Subject Index

a
absorption spectrum, 23, 24, 181, 317, 325–327, 423, 474, 508
acousto-optical modulator, 472
adaptive feedback control, 471, 474
 – analysis of experiments, 480, 486
 – C₆H₅CH₃, 479
 – C₆H₅COCH₃, 479
 – (CH₃)₂CO, 479
 – CH₃COCF₃, 479
 – CpFe(CO)₂Cl, 476
 – Fe(CO), 476
 – IR125 dye, 474
 – NK88, 480
 – transform limited pulse, 474
adiabatic
 – approximation, 255, 256, 295, 330, 334, 349, 409
 – accuracy, 332
 – condition, 295, 335
 – eigenstates, 261
 – following, 254–260
 – passage, 254, 257, 260
 – experiments, 280
 – population transfer, 253–261
 – solutions, 261
 – states, 253
 – switching, 36
Airy function, 321, 322
alignment of molecules, 429
alkali halide, 456, 457
amplification of light, 169
angular momentum, 45, 198, 206, 379, 382
annihilation operators, 419, 482, 509, 510
antisymmetric states, 381
arrangement channel, 19, 84, 199, 212–214, 336, 364
asymmetric line shape, 305
attosecond pulse, 443
attosecond streak camera, 452
autocorrelation function, 23, 308, 317, 508, 511
azimuthal angle, 257, 258, 437, 440

b
bichromatic control, 28–30, 171, 319
 – CH₃I, 30, 31
 – deposition on surfaces, 429
 – N₂, 173
 – proton transfer, 129
 – refractive index, 169
bimolecular control
 – Ar + H₂, 191
 – barrier penetration, 214
 – center of mass, 192
 – cold molecules, 201
 – conditions, 194, 195
 – D + H₂, 200
 – differential cross section, 192, 196
 – dissociative ionization, 201
 – electron impact dissociation, 207
 – H + H₂, 213
 – H₂ + H₂, 196
 – identical particle, 195
 – m superpositions, 191–194
 – optimal control, 212–216
 – Penning ionization, 201
 – reactive scattering, 191, 197
 – sculpted imploding waves, 216
 – superposition state, 193
 – suppression of tunneling, 215
 – time independent, 191
 – time dependent, 217
 – total suppression, 213
 – Zeeman states, 205
Bloch vector, 257, 258
bond
 – excitation, 33, 69, 95, 388, 468
Subject Index

- hardening, 428
- softening, 428

Born–Oppenheimer approximation, 20
branching ratio, 25, 87

c
Caldeira–Leggett model, 133
carrier envelope phase, 443, 444
center of mass momentum, 193, 210
CEO Frequency measurement, 445
CEP stabilization, 451
chaotic dynamics, 186, 187, 499, 503
chemical reactions, 34, 191, 201, 363
chiral separation, 250
chirality, 373, 375, 384, 395, 396, 404, 414
 - control, 250, 373, 381
 - asymmetric top, 392
 - dimethylallene, 387–389
 - internal conversion, 390, 392
 - laser distillation, 373, 376, 381, 382, 397
 - matrix elements, 375
 - MJ averaging, 82, 392
 - oriented molecules, 395–397
 - principles, 374–376
 - pump–dump scenario, 377
 - relaxation effects, 386
 - sign of the electric field, 375
 - symmetry, 375, 376
 - symmetry breaking, 373, 376–381
 - vibrational discrimination, 399
chirped pulse, 117, 140
classical limit, 34, 83, 92, 106, 108, 188, 491, 491, 491–493, 503, 505
classical-quantum correspondence, 108, 186, 242, 505
closed channel, 15
coherence
 - electronic, 101, 112
 - in electron transfer, 457, 461
 - in solution, 102, 128
coherent control
 - analytic solution, 121, 261
 - angular averaging, 379
 - atoms, 201
 - beyond weak field, 329
 - bichromatic, 28
 - bimolecular processes, 191–221
 - bound states, 253, 364
 - branching ratio, 25
 - case studies, 153
 - chaotic dynamics, 186–189
 - chirality, 373–409
 - classical limit, 491, 505
 - cold collision, 205
 - control map, 25
 - control variables, 25
 - CsI, 187
 - degeneracy condition, 195
 - differential cross section, 56
 - dissociative ionization, 201
 - energy degeneracy, 194
 - essential principles, 463
 - few-cycle pulses, 453
 - fixed energy, 191
 - high harmonics, 455
 - IBr, 41
 - incoherent interference control, 150
 - internal conversion, 77
 - intramolecular vibrational redistribution, 78
 - loss of control, 114
 - multiple pathways, 26, 236, 243
 - nondegenerate states, 261
 - N- vs. M-photon scenario, 25
 - OCS, 78
 - of yield, 129
 - one-photon vs. three-photon, 45, 147, 150, 182–187
 - contrast ratios, 149
 - one-photon vs. two-photon, 238, 453, 491
 - off-resonant, 492
 - overlapping resonances, 76
 - Penning ionization, 201
 - polarizability, 170, 429, 433, 438
 - polarization control, 56
 - population transfer, 329
 - quantum interference, 233
 - refractive index, 169–176
 - resonances, 175, 176, 137
 - resonant regime, 491
 - selectivity, 413
 - spatial dependence, 23, 28, 85, 170
 - spectroscopic tool, 176
 - strong field, 415
 - symmetry breaking, 50, 376, 491
 - total cross section, 50, 192
 - two-photon transition, 153–155, 329, 329
 - two-photon vs. four photons, 45
 - two-photon vs. two-photon control, 153–160
 - ultracold collisions, 201
 - uncontrollable term, 156
 - weak-field, 25–67
 - probability, 25
coherent control experiments
Subject Index

– Ba, 160
– Cs, 161
– NO, 160
– one- vs. three-photon, 42–46
 – CO, 46
 – HCl, 46
 – HI, 47–49, 177
– one-photon vs. two-photon, 238
 – current directionality, 268
 – HD\(^+\), 54
– two-photon vs. two-photon
 – Ba, 160
 – NO, 160
– coherent wave packet, 349, 329
– cold atoms, 212, 345
– condensed phase, 102, 121, 132
– continuum
 – eigenstate, 415
 – flat, 318, 326, 511
 – structured, 302, 301, 306, 326
 – unstructured, 296, 306, 309, 312, 323
– continuum-continuum transition, 363
– control
 – in solution, 128
 – experimental, 132
 – of electron transfer, 453
 – of entanglement, 245, 249
 – of internal conversion, 77
 – of spectrum, 132, 72
 – with few cycle pulses, 443, 453
– controlled atom recombination, 461
– controlled polarizability
 – interference term, 433
 – Rb, 433
– cooling of atoms, 203, 345, 430, 432
– cost functional, 472
– counter rotating wave, 8, 507
– countering collisional effect, 126
– counterintuitive pulse ordering, 259, 262, 266, 353, 361
– coupled-channel
 – equations, 408
 – expansion, 419–423
 – IBr, 424
– creation operators, 133, 133
– cycle-averaged energy, 233, 234

– dark state, 118–120, 261, 273, 290, 291, 327, 345, 350, 351, 359, 360, 362, 463, 464
– decoherence, 95–149
 – countering, 126–129
 – laser jitter, 149–152
 – dissociation, 126, 146
– electronic, 100, 101, 102, 114
– harmonic bath, 106
– intrinsic, 131
– nonlinear oscillator, 107
– one-photon vs. three-photon, 121
– partially coherent light, 114
– proton transfer, 129
– satellite contributions, 156
– thermal, 98
– vibrational, 100–102, 139
– vs. dephasing, 97
decoherence-free subspace, 119
density matrix, 69, 96–101
 – collisional effects, 102
 – mixed states, 95
 – thermal environment, 98
dephasing, 97, 98, 105, 110, 112–114, 122–125, 130, 139–141
deposition
 – harmonic approximation, 430
 – N\(_2\), 434
 – potentials, 429
detuning, 10–12, 303–307, 301–302
– DH\(_2\), 61–63, 146
differential cross section, 33, 35, 48, 56, 192, 196–199, 50, 510
dipole
 – approximation, 163, 230, 235, 254, 294, 419, 481, 491, 496
 – force, 429
 – moment
 – antisymmetric, 378, 455
 – symmetric, 378, 455
double slit experiment, 34, 499
dressed states picture, 370
dynamic polarizability tensor, 429
e
 – Eckart potential, 214, 364, 367
 – EIT, see Electromagnetically induced transparency
 – electromagnetic field, 233, 415
 – longitudinal, 225
 – transverse, 225
 – electromagnetically induced transparency (EIT) 175, 290–314
 – experiments, 284, 305, 313
 – in solids, 290
 – multichannel scattering, 292
 – resonance perspective, 253
 – ruby, 305
Subject Index

– Sr, 296
electron impact dissociation, 207, 210, 218
electron transfer, 457
electronic
 – degrees of freedom, 20, 20, 457
 – states, 20
enantio converter, 250
enantioomers, 404, 409, 511
 – control, 250, 395
 – spatial separation, 409
entangled molecule chain, 245, 247
entanglement, 96, 237, 245, 247
environmental effect, 109
environmentally assisted transport, 112, 114
excitation with light, 118, 394
experimentally controllable parameter, 26, 28

f
Fabry–Perot interferometer, 370
feedback control, 28, 94, 132, 471–473, 474, 478
femtosecond pulses, 276, 450
few cycle pulse, 443, 445, 449, 443
field
 – commutation relation, 234
 – induced dipole moment, 495
 – modes, 227, 233, 262
 – amplitude, 227
field-dressed
 – states, 253, 405, 407, 433
 – surface, 426
fitness function, 473
focusing, 429
 – controlled, 429
 – molecular, 429–443
 – potentials, 441
 – self-focusing, 173
Franck–Condon approximation, 378
frequency-frequency correlation function, 142, 144
fully interacting state, 133, 416, 416

h
Hamiltonian
 – asymptotic, 70
 – eigenstates, 71
 – continuum, 66
 – interaction, 72, 93, 96
 – material, 6, 13
 – particle plus field system, 224
 – radiative, 234
 – radiatively decoupled, 236
Heisenberg
 – picture, 496
 – representation, 235, 496
helicity, 198
high harmonic generation, 446
Hilbert space partitioning, 72

i
ICC, see Incoherent interference control
identical particle collisions, 195
incoherent interference control, 150, 244, 335, 336, 340, 511
 – experiments, 343
 – Na₂, 343
 – pulses, 335–344
 – Na₂, 335, 342
incoherent laser sources, 340
incoming states
 – fully interacting, 416
 – scattering states, 16
induced dipole, 495, 498
 – moment, 169, 434, 496, 509
infrared multiphoton dissociation, 463
integrable dynamics, 186
interaction representation, 35, 235, 263, 267, 406, 508
interferometry, 93, 452
internal conversion, 77
intramolecular vibrational redistribution, 34, 71
inversion, 92, 246, 254, 291, 374, 378, 384, 394, 404, 406, 455
isotropic medium, 170, 455
IVR, see Intramolecular vibrational redistribution

k
Kraus operators, 100, 110

l
Lagrange multipliers, 90, 469
laser

g
 – Coulomb, 224, 226, 227, 229, 230, 409
 – length, 230
 – transformation, 224, 230, 501
 – velocity, 229, 230
Gaussian wave packet, 356, 367
generalized master equation, 98, 99
genetic algorithm, 472, 472, 512
global optimization, 93, 472
golden rule, 12

group velocity, 175, 306, 443, 511

Subject Index
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>541</th>
</tr>
</thead>
<tbody>
<tr>
<td>– bandwidth, 23</td>
<td></td>
</tr>
<tr>
<td>– catalysis, 316, 329, 363–371</td>
<td></td>
</tr>
<tr>
<td>– cooling, 202, 345, 430</td>
<td></td>
</tr>
<tr>
<td>– distillation, 373, 381, 388</td>
<td></td>
</tr>
<tr>
<td>– fields, intense, 173, 343, 420, 427, 429</td>
<td></td>
</tr>
<tr>
<td>– H + H₂, 367</td>
<td></td>
</tr>
<tr>
<td>– jitter, 149, 158</td>
<td></td>
</tr>
<tr>
<td>– phase</td>
<td></td>
</tr>
<tr>
<td>– additivity, 150</td>
<td></td>
</tr>
<tr>
<td>– in bichromatic control, 149</td>
<td></td>
</tr>
<tr>
<td>– in one- vs. three-photon, 149</td>
<td></td>
</tr>
<tr>
<td>– relative, 173, 186</td>
<td></td>
</tr>
<tr>
<td>laser-induced continuum structure, 150, 261</td>
<td></td>
</tr>
<tr>
<td>lasing without inversion, 254, 291</td>
<td></td>
</tr>
<tr>
<td>learning algorithm, 472</td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
</tr>
<tr>
<td>– absorption, 7, 150</td>
<td></td>
</tr>
<tr>
<td>– amplitude, 2</td>
<td></td>
</tr>
<tr>
<td>– circularly polarized, 441</td>
<td></td>
</tr>
<tr>
<td>– classical, 228, 423</td>
<td></td>
</tr>
<tr>
<td>– coherent, 2, 3, 114</td>
<td></td>
</tr>
<tr>
<td>– continuous wave, 5</td>
<td></td>
</tr>
<tr>
<td>– field mode, 227, 233</td>
<td></td>
</tr>
<tr>
<td>– free field, 235</td>
<td></td>
</tr>
<tr>
<td>– incoherent, 150</td>
<td></td>
</tr>
<tr>
<td>– mode, 2</td>
<td></td>
</tr>
<tr>
<td>– partially coherent, 3, 114</td>
<td></td>
</tr>
<tr>
<td>– phase, 243</td>
<td></td>
</tr>
<tr>
<td>– plane waves, 2</td>
<td></td>
</tr>
<tr>
<td>– propagation, 2, 297</td>
<td></td>
</tr>
<tr>
<td>– pulse, 23, 36, 57</td>
<td></td>
</tr>
<tr>
<td>– frequency spectrum, 69</td>
<td></td>
</tr>
<tr>
<td>– Gaussian, 59</td>
<td></td>
</tr>
<tr>
<td>– microwave radiation, 187</td>
<td></td>
</tr>
<tr>
<td>– strong-field pulses, 425</td>
<td></td>
</tr>
<tr>
<td>– weak fields, 5</td>
<td></td>
</tr>
<tr>
<td>light-induced potentials, off-resonances, 429</td>
<td></td>
</tr>
<tr>
<td>light-matter</td>
<td></td>
</tr>
<tr>
<td>– entanglement, 245</td>
<td></td>
</tr>
<tr>
<td>– interactions, 235</td>
<td></td>
</tr>
<tr>
<td>Liouville–von Neumann equation, 96</td>
<td></td>
</tr>
<tr>
<td>Lippmann–Schwinger equation, 16, 36</td>
<td></td>
</tr>
<tr>
<td>liquid phase chemistry, 480</td>
<td></td>
</tr>
<tr>
<td>local mode, HOD, 467</td>
<td></td>
</tr>
<tr>
<td>localized wave packet, 34, 57, 67, 67, 268–270</td>
<td></td>
</tr>
<tr>
<td>Lorentz’s equation, 223</td>
<td></td>
</tr>
<tr>
<td>Lorentzian, 182, 300, 320, 324, 325</td>
<td></td>
</tr>
<tr>
<td>LWI, see Lasing without inversion</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>magnetic</td>
<td></td>
</tr>
<tr>
<td>– resonance, 253</td>
<td></td>
</tr>
<tr>
<td>master equation, 99, 106</td>
<td></td>
</tr>
<tr>
<td>matter-radiation interaction, 153, 223, 235, 230</td>
<td></td>
</tr>
<tr>
<td>Maxwell’s equations, 223, 224, 486</td>
<td></td>
</tr>
<tr>
<td>methanol vibrational excitation, 486</td>
<td></td>
</tr>
<tr>
<td>mixing angle, 257, 258, 331, 335, 341</td>
<td></td>
</tr>
<tr>
<td>mode-selective chemistry, 34, 68, 465</td>
<td></td>
</tr>
<tr>
<td>– HOD, 69</td>
<td></td>
</tr>
<tr>
<td>– role of coherence, 68</td>
<td></td>
</tr>
<tr>
<td>molecular</td>
<td></td>
</tr>
<tr>
<td>– alignment, 429</td>
<td></td>
</tr>
<tr>
<td>– lifetime, 23</td>
<td></td>
</tr>
<tr>
<td>– phase, 40, 47, 155, 159, 176–179, 184–186, 492</td>
<td></td>
</tr>
<tr>
<td>– states, 146, 250, 383</td>
<td></td>
</tr>
<tr>
<td>multiphoton</td>
<td></td>
</tr>
<tr>
<td>– absorption, 35</td>
<td></td>
</tr>
<tr>
<td>– probability, 36</td>
<td></td>
</tr>
<tr>
<td>– three-photon amplitude, 38</td>
<td></td>
</tr>
<tr>
<td>– two-photon amplitude, 38</td>
<td></td>
</tr>
<tr>
<td>– transition, 422</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>nonadiabatic coupling matrix, 256, 295, 341, 511</td>
<td></td>
</tr>
<tr>
<td>nondegenerate, quantum control problem, 261</td>
<td></td>
</tr>
<tr>
<td>nonlinear response, 491, 494–496, 498, 505</td>
<td></td>
</tr>
<tr>
<td>number operator, 235, 510</td>
<td></td>
</tr>
<tr>
<td>number states, 238, 423</td>
<td></td>
</tr>
<tr>
<td>– multimode, 425</td>
<td></td>
</tr>
<tr>
<td>– RWA, 422</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>OCS, 78, 79, 80</td>
<td></td>
</tr>
<tr>
<td>one-photon dissociation, 23, 315, 316</td>
<td></td>
</tr>
<tr>
<td>open channel, 214</td>
<td></td>
</tr>
<tr>
<td>optical</td>
<td></td>
</tr>
<tr>
<td>– Bloch equation, 120, 121, 126</td>
<td></td>
</tr>
<tr>
<td>– centrifuge, 436, 440</td>
<td></td>
</tr>
<tr>
<td>– Cl₂, 442, 442</td>
<td></td>
</tr>
<tr>
<td>– Kerr effect, 173</td>
<td></td>
</tr>
<tr>
<td>– lattice, 246, 248</td>
<td></td>
</tr>
<tr>
<td>– control, 499, 491, 499</td>
<td></td>
</tr>
<tr>
<td>optimal control, 83</td>
<td></td>
</tr>
<tr>
<td>– analysis of experiments, 480–487</td>
<td></td>
</tr>
<tr>
<td>– bimolecular control, 191</td>
<td></td>
</tr>
<tr>
<td>– Br₂, 92</td>
<td></td>
</tr>
<tr>
<td>– experiments, 463, 480</td>
<td></td>
</tr>
<tr>
<td>– fixed-amplitude pulse, 94</td>
<td></td>
</tr>
<tr>
<td>– H + HD, 83</td>
<td></td>
</tr>
<tr>
<td>– HgAr, 92</td>
<td></td>
</tr>
<tr>
<td>– I₂, 92</td>
<td></td>
</tr>
<tr>
<td>– multiple solutions, 93</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

- Na₂, 88
- perturbative domain, 468–471
- pulses in phase-space, 93
- quantum interference, 480, 487
- stokes emission, 486, 486
- theory
 - constraint, 90, 213
 - objectives, 89
 - penalty, 90
- trans-cis isomerization, 481

optimization
- delay time, 89, 471
- effectiveness, 474, 475
- efficiency, 475
- harmonic basis
- penalty, 90, 474

outgoing scattering state, 16, 364, 367
overlapping resonance, 72, 75–77, 79

p
parity, 35, 48–50, 56, 57, 126, 172, 202
Parseval equality, 144
partially coherent laser, 142, 149
partitioning technique, 73, 178
perfect absorber, 318, 326
perturbation
- theory
 - first-order, 6, 59, 241, 317, 423, 493
 - multiphoton absorption, 455
- weak, 5, 5, 25, 59, 404

phase
- additivity, 150, 153, 159
- control, 25, 57, 71, 95, 109, 119, 185, 186, 191, 491
- two photon, 159
- difference, 47, 156, 239, 247
- diffusion, 142, 144, 147, 149
- jitter, 153
- lag, 177, 178, 186
- locked, 444
- matching, 48, 408
- material, 10, 283
photoassociation, 345
- experiment, 353
- Na₂, 346
photodissociation, 5, 13, 26, 315
- amplitude, 21–23, 41, 326, 417
- beyond weak-field, 5–20
- branching ratio, 92
- cross section, 21
- cw rate, 418
- from superposition state, 9–16
- incoming states, 16–18
- lifetime, 22–24
- multiple resonance, 319–324
- probability amplitude, 18, 27, 36
- product probability, 22
- pulsed one-photon dissociation, 315–317
- rate of change, 418
- strong-field
 - H₂, 428
 - probability, 415
- theory, 243
- two-photon, 50
photoexcitation, 6, 47, 132, 319, 479, 480, 482, 492
photon number state, 419, 421
plane waves, 2, 193, 226, 228
polarizability, 170, 429, 433–435, 438–440, 500, 509
polarization, 2, 56, 440–442
population control, 121, 289
- bound states, 253–261
- nondegenerate, 261
- population transfer, 253, 258–261
potential
- energy
 - Coulomb, 1, 226, 230, 447, 510
 - electrostatic, 226
 - scalar, 224, 230, 404, 407–409, 413, 510
 - vector, 230, 404, 409, 458
power broadening, 422, 464
pulse
- attosecond, 443
- autocorrelation, 23, 312, 476, 478
- shaping, 24, 87, 91, 93, 276, 278, 284, 312, 436, 472, 473
pump-dump control, 57–68, 142, 240
- experiments, 147
- Na₂, 87, 88
- HOD, 66
- IBr, 62
- Li₂, 60–62
- nanosecond laser, 147
- partially coherent laser, 142
- partially coherent pulse, 142
pump-dump excitation, 57, 83
- photodissociation amplitude, 92
purity, 96, 97, 103
pyrazine, 75–78

q
quantization
- of the electromagnetic field, 233–235
- particles, 223
quantized
Subject Index

- forward-backward, 50, 52, 50, 454
- optical lattice, 499

third harmonic generation, 147
three-photon operator, 38, 39, 183
transition
 - dipole, 25, 52, 25, 244, 363
 - frequency, 6, 10, 163, 165, 254, 281, 297, 304, 335, 507
transverse velocity, 432
trapped state, 253, 254, 257, 260, 290, 290
trapping, 114, 203, 254, 257, 405, 408, 412, 428, 429, 436, 439, 510
tunnel ionization, 446, 447, 452
tunneling, suppression, 114, 214, 216, 271
two-photon
 - association, 316, 350
 - dissociation, 50, 153, 154, 155, 156, 159, 315, 329, 342, 343, 373, 376, 509
 - resonance, 43, 253, 362

u
ultracold molecules, 345, 359, 362

v
vector potential, 230, 404, 407–409, 458
vibrational trapping, 428
virtual states, 10

w
Warren pulse shaper, 472
wave
 - packet, 11, 217–220
 - localized, 57, 67
 - vector, 15, 194, 226, 500, 507
wavelets, 23
Weiner–Heritage pulse shaper, 479
welcher-weg, 237
WKB-like approximate solution, 320

z
zero order basis, 72
Zurek model, 106