA), 465
Photometric accuracy, 32, 41
Photometric precision, 200
Photomultiplier tube (PMT), 170, 375
Photons, 22
Photovoltaic (PV) mode, 314
Phthalate plasticizer, 504
Physical constraints, of the optics, 162
Physical properties, 252
Physical scan, 53
Piezoelectric transducer(s), 110, 111, 128
x-Pinene, 271
(5)-(−)-x-Pinene, 271–273
Piston, 98, 103
tolerances of the, 103
Pixel response, 129
Plan view, 115
Planar reflectors, 120
Plane of incidence, 261
Plane mirror(s), 19, 112–115, 119–122, 155
Plane-mirror Michelson interferometer, 112, 113
Plane-polarized radiation, 261, 262
P matrix, 212
Polar analyte, 251
Polarizability, 16
Polarization, 261
effects, 118
interferometers, 125, 127
modulation, 264
modulation frequency, 266, 436
modulation signal, 457
plane of, 266
p-Polarization, 133
s-Polarization, 133
p-Polarized component, 262
p-Polarized light, 262, 284
Polarized radiation, 15, 125, 135, 136, 296, 436
p-Polarized radiation, 134, 283, 284
s-Polarized radiation, 134, 278, 283
Polarizer, 15, 254
Poly(γ-benzyl-L-glutamate), 440
Polycarbonate sheet, photoacoustic spectrum of a, 423
Polycarbonate (PC) substrate, 372, 430
INDEX

Polyethylene (PE), 262, 430
 film, 201, 202
 thermal diffusivity of, 420
Poly(ethylene terephthalate) (PET), 134, 190, 251, 266, 306, 430
 beamsplitter(s), 136, 138, 139,
 film(s), 135, 136
Polymer-clad fibers, 346
Polymer-dispersed liquid crystals, 319
Polymer films, 251
Polymerization, 199
Polymer modulator, 443
Poly(methyl methacrylate), 297, 299
Poly[(methyl methacrylate-co(butyl methacrylate)] samples, 373
Polynomial curves, 205
Polynomial PLS, 223
Polyolefins, 255
Poly(p-phenylene vinylene) (PPV), 442
Polypropylene (PP), 430
Polystyrene, 66, 251
 atactic, 439, 440
Polytetrafluoroethylene (PTFE), 100, 361
Poor digitization accuracy, 65
Poor mirror drive, 49
Porch swing design, 101
Porch-swing drive, 101
Positive-going feature, 436
Potassium bromide, 137, 279
Potential function, 4
Powdered barium sulfate, 354
Precision-ground piston, 103
Prediction residual error sum of squares (PRESS), 217
 plot, 217
 value, 217
Prediction set, 218
Primary method, 218
Principal component(s) (PC), 213–215, 217
Principal component analysis (PCA), 213, 214, 216
Principal component regression (PCR), 215, 216
 algorithms, 216
Protein, 218
 concentration, 218
Pseudoinversion, 220
Pure component spectra, 213, 219
Pyroelectric bolometer(s), 66, 146
Pyroelectric detector(s), 69, 174
Q branch, 9
Quadrant detector, 103, 110
Quadrature (Q) channel(s), 426, 438
Quadrature interferograms, 428
Qualitative spectrum, 201
Quantitative analysis, 197, 223
 of complex mixtures, 1
Quantitative considerations, 12
Quantitative information, 197
Quantization, 65
 levels, 71
Quantum detectors, 129, 148
Quarter-wave plate, 264
Quarter-wave retardation plate, 108
Quartz (SiO2), 137, 252, 253, 259
Quartz prisms, 123
Quartz–tungsten–halogen (QTH) lamp, 145
Radiant heat transfer analysis, 367
Radiation, 19, 24, 116, 203, 261
Raman bands, 375
Raman shifts, 375
Raman spectrometry, 16, 375, 379, 388
 analytical, 18
Raman spectrum, 138, 171, 249, 381, 392
Rapid photolysis reactions, 402
Rapid-scan FT-IR spectrometers, 481
Rapid-scan interferometer(s), 20, 50, 53, 54, 62, 104, 458
Rapid-scanning FT-IR spectrometers, 314
Rapid-scanning grating spectrometers, 352
Rapid-scanning interferometer(s), 40, 48, 64, 66, 68, 100, 127, 131, 317, 416, 417, 435
Rapid-scanning Michelson interferometers, 23
Rapid-scan mode, 127
Rapid-scan systems, 54
Ratio spectrum, 48
Rayleigh criterion, 30, 32
Rayleigh line, 381
Rayleigh scattered light, 380
Rayleigh scattering, 16, 375
Ray tracing, 125
Real part, 39
Real-time direct-deposition interface, 499
INDEX

Real-time sampling, 290
Rear-silvered mirror, 124
Reciprocating motion, 121, 122
Recombination, 22, 126
Rectangular mirror, 122
Redundant aperturing, 306
Reference interferometer, 107
Reflectance, 21, 132, 133
factor, 354
of radiation, 278
Reflected beam, 112
Reflection–absorption infrared spectrometry (RAIRS), 277
Reflection–absorption measurements, 493
Reflection–absorption spectrum, 282
Reflection loss, at the windows of the cell, 13
Reflection spectrometry, 261, 296, 310, 373
external or internal, 460
Reflector, 121
Refractive element, 121
Refractive index, 14, 69, 109, 124, 133, 134, 136, 137, 251, 253, 254, 262, 281, 294
of germanium, 136
spectrum, 14
Refractively scanned interferometers, 123, 125
Refractive optical element, 124
Regression coefficient, 205
Relative beam splitter efficiency, 135
Relative magnitude, 33
Repolishing, 253
Residual error
for absorbance, 211
for the dependent, 211
Residual spectra, matrix of, 214
Resistance, 121
Resolution, 26, 28, 32, 35, 40, 49, 121, 123, 129
parameter, 177, 197–199
spectra, 123
Resonance modes, 109
Resonance Raman spectroscopy (RRS), 389
Responsivity, 23
Reststrahlen bands, 279
Retardation(s), 21, 22, 24, 26, 27, 33, 41, 51–53, 105, 109, 110, 131
Retardation and computation time, 62
Retrorefectors, 112, 118
Reverse-phase (RP) chromatography, 496
Reverse scans, 52
Rheo-optical measurements, 458
Rocking mirror, 126
Roll axis, 100
Roll motion, 100
Roof retroreflector, 112, 113
Root-mean-square (rms), 181
noise, 64, 234
positional uncertainty, 128
signal-to-noise ratio (SNRrms), 198
Root-mean-square error of calibration (RMSEC), 218
Root-mean-square error of cross validation (RMSECV), 217, 218
Root-mean-square error of prediction (RMSEP), 218
Rotating interferometer, 122
Rotating mirror, 121, 122
Rotation(s), 121
angle, 121
Rotational axis, 118
Rotational energy, 6
Rotational energy states, 7
Rotational motion, 101, 120
Rotational quantum number, 6
Rotational transition, 114
Sagnac interferometer, 128
Salt plates, 251
Sample-and-hold ADC(s), 65, 71, 74
Sample-and-hold technology, 72
Sample-changing wheel, 407
Sample compartment, 200
Sampled signals, 65
Sample holders, 200
Sample modulation, 54
FT-IR spectrometry, 458
interferogram points, 456
measurements, 128
spectrometry, 457
spectroscopy, 127, 435
Sampling, 110
accessory, 46
amplitudes, 58
detector noise, 65
effects, 36
error, 167
INDEX

frequency, 57, 59, 61, 62, 64, 68, 71, 105
interval, 64, 131
point(s), 63, 128
rate, 71
timing of ADC, 410
Sande–Tukey algorithm, 84
Sapphire (Al₂O₃), 252, 253
Satellite-borne interferometers, 69
Savitzky–Golay algorithm, 238
Savitzky–Golay smoothing algorithm, 233
Scalar output, 221
Scalar value, 221
Scaling factor, 202, 204
Scan cycle, 110
Scanning interferometers, 128, 129
Scanning monochromators, 73, 190
Scanning time, 121
Scanning two-beam interferometers, 19
Scanning wedge, 125
Scan speed, 53
Scan velocity, 53
Second-order coupling, 500
Self-absorption, 366
Self-apodization, 44
Self-compensation, 115
Self-modeling strategies, 219
Self-supporting thin-film (pellicle), 134
Shaft, 98
coder, 127
Shah function, 60
Shear offset, 121
Shift, 99
Short optical fibers, 253
Short-focal-length Cassegrain condenser, 305
Short-path background, 473
Short-term performance, 181
Short-term variations, 131
Shot noise, 170
Sigma–delta (Σ–Δ) ADC(s), 71, 74, 167
Signal averaging, 50, 104, 108
Signal-averaging systems, 67
Signal-averaging techniques, 67
Signal interferogram, 104
Signal-processing scheme, 440
Signal-to-noise ratio(s) (SNR), 41, 54, 64, 67, 104, 128, 129, 143, 161, 242, 247, 284, 303, 336, 378, 391, 464
of a commercial FT-IR spectrometer, 175
of reflection–absorption spectra, 145
of spectra, 127
Silicon, 134, 253
film, 137
wafer, 341
Silicone bands, 432
Silicone grease, 367
Simple peak-picking algorithms, 229
Simple spectra, 24, 25
Sinc function(s), 30–32, 36, 37
Sinc ILS function, 179
Sine transform, 39
Sine wave, 58
frequency of the, 58
interferogram, 39
Single-beam background, 417
spectrum, 404
Single-beam IRRAS spectrum, 267
Single-beam PA spectrum, 422
Single-beam spectral intensity, 23
Single boxcar integrator, 412
Single-channel dispersive spectrometer, 169
Single-channel spectrometer, 361
Single-frequency PM waveform, 431
Single off-axis segment, 156
Single-point baseline correction, 187
Single phase-modulation frequency, 430
Single physical aperture, 307
Single-reflection accessories, 336
Single-sided interferograms, 40, 87
Single-sided measurements, 41
Single-sided mode, 106
Single-sided spectrum, 78
Single-surface reflectance, 136
Singular value decomposition (SVD), 214
Sinusoidal function, 57
Sinusoidal interferogram(s), 24, 26, 111, 411
Sinusoidal phase modulation, 454
Sinusoidal wave, 67, 108
SiO₂ piezoelectric transducers, 265
Size-exclusion chromatography (SEC), 496
Skeletal modes, 5
Slow-scanning interferometers, 48
INDEX

Small spectral shifts, 159
Snell’s law, 278, 322
Society for Applied Spectroscopy, 190, 191, 398
Sol-gel, 390
Solid angle, 123
 maximum allowed, 162
Solution-phase ferricyanide, 461
Solution-phase species, 460
Solvation, 199
Source(s), 19, 21, 22, 32, 41, 48, 99, 122, 125, 129, 130
 intensity, 131
 of phase error, 85
Spatial or fixed pattern noise, 318
Spatial frequency, 233
Spatial resolution, 233
 of the microscope, 306
Spatial and spectral resolution, 131
Special quality, 35
Specific detectivity, 149, 161
Spectral absorbance, 207
Spectral band, 26
Spectral brightness, 161
Spectral convolution, operation of, 233
Spectral coverage, 138, 217
Spectral differences, 402
Spectral dynamic range, 65, 66
Spectral emissivity, 367
Spectral energy density, 145
Spectral information, 19
Spectral lines, 35
Spectral loadings, 214, 216
Spectral noise, 65
Spectral range, 133, 134, 136, 138, 253
Spectral resolution, 27, 108
Spectral smoothing, 232
Spectral smoothing, 235
Spectral vectors, 220
Spectrometer(s), 30, 113
 design, 156
Spectrometric measurements, 23
Spectrometric technique, 23
Spectrometry, 20, 197, 415
Spectrophone, 416
Spectroradiometer, conventional, 129
Spectroscopic ramifications, 485
Spectroscopic trading rules, 164
Spectrum, 24, 28, 32, 61, 62, 66, 113, 121, 131, 253–255
 of barbiturates in the vapor and condensed phases, 493
 of condensed-phase samples, 11
 at higher resolution, 157
Specular reflection, 277
 spectra, 310
Spherical mirror, 258
Spike, 255
Spinning retroreflectors, 121
Spring-loaded plastic element, 103
Square matrix, 212
Square-wave frequency, 433
Square-wave phase modulation, 433
 waveform, 432
Stainless steel, 123
Standard condensed-phase reference spectra, 486
Standard deviation, 218
Standard error of calibration (SEC), 218
Standard error of prediction (SEP), 218
Standard Raman spectroscopy, 387
Starch, 218
Static and dynamic dichroism spectra, 442
Static friction, 104
Stationary cube corners, 125
Stationary interferometer(s), 24, 128, 131
 sensitivity and instability of, 129
Stationary mirror, 116
Stationary plane mirrors, 113
Stationary (shaded) facets, 139
Steel design, 121
Step-scan interferometer(s), 20, 53, 54, 62, 63, 104, 127, 128, 313, 402, 422, 435
Step-scan mode, 404
Step-scanning interferometer(s), 54, 170, 312
Step-scanning mode, 111
Stingray, 314
Stokes Raman scattering, 16
Stokes-shifted Raman bands, 375
Stokes-shifted spectrum, 386
stopped-flow investigation, 398
Stopped-flow techniques, 400
Stray light, 201
Stress-induced frequency shifts, 436
INDEX

527

Stretching modes, O–H, N–H, and aromatic or olefinic C–H, 382
Stroboscopic spectrometry, 407
Strong apodization, 37
Substrate, 124, 137
and compensator plates, 69
Successive average orthogonalization (SAO), 214
Successive average orthogonalization iterative target transform factor analysis (SAO-ITTFA), 219
Sulfamethazine, 503
Sulfamethoxazole, 503
Sulfanilamidoquinoxaline, 503
Sulfapyrazine, 503
Supercritical fluid chromatography (SFC), 483
Superior infrared transparency, 253
Surface-enhanced infrared absorption (SEIRA) spectroscopy, 494
Surface-enhanced Raman scattering (SERS), 389
Surface plasmons, 390
Surface selection rule, 290, 291
Symmetric stretch, infrared forbidden, 500
decay depth, 420
decay lengths, 420
propagation, 430
propagation parameters, 428
Thermogravimetric analysis (TGA), 483
Thermogravimetric analyzer(s), 481, 502
Thin films, 261
Thin layer chromatography (TLC), 504
Three-layer forward-feed neural network, 222
Three-layer network, 222
Threshold voltage, 106, 107
Tilt, 99, 100, 110, 112, 113, 121, 125
angle, 101
table, 119
Tilt-compensated interferometers, 112, 118, 121
Tilting, 110, 119
Tilt and shear compensation, 121
Tilt and shear immunity, 115
Time-domain signal, 404
Time-resolved analog interferogram, 410
Time-resolved discrete interferogram, 410
Time-resolved dichroic difference spectra, 439
Time-resolved measurement, 402
Time-resolved polarized spectra, 413
Time-resolved spectra, 412
Time-resolved spectrometry, 53, 395
Top-of-the-line FT-IR spectrometers, 111
Toroidal (doughnut-shaped) mirrors, 156
Torque, 116, 118
Total internal reflection, 324
Total pathlength, 467
Trace analysis, 255
Trace solute, 256
Traditional air-bearing interferometers, 103
Transept or Doyle interferometer, 124
Transfer function, 221, 222
Transreflectance spectrum, 311
Transflection, 297
spectrum, 277, 298
Transformations in Optics, 125
Transformation matrix, 219
Transient infrared emission spectroscopy (TIRES), 368

Taylor series, 290
Temperature, 121
oscillation, 418
Terahertz spectrometers, 140
Ternary mixture, 203
Test voltage, 71
Tetraethyl orthosilicate (TEOS), 390
Tetrahydrothiophenium (THT) pendant groups, 443
TGA/FT-IR, 502
spectra, 504
Theoretical efficiency, 138, 139
Thermal conductivity, 418
Thermal detectors, 146
Thermal effects, 109
Thermal expansion, 119
Thermal properties, 253
Thermal shock, 253
Thermal stability, 121
Thermal wave, 419
amplitude, 418
decay, 418
decay coefficients, 418

INDEX 527
Transient infrared spectroscopy (TIRS), 368
Transient infrared transmission spectroscopy (TIRTS), 368
Transient species, 219
Translational motion, 101
Transmission, 23, 136, 260
 cell, 200
 spectrum, 110
Transmission spectrometry, 200, 294, 311, 364, 422
 conventional, 251
Transmittance, 12, 21, 132, 198, 202, 255, 256
spectrum, 225
Transmitting–receiving telescope, 473
Transmitting telescope, 469
Transparent disks, 252
Transparent spectral range, 262
Trapezoidal IRE, 329
Triangular apodization, 165, 180
 function, 32, 180
Triangular functions, 61
Triangular slit function, 29, 30
Triangular squared function, 33
Triglycine sulfate, 147
Trigonometric functions, 33
Trinitrobenzaldehyde, 388
True analog value, 72
True peak absorbance, 178
True spectrum, 29
Truncated Fourier domain signal, 235
Truncated sine wave, 39
Truncation function, 28
Tungsten-filament light bulb, 145
Tunnel ATR accessory, 334
Tunnel cell(s), 334, 335
Turnaround point, 108
Turnaround time, 121, 396
Two-beam interferometer(s), 19, 24, 97, 132, 171
Two-dimensional array detector, 131
Two-dimensional correlation plots, 448
Two-dimensional hyperspectral imaging spectrometry, 63
Two-dimensional imaging, 131
Two-dimensional model, 220
Two-dimensional roof retroreflector, 112
Two-point baseline correction, 225

Typical atmospheric spectrum, 467
Typical cube-corner array retroreflector, 471
Typical glitch, 184
Typical optical arrangement, 157
Ultrarapid scanning FT-IR spectrometer, 269
Ultraviolet lamps, 259
Unapodized spectrum, 114, 228
Unchirped interferogram, 70
Undersampling ratio, 63
Unidirectional interferometers, 108
Unidirectional rapid-scanning interferometer, 51
U.S. Environmental Protection Agency, 486
Unmodulated infrared radiation, 485
Unpolarized radiation, 261
Unweighted sinusoidal interferogram, 29
UV–visible spectra, 171

L-Valine, 271
Vapor-phase infrared reference spectra, 486
Vapor-phase infrared spectra, 486, 491
Vapor-phase samples, 256
Variable-pathlength liquid transmission cells, 199
Variable throughput criterion, 164
Variance–covariance matrix decomposition, 214
Vector input, 222
Velocity errors, 112
Vertically polarized light (VPL), 265
Vertical truncated triangular prism, 329
Vertical variable angle attenuated total reflection (VATR), 331
Vibration, of the optical bench or mirrors, 184
Vibrational circular dichroism (VCD), 269
 spectra, 265
 spectrometry, 264
Vibrational microspectrometry, 311
Vibrational modes, 3
Vibrational spectrometry, 221
Vibration-free enclosure, 372
Vibration-rotation spectroscopy, 6
Vibration-rotation spectrum, 6, 165, 463, 472
 bands in the, 366
 of gases, 10
INDEX

Video and audio industries, 71
Vignetting, 109
Vinylene C–H bend, 452
Vinylene C–H stretch, 447
Vinylene C–H units, 444
Vinylene groups, 446
Virtual state, 16
Viscoelastic behavior, 436
Visible light, 106
Visible spectrum, 111
Voice coil, 102, 103, 113
voltage to the, 108
Voice-coil transducer, 97
Voigt profile, 11
Volatile organic compounds (VOCs), 474

Water-insoluble infrared-transparent window, 311
Waveform, 58, 64
Wavefront, 138
Wavelength(s), 24, 42, 53, 106, 109, 123, 255
Wavenumber(s), 23–25, 27–30, 39, 53, 57, 73, 208, 254, 256, 281
Wavenumber accuracy, 125
of FT-IR spectra, 108
Wavenumber-dependent phase lag, 38
Wavenumber-dependent variations, 450
Wavenumber instability, 109
Wavenumber precision, 109
Wavenumber scale, 46
Wavenumber shift, 159, 200, 201
Weak narrow bands, 69

Weak and strong absorption bands, 429
Wedge angle, 124
Weight matrices, 222
White cell(s), 257–259
White light detector, 107, 125
White-light interferogram(s), 106–108
Wide-range beamsplitters, 138
Window diameter, 252
Window materials, 251
Wire grid, 126
polarizer(s), 126, 262, 436
X–H stretching bands, 253
X-ray diffraction, 1

Yield strength, 252
Zachor–Aaronson noise, 168
Zero crossing(s), 104, 108
positive- and/or negative-going, 106
Zero energy level, 187
accuracy of the, of spectra, 191
Zero filling, 227
Zero path difference (ZPD), 21, 22, 48, 50, 70
Zero-phase difference point, 48, 69
Zero retardation, 21, 22, 24, 28, 32, 41, 42, 64, 69, 118
decrease, 48
point, 36, 40
Zero transmittance, 198
ZnSe, 253, 262