Contents

Preface xi
List of Contributors xiii

1 Introduction 1
Banafshe Larijani, Colin. A. Rosser and Rudiger Woscholski
1.1 Chemical biology – the present 1
1.2 Chemical biology – the past 2
1.3 Chemical biology – the future 3
1.4 Chemical biology – mind the interdisciplinary gap 4
1.5 An introduction to the following chapters 5
1.5.1 Cryo-electron microscopy 5
1.5.2 Atomic force microscopy 5
1.5.3 Differential scanning calorimetry in the study of lipid structures 6
1.5.4 Membrane potentials and membrane probes 6
1.5.5 Identification and quantification of lipids using mass spectroscopy 7
1.5.6 Liquid-state NMR 7
1.5.7 Solid-state NMR in biomembranes 7
1.5.8 Molecular dynamics 8
1.5.9 Two-dimensional infrared studies of biomolecules 8
1.5.10 Biological applications of single and two-photon fluorescence 8
1.5.11 Optical tweezers 9
1.5.12 PET imaging in chemical biology 9
1.5.13 Chemical genetics 9

2 Cryomicroscopy 11
Frank Booy and Elena Orlova
2.1 The need for (electron) microscopy 11
2.2 Development of cryomicroscopy 11
2.3 Sample–electron interaction 13
2.4 Contrast in negatively stained and cryo preparations 14
2.5 Image formation 16
2.6 Image analysis 16
2.7 Software used in the analysis of electron micrographs 19
3 Atomic force microscopy: applications in biology

James Moody and Stephanie Allen

3.1 A brief history of microscopy 29
3.2 The scanning probe microscope revolution 30
3.2.1 The stylus profiler 30
3.2.2 The scanning tunnelling microscope 30
3.2.3 The atomic force microscope 31
3.3 The workings of an AFM instrument 31
3.3.1 The imaging probe 31
3.3.2 The piezoelectric scanner 32
3.3.3 The deflection detection system 33
3.3.4 The electronic feedback system 34
3.4 Imaging biological molecules with force 34
3.4.1 Contact mode 35
3.4.2 Oscillating cantilever imaging modes 36
3.4.3 Imaging in liquid 38
3.5 Factors influencing image quality 38
3.5.1 Sample preparation and immobilization 38
3.5.2 Tip convolution/broadening 39
3.5.3 Double tipping 40
3.5.4 Sample roughness 41
3.5.5 Temperature variation and vibration isolation 41
3.6 Biological applications of AFM and recent developments 42
3.6.1 Imaging dynamic processes 42
3.6.2 Measuring biomolecular forces 43
3.7 Conclusions and future directions 45

4 Differential scanning calorimetry in the study of lipid structures

Félix M. Goñi and Alicia Alonso

4.1 Introduction 47
4.2 Membranes, lipids and lipid phases 47
4.3 Heat exchanges and calorimetry 50
4.3.1 Heat and related entities 50
4.3.2 Differential scanning calorimetry 52
4.4 Phase transitions in pure lipid–water systems 53
4.4.1 Gel (Lβ) to rippled (Pβ) phase transition (the ‘pre-transition’) 53
4.4.2 Rippled (Pβ) to liquid-crystalline (Lα) phase transition 54
4.4.3 Gel (Lβ) to liquid-crystalline (Lα) phase transition 55
4.4.4 Lamellar (Lα) to inverted hexagonal (HII) phase transition 55
4.5 Selected examples of transitions in lipid mixtures 55
4.5.1 Phospholipid–cholesterol mixtures 57
4.5.2 Lamellar-to-inverted hexagonal transitions 60
4.6 Complex systems: lipid–protein mixtures and cell membranes 62
5 Membrane potentials and membrane probes

Paul O’Shea

5.1 Introduction: biological membranes; structure and electrical properties

5.2 Phospholipid membranes as molecular environments

5.3 The physical origins of the transmembrane (V_m or $\Delta \psi$) surface (ϕ_S) and dipolar (ϕ_D) membrane potentials

5.3.1 The transmembrane potential difference (V_m or $\Delta \psi$)

5.3.2 The membrane surface potential (ϕ_S)

5.3.3 The membrane dipole potential (ϕ_D)

5.4 Measurement of membrane potentials

5.4.1 Electrodes

5.4.2 Spectroscopic measurements of the transmembrane potential difference

5.4.3 Spectroscopic measurements of the membrane surface potential

5.4.4 Spectroscopic measurements of the membrane dipole potential

5.5 Problems with spectroscopic measurements of membrane potentials

5.6 Spatial imaging of membrane potentials

6 Identification and quantification of lipids using mass spectrometry

Trevor R. Pettitt and Michael J. O. Wakelam

6.1 Introduction

6.2 Lipid analysis by mass spectrometry

6.2.1 HPLC-ESI-MS

6.2.2 Tandem mass spectrometry

6.3 Conclusion

7 Liquid-state NMR

Charlie Dickinson

7.1 Introduction

7.2 How NMR works: the basics

7.3 Some NMR applications in biology

7.3.1 In vivo cell metabolism made ‘visible’ by NMR

7.3.2 In vivo phosphorus and nitrogen metabolism

7.3.3 Identification and quantification of small quantities in a complex mixture by 2D 1H–31P-HMQC-TOCSY NMR

7.3.4 Simultaneous separation and identification of very complex mixtures: LC-NMR

7.3.5 Three-dimensional molecular structures in solution

7.4 Conclusion

8 Solid-state NMR in biomembranes

Erick J. Dufourc

8.1 Introduction

8.2 NMR basics for membrane systems

8.2.1 Anisotropy of NMR interactions in membranes

8.2.2 Spectra and the effect of motional averages
11.6.2 Two-photon fluorescence
11.7 Applications of two-photon fluorescence
 11.7.1 Two-photon fluorescence imaging
 11.7.2 Biological example – two-photon time-domain FLIM
11.8 Photoselection and fluorescence anisotropy
11.9 Fluorescence anisotropy and isotropic rotational diffusion
11.10 Fluorescent probes in proteins and membranes
 11.10.1 Ordered molecular systems
11.11 Future developments
 11.11.1 New chromophores for two-photon fluorescence
 11.11.2 Stimulated emission depletion in two-photon excited states
11.12 Conclusions
12 Optical tweezers
 Christopher Batter and Justin E. Molloy
12.1 Introduction
 12.1.1 History of optical tweezers
 12.1.2 Single-molecule studies
12.2 Theoretical background
12.3 Apparatus
 12.3.1 Building an optical tweezers transducer
 12.3.2 Creating multiple laser traps: acousto-optical deflectors
 12.3.3 Camera and light path
12.4 Data collection and analysis
 12.4.1 Collecting data with an optical tweezer
 12.4.2 Calibration of the detectors and of the optical tweezer stiffness
 12.4.3 Stokes calibration
 12.4.4 Equipartition principle
12.5 A biological application
 12.5.1 Studying acto-myosin interactions
 12.5.2 Identification of events and data analysis
 12.5.3 Measuring the powerstroke
 12.5.4 Lifetime analysis
12.6 Other biological examples
12.7 Summary
13 PET imaging in chemical biology
 Ramón Vilar
13.1 Introduction
13.2 Positron emission tomography: principles and instrumentation
13.3 Applications of PET imaging in the biomedical sciences
 13.3.1 A labelled glucose analogue: an indirect probe to measure energy metabolism
 13.3.2 Imaging dopamine metabolism with PET
 13.3.3 PET imaging in gene expression
 13.3.4 Molecular imaging in drug discovery and development
13.4 Conclusions and outlook
14 Chemical genetics
 Piers Gaffney
14.1 Introduction
14.2 Why chemicals? 232
14.3 Chemical genetics – why now? 233
14.4 The relationship between classical genetics and chemical genetics 234
14.5 Forward chemical genetics 235
 14.5.1 Obtain a compound library 236
 14.5.2 Screening 242
 14.5.3 Target identification 244
14.6 Reverse chemical genetics 245
14.7 Closing remarks 247

Index 249