Index

a
absorption spectra
– Alq_3 thin films 298
– iridium complexes 366
– osmium-based emitters 196
– platinum-based emitters 213–214
– ruthenium containing polymers 350–351
allowedness 74
– electronic transitions 23–25, 29–30, 62
– Herzberg–Teller activity 67
– lowest triplet state 40–41
– vibrational satellites 64–65
– zero-field splitting 30
Alq_3 133–134, 294–301
– chemical structure 295–296
– metal-containing polymers 329
– spectra 298
– thin films 298
aluminum-tris-8-hydroxyquinolate see Alq_3
ancillary ligands
– cyclometallated complexes 143–145
– electrochemical potentials 144
– Ir bisimmine complexes 147
– iridium-based emitters 207
– low triplet energies 146–148
– spin density 146–147
anionic iridium complexes
– chemical structure 374
– electrochemical properties 374
– HOMO levels 373, 375–376
– phosphorescent color shift 375–377
– photophysical properties 372–377
– synthesis 372
– tuning 372–377
annihilation see triplet-triplet annihilation
6-aryl-2,2′-bipyridine arylacetylide Pt(II)
– complexes 265–268
– arylacetylide complexes, Pt(II) materials 262–263, 265–268
b
B(L1)(C_6 F_5)_2 194
BAlq 301–306
– chemical structure 302
– temperature dependence 305–306
– thin film 303, 305
– vibronic-structured emission 303
benzazole ligands 148
4-biphenyloxolato aluminum(III) bis (2-
methyl-8-quinolinato)4-phenylphenolate
see BAlq
tris(2,2′-bipyridyl) ruthenium(II) see
Ru(bpy)_3^{2+}
2,2′-bipyridine
– neutral iridium complexes 366
– ruthenium containing polymers 337
blocking layer
– exciton confinement 137
– OLED design 5
blue-emitting materials 153, 288–294
– high-energy triplet states 288
– iridium-based 209–212
– osmium-based 193–198
broadening effects see spectral broadening
c
carbazole-based host materials 316–318
carbazole derivatives 318–322
– chemical structure 319
– oxidation behavior 317
– triplet energies 317–318

Highly Efficient OLEDs with Phosphorescent Materials. Edited by H. Yersin
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40594-7
carbazole polymers
 – chemical structure 319, 323
 – high-efficiency phosphorescent pLEDs 322–325
 – ionization potentials 323
 – triplet energies 323
carrier-transporting layers 289
carriers
 – confinement 136–139
 – generation 114–125
 – see also charge carriers
cationic iridium complexes
 – molecular orbitals 372
 – photophysical properties 369–372
 – synthesis 369
 – tuning 369–372
CBP 134–138, 261, 276
 – energy transfer 283–307
 – thin film 288
carrier-transporting materials 395
charge carriers
 – electric-field induced generation 114–125
 – spin correlations 103–107
 – spin persistance 119–120
 – see also carriers
charge transfer
 – dopant-matrix 9
 – metal-metal-to-ligand 212
 – metal-to-ligand see metal-to-ligand charge transfer
charge transfer states 8
 – electric field modulated fluorescence 111, 114
 – electronic excitations 18–29
 – iridium complexes 378
 – metal-to-ligand 29
 – spin correlations 101
 – spin–lattice relaxation 104
charge transporting materials 395
charge trapping 230
 – conjugated polymer matrices 243–244
 – PVK 224–227
 – recombination 7
 – ruthenium containing polymers 353
 – sequential 222
chelating chromophores 209
chelating ligands
 – ancillary 143
 – modifications 188
 – pyridyl azolate 185–186
chemiluminescence 40
chromophoric ligands 23
color tuning 148
 – anionic iridium complexes 372–377
 – cationic iridium complexes 369–372
 – iridium-based emitters 207–209
 – luminescent complexes 190
 – metal cation 190
 – neutral iridium complexes 366–369
 – phosphorescence 367
compounds, organo-transition metal see organo-transition metal compounds
configuration interaction (CI)
 – organo-transition metal compounds 30
 – zero-field splitting 30
coupled polymers
 – charge trapping 243–244
 – energy difference 315
 – PtOEP doped 243–251
 – ruthenium containing 337, 347–357
crystal field theory 15
crystalline matrices 82
current density
 – blue phosphorescent molecules 293
 – carbazole polymers 324
 – Pt(II) bis(phenoxy)diimine 275
 – tridentate Pt(II) complexes 269–270
current efficiency
 – Ir(ppy)3 6
 – organometallic complexes 135
current–voltage characteristics
 – exciplex emission 236–238
 – PVK 225
cyanide ligands 376–377
tris-cyclometalated iridium complexes 163
cyclometallated complexes 139–153
 – ancillary ligands 143–145
 – energy level mixing 140
 – excited states 140–145
 – facial isomers 145–146
 – iridium 131–162, 177–178
 – isomers 145–146
 – ligand tuning 148–150
 – ligands 140, 143–145
 – lowest excited state 141
 – meridional isomers 145–146
 – MO analysis 142–143
modifications 139
near-UV luminescent 150–153
organoiridium 131–162
parent complex modifications 139
Pt(II) 265–268
synthesis 139–140
d-orbitals splitting 15, 365
decay dynamics
emission 80
excited states 175–176
phosphorescence 51–56
decay rates
radiative 24–29
triplet substates 25
decay time(s)
emission 56, 80
Ir(btp)$_2$(acac) 60, 80
Ir(ppy)$_3$ 47–48, 52
lowest triplet state 45–48
magnetic field 62
organo-transition metal compounds 38
spin–lattice relaxation 53
substates 48, 52, 61, 80
triplet emitters 1
vibrational satellites 72
degenerate states 21–22
delayed emission modulation 122
delayed fluorescence 115, 119, 300
E-type 124
delayed photoluminescence 115, 117
dendrimers 339
PDI 231
ruthenium containing polymers 348
dendritic shells 230–234
density functional theory (DFT) 43
triplet substates 24
depopulation
rate constant 47
spectral broadening 82
Dexter energy transfer
BALq 304
guest-host systems 284
polymer-based electrophosphorescent devices 222
PtOEP doped devices 247–250
DFT see density functional theory
4,4'-N,N'-dicarbazole-biphenyl see CBP
4,4'-di(N-carbazolyl)biphenyl see CBP
bis[4,6-difluorophenyl]-pyridinato-N,C$_2^\text{'}$(picolinate) iridium see FIrpic
α-diimine arylacetylide complexes 262–263
β-diketone complexes 404
diketones, modified 401–402
N,N'-diphenyl-N,N'-(bis[3-methylphenyl]-1,1-biphenyl]-4,4$'$-diamine (TPD) 229
dipole-forbidden transition 45
direct charge injection 382
direct process
phosphorescence dynamics 49–50
spin–lattice relaxation 49
dopant-matrix charge transfer (DMCT) 9
dopant-matrix interactions 78
dopants
high-resolution spectroscopy 40
recombination 9
site energy distribution 77
spectral broadening 81
doping
phosphor 136–139
polymer-based electrophosphorescent devices 221
PtOEP devices 243–251
doping concentrations, iridium complexes 378, 380–382
DPPZ see ruthenium dipyridophenanzine
Dq parameter 15–16
dyes
chemical structure 230
metal-containing polymers 333–334
separation 222
E-type delayed fluorescence 124
efficiencies
current see current efficiency
internal conversion 378
lanthanide complexes 414–415
luminance 134, 228
luminous power 5–6
OLEDs 120
Pt(II) bis(pyrrole)diimine 276
quantum see quantum efficiency
Einstein relation 225–226
electric field modulated fluorescence and phosphorescence
detection scheme 112
diffusivity 108
ISC 110
singlet population 107
spin persistence 114–125
spin states 107–125
triplet formation rate 113
electric field pulse
phosphorescence modulation 121
spin persistence 117
electro-active materials 330
electroluminescence
– efficiencies 136, 414–415
– electron trap 231
– emission 7
– erbium complexes 411–415
– europium complexes 396–404
– excited states 3–10
– lanthanide complexes 391–420
– ligand emission 415–417
– near infrared 411–415
– neodymium complexes 411–415
– OLEDs 3–10
– organoiridium complexes 132
– spin states 113–114
– terbium complexes 404–411
– time-resolved 113
– tridentate Pt(II) complexes 268
electroluminescence spectra
– ancillary ligands 147
– multifunctional complexes 346
– poly(para-phenylene) 109
– Pt(II) bis(pyrrole)diimine 277
– Pt(II) porphyrin complexes 279
– Pt(II) Schiff base 273
– PtOEP 133
– ruthenium containing polymers 354
– tridentate Pt(II) complexes 267
– tris(8-hydroxyquinoline) 412
electron-electron interactions 27
electron-electron interactions
– singlet-triplet splitting 37
electron-hole recombination 7
electron spin resonance, spin–lattice relaxation 105
electron transport layer (ETL)
– iridium complexes 379–380
– OLEDs 4
– Pt(II) α-diimine arylacetylide complexes 264
electron-transporting materials, chemical structure 394
electron trapping 231, 233
– recombination 7
electron withdrawing 150
electronic transitions 11–29
– 0–0 transitions 42
– allowedness 62
– Alq3 298
– Franck–Condon activity 70
– high magnetic fields 58
– highly resolved 42–43
– spectral broadening 83
– triplet emitters 2
– vibrational satellites 65
electrons, binding energy 101–102
electrophosphorescence
– blue organic 153
– cyclometallated organoiridium complexes 131–162
– polymer-based devices 221–258
– PtOEP doped devices 250–250
emission
– delayed 117, 122
– electroluminescence 7
– ligand tuning 148–150
– luminescent lanthanides 392
– near infrared 148–150
– organo-transition metal compounds 29
– phosphorescent devices 235–239
– quenching 5, 16–17
– time-resolved 72–74
– vibrational satellite structures 70–72, 75–76
emission color see color tuning
emission decay
– spin–lattice relaxation 55
– temperature dependence 80
– triplet state properties 80–81
emission decay time
– high magnetic fields 62
– organo-transition metal compounds 38
– triplet emitters 1
emission energy
– ancillary ligands 144
– phosphorescent iridium complexes 174–175
emission layer (EML)
– HOMO-LUMO diagram 6
– iridium complexes 379–380
– triplet emitters 3
emission spectra 193
– anionic iridium complexes 375
– B(L1)(C6 F5)2 194
– Ir(btp)2 (acac) 57–58, 60, 75
– Ir(ppy)3 46
– osmium-based emitters 196
– platinum-based emitters 213
– Pt(II) α-diimine arylacetylide complexes 263
– Pt(thpy)2 69, 71
– tridentate Pt(II) complexes 266
emitters
– cyclometalated organoiridium complexes 131–162
– heavy metal-containing 193
– iridium-based see iridium-based emitters
– metal triplet 18–29
– osmium-based see osmium-based emitters
– platinum-based see platinum-based emitters
– ruthenium-based see ruthenium-based emitters
EML see emission layer
energy gap
– ligand field splitting 364
– ruthenium-based emitters 205
energy gap law
– Ir(piq)3 176
– red-phosphorescent iridium complexes 165
energy level diagrams 43
– Ir(btp)2 (acac) 61
– Ir(ppy)3 48
– OLED heterostructure 137
– Pt(thpy)2 43
– terbium complexes 411
energy levels
– Alq3 297
– BAlq 304
– Dexter transfer 247
– guest-host systems 285
– terbium complexes 410
energy states
– extended model 21
– extended MO model 20–23
– HOMO-LUMO diagram 12
– ligand-centered 11–14, 18, 21, 26, 31, 36
– metal-to-ligand charge transfer 11, 18–21, 34–40, 48
– simple energy state model 19
energy transfer 288–294, 301–306
– Alq 304
– CBP 283–307
– Dexter see Dexter energy transfer
– endothermic 286
– excitons 284
– guest-host systems 284–286
– lanthanide complexes 412
– luminescence 286–288
– OLEDs 283–310
– phosphorescence enhancement 294–301
– polymer-based electrophosphorescent devices 222
– terbium complexes 411
– triplet 300
engineering, molecular see molecular engineering
environmental effects 76–81
Er-containing OLEDs 412
erbium complexes 411–415
ETL see electron transport layer
europium complexes
– binary metal 402
– chemical structure 397
– decomposition 403
– device performance 399
– diketones, modified 401–402
– ligand modifications 398, 400
– luminescent spectrum 396
– red electroluminescence 396–404
exchange interactions
– intermolecular 124
– LC excitation 13
– MLCT excitation 18
– recombination 9
– singlet-triplet splitting 37
– spin correlations 100
exciplex emission 235–239
excitation confinement
– luminescence decay 241
– photoluminescence transients 240
excitations
– electronic 11–29
– intersystem crossing rates 37
excited states 11–29, 301–306
– cyclometallated complexes 140–145
– electroluminescence 3–10
– iridium(III) complexes 365
– phosphorescent iridium complexes 165–176
– phosphorescent polymer LEDs 312–313
– triplet see triplet excited states
exciton 132
– confinement 136–139, 239–243
– dynamics of formation 8
– energy transfer 284
– formation 7–10
– generation 118
– recombination 10
– singlet see singlet excitons
– spin correlations 101
– trapping 8
– triplet see triplet excitons
extended MO model 20–23
extended Orbach process 50

fac tris(2-phenylpyridine) iridium see Ir(ppy)_3
facial isomers 145–146
field quenching effect 119
film formation 261
films
– electric field modulated fluorescence 109
– Förster transfer 246
– see also layers; thin films; polymer films
FIRpic
– blue phosphorescent molecules 290, 293
– endothermic transfer 292
– photoluminescence spectra 291
– temperature dependence 291–292
fluorescence
– delayed see delayed fluorescence
– host molecules 283–310
– materials 286–288
– quenching 248
– spin states 107–125
– see also electric field modulated fluorescence and phosphorescence
Förster transfer 231–232
– Alq_3 298–299
– BAlq 304
– guest-host systems 284
– phosphorescent devices 230–239
– polymer-based electrophosphorescent devices 222
– PtOEP doped devices 245–247
forbidden transitions 42
– photoluminescence quantum yield 38
forbiddenness
– high magnetic fields 59
– symmetry 44
Franck–Condon activity 70–72
– time-resolved emission 72–74
– vibrational satellite structures 64–67
Franck–Condon factors
– MC excitation 17
– vibrational satellites 65
free carrier recombination 227–230
frontier orbitals
– color tuning 192
– extended MO-model 21, 23
– metal-to-ligand charge transfer 21
– MLCT excitation 18
– MO-model 19
gadolinium complexes 415–417
geometry changes
– excited triplet state 39–40
– spectral broadening 84
glass substrate
– host materials 316
– ITO-coated 394
– Ir(4F5mpiq)_3 179
green electroluminescence 404–411
green to near-infrared emission 148–150
grouptheoretical considerations 43–45
guest molecules, energy transfer 283–310
guest-host systems
– electronic structure 284–286
– endothermic energy transfer 286
– energy transfer 288–294
– exothermic energy transfer 286
Hammett constant 175
heavy metal-containing emitters 193
heavy transition metals 333
Heck coupling reaction 356
Herzberg–Teller activities
– allowedness 67
– induced emission 69–70
– time-resolved emission 72–74
– vibrational satellite structures 67–68
– vibronic coupling 67–68
heterostructure devices 137
high-efficiency phosphorescent PLEDs 322–325
high magnetic fields 56–63
– splitting pattern 59
– wavefunction mixing 60
high-efficiency polymer LEDs 311–328
high-resolution spectroscopy 40–45
highest occupied molecular orbital see HOMO
hole injection/transport layer (HTL) 3
– iridium complexes 379–380
hole-blocking layer
– BAlq 301
– iridium complexes 379–380
hole-blocking materials
– chemical structure 394
– exciton confinement 137
hole-transport layer, iridium complexes 379–380
hole-transporting materials, chemical structure 394
holes, binding energy 101–102
HOMO
 – red-phosphorescent iridium complexes 166
 – triplet emitters 2
HOMO levels
 – anionic iridium complexes 373, 375–376
 – exciton confinement 138
 – neutral iridium complexes 368
 – phosphorescent color shift 375–377
 – PtOEP in MeLPPP 244
 – tuning 375–377
HOMO-LUMO
 – diagram 6
 – energy difference 315
 – energy states 12
homogeneous line broadening 86
homoleptic tris-cyclometallated complexes 145
host materials
 – carbazole-based 316–318
 – injection barriers 316
 – phosphorescent polymer LEDs 314–315
host molecules
 – energy transfer 283–310
HTL see hole injection/transport layer
Huang–Rhys parameters, vibrational satellites 64, 66, 72
6-(2-hydroxyphenyl)-2,2′-bipyridine 268–270
tris(8-hydroxyquinoline) 412
tris(8-hydroxyquinoline) aluminum see Alq3

indium tin oxide (ITO) 3
 – coated glass substrate 394
inhomogeneous broadening 77, 91–92
intermolecular exchange interaction 124
intermolecular forces 44
intersystem crossing (ISC)
 – electric field modulated fluorescence 110
 – guest-host systems 285
 – organo-transition metal compounds 37
 – relaxation 10
 – reverse 124
intramolecular donor-acceptor (DA) systems 167
ionization potentials
 – carbazole derivatives 320
 – carbazole polymers 323
Ir complexes see iridium complexes
Ir cyclometallates 142–143
Ir-isoquinoline family 172–173
Ir-thiophene family 172–173
Ir(4,6-dFppy)2(pic) 31
Ir(4f5mpiq)1 179
Ir(btp)2(acac) 31
 – environmental effects 76–81
 – high magnetic fields 56–63
 – low-temperature emission spectrum 75–77
 – site energy distribution 78
 – vibrational satellite structures 63–76
Ir(btp)2(acac) emission
 – decay times 61–62, 80
 – electronic origins 58
 – magnetic field dependence 60–62
 – site structure in CH2Cl2 57, 77
 – SLR time 56, 80
 – vibrational satellite structure 75
Ir(phenylpyridyl)3 see Ir(ppy)3
Ir(ppy)2(acac) 31
 – molecular design 168
 – nonradiative rate constant 175–176
 – ORTEP diagram 169
 – red-phosphorescent iridium complexes 166
 – substituent effects 173–176
Ir(pmb)3 153
Ir(ppy)3(CO)(Cl) 31
Ir(ppy)3 31, 301–306
 – Alq3 thin film 301
 – chemical structure 302
 – decay time 47
 – emission spectrum 46
 – energy level diagram 48
 – exciton confinement 139
 – lowest triplet state 45–48
 – luminous power efficiency 5
 – phosphorescence enhancement 294–301
 – phosphorescent devices 224–227
Ir(thpy)3 170
iridium-based emitters 207–212
 – tuning 207–209
iridium complexes
 – anionic see anionic iridium complexes
 – applications 378–388
 – blue-emitting materials 209–212
– cationic see cationic iridium complexes
– charge injection 382
– charge transfer states 378
– cyclometallated 131–162, 177–178, 363
– direct charge injection 382
– doping concentrations 378
– ETL 379–380
– excited states 365
– external quantum efficiency 385–386
– hole injection layer 379–380
– bisimmine 147
– internal conversion efficiency 378
– kinetics 175–176
– LEC 387–388
– LC states 365
– lowest excited state 165–167
– MC excited states 365
– molecular engineering 167, 363–390
– multilayer OLEDs 379
– neutral see neutral iridium complexes
– OLEDs 176–179
– phosphorescent see phosphorescent iridium complexes
– photophysical properties 35, 366–377
– polypyridyl ligands 364
– quantum efficiencies 385–386
– quantum yields 171, 377–378
– quasioctahedral geometry 35, 364
– recombination zone distribution 383
– red-phosphorescent see red-phosphorescent iridium complexes
– substituent effects 173–176
– synthesis 139–140
ISC see intersystem crossing
isocyanate ligands 376–377
ITO see indium tin oxide

I
lanthanide complexes 391–420
– construction 393–395
– efficiencies 414–415
– energy transfer 412
– infrared luminescence 413
– ligand emission electroluminescence 415–417
– near-infrared electroluminescence 411–415
– operating principles 393–395
– pure emission colors 391

lanthanide metals 333
lanthanides 392
layer structure
– high-efficiency polymer LEDs 311
– PtOEP in MeLPPP 250
layer-by-layer deposition technique 346
layers 261
– blocking 137
– carrier-transporting 289
– electron transport see electron transport layer
– emission see emission layer
– hole-blocking see hole-blocking layer
LC see ligand-centered
LEC see light-emitting electrochemical cell
ligand-centered (LC) excitation 11–15
– exchange integral 13
– iridium complexes 365
– spin flip 12
– splittings 14
– state degeneracies 14
– transitions 18–29
– triplet emitters 2
ligand coordination 11
ligand emission 208
– gadolinium complexes 415–417
– lanthanide complexes 415–417
ligand field
– orbital splitting 16, 364–365
– strength 17
– theory 15
ligand modifications
– europium complexes 398, 400
– luminescent complexes 188
– luminescent lanthanides 392
– phosphorescent materials 260
– tridentate Pt(II) complexes 266
ligand synthesis 187
ligand tuning 148–150
ligand-ligand coupling 40
ligands
– ancillary see ancillary ligands
– chelating see chelating ligands
– chromophoric 23
– cyanide 376–377
– cyclometallated complexes 143–145
– functional 329–362
– low triplet energies 146–148
– metal-containing polymers 329–362
– multifunctional 343–346
– photophysical properties 152
– polypyridyl 364
– Pt(II) complexes 268–270
– pyridylquinoline-arene 148
Index

– strong 16
– substituted 174
– thiocyanate 376–377
– weak 16

light-emitting devices (LEDs)
– metal-containing polymers 339–343
– organic see OLEDs
– polymer-based see PLEDs
– ruthenium containing polymers 346–357

light-emitting electrochemical cells (LEC)
387–388

line broadening, homogeneous 86

linewidth broadening
– Pt(thpy)₂ 85–86
– temperature increase 85

linewidths
– homogeneous 82–85
– inhomogeneous 81–82
– phenomenological simulation 86–87
– triplet emitters 81–87

low-temperature vibrational satellite
structure 75–76

lowest excited state 166
– cyclometallated complexes 141
– phosphorescent iridium complexes 165–167

lowest triplet state
– decay time measurements 45–48
– high-resolution spectroscopy 40–45
– individual decay times 46
– Ir(btp)₂(acac), magnetic fields 61
– ruthenium-based emitters 206
– spectroscopy 40–45

lowest unoccupied molecular orbital see LUMO

luminance characteristics
– Pt(II) bis(phenoxy)diimine 275
– tridentate Pt(II) complexes 269–270

luminance efficiency
– organometallic complexes 134
– PVK 228

luminance-voltage characteristics 236–238

luminescence
– decay 241
– infrared 413
– organometallic compound 25

luminescent complexes
– color tuning 190
– ligand modifications 188
– pyridyl azolate 185–220
– pyridyl azolate based 185–220
– synthesis 187
– tuning 190

luminescent lanthanides
– advantages 392
– grouping 392–393
– internal quantum efficiency 392

luminescent spectrum
– europium complexes 396
– MeLPPP film 248
– Tb(eb-PMP)₁ 405

luminous power efficiency 5–6

LUMO
– red-phosphorescent iridium complexes 166
– triplet emitters 2

LUMO energies 408

LUMO levels
– anionic iridium complexes 373, 376
– exciton confinement 138
– neutral iridium complexes 369
– PtOEP in MeLPPP 244

lutetium complexes 415–417

m

magnetic field effects
– electronic transitions 42–43
– emission decay time 62
– induced Franck-Condon activity 70
– state mixing 59–62, 74
– triplet state 56–63

magnetic resonance, optically detected (ODMR) 32

magnetic resonance signature, electric field modulated fluorescence 107

matrices
– phosphorescent devices 239–243
– PtOEP doped devices 243–251
– recombination 9
– spectral broadening 81–82

MC see metal-centered

MeLPPP
– fluorescence spectra 246
– luminescence spectra 248
– PtOEP doped devices 243, 245–250

metal-centered (MC) excitation 11, 15–18, 365
– complex symmetry 15
– quenching of emission 16–17
– splittings 16
– strong ligands 16
– triplet emitters 2
– weak ligands 16

metal-chelate interaction 186, 190

metal complexes 329–362
– pendant 356–357

metal-containing polymers 329–362
Index

- molecular materials 330–335
- optoelectronics 330
- pure organic dyes 333–334
- small molecules 333–334
- traditional materials 330–332

5d metal ions 164
metal-ligand bonding 17
- near-UV luminescence 153
metal-ligand interaction 186
metal-metal-to-ligand charge transfer (MMLCT) 212
metal-to-ligand charge transfer (MLCT) 11, 21
- ancillary ligands 144–145
- cationic iridium complexes 369
- electronic excitations 18–29
- iridium(III) complexes 365
- Ir(piq)3 177
- linewidth broadening 86
- molecular design 168
- organo-transition metal compounds 21
- singlet-triplet splittings 19
- triplet emitters 2
- vibrational satellites 67
- zero-field splitting 29
metal triplet emitters 18–29
metals
- heavy transition 333
- lanthanide 333
bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum see BAlq
mixing
- configuration interaction 19–20, 22, 26–27, 35
- energy states 18–19, 22, 24–26, 35, 37, 60, 62, 74, 140
- mode 70
- orbital 15
- quantum mechanical see quantum mechanical mixing
- SOC 19, 24–29
- spin see spin mixing
- substates 24–25, 60–62
- wavefunction 60
MLCT see metal-to-ligand charge transfer
MMLCT see metal-metal-to-ligand charge transfer
MO see molecular orbitals
mode mixing 70
modulation
- delayed emission 122
- phosphorescence 121
molecular engineering 363–390
- ligand field splitting 16, 364–365
- photophysical properties 365–366
molecular metal complexes 332
molecular orbitals (MO)
- analysis 142–143
- cationic iridium complexes 372
- cyclometallated Ir complexes 142–143
- diagram 366
- electronic excitations 11
- highest occupied see HOMO
- lowest unoccupied see LUMO
- ruthenium containing polymers 336
molecular orbitals (MO) model
- extended 20–23
- metal-to-ligand charge transfer 18–20
molecular structure
- osmium-based emitters 203
- [Tb(acac-azain)3]2 406
- Tb(III) β-diketonate 405
multifunctional complexes 345
- charge carrier mobilities 347
- metal containing polymers 349
- ruthenium 347–356
- synthesis 344
multilayer OLEDs 3–6
- iridium complexes 379
- Pt(II) bis(phenoxy)diimine 273
n
near infrared emitting complexes 411–415
near-UV emitting complexes 150–153
neodymium complexes 411–415
neutral iridium complexes
- electrochemical properties 367–368
- HOMO levels 368
- LUMO levels 369
- photophysical properties 366–369
- tuning 366–369
nonconjugated polymers 346–347
nonradiative processes
- near-UV 152
- rate constant 175–176
- relaxation 100

o
octaethylporphyrin, platinum see PtOEP
2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum (PtOEP) see PtOEP
octahedral complexes, photophysical properties 34
ODMR see optically detected magnetic resonance

OLEDs 1–97
- applications 131, 259–282
- blocking layer 5
- cyclometallated organoiridium complexes 131–132
- device architecture 379–387
- efficiency 120
- energy level diagrams 137
- hole injection/transport layer (HTL) 3
- iridium complexes 176–179, 378–388
- layers 4
- material development 332–335
- material requirements 5
- molecular engineering 363–390
- multilayer see multilayer OLEDs
- operation principle 17, 100
- performance 181
- phosphorescent polymer 312
- Pt(II) materials 260
- spin correlations 99–130
- thermal stability 176–179
- traditional materials 330–332

open-shell transition metals 15

optically detected magnetic resonance (ODMR) 32

Orbach process
- phosphorescence dynamics 50–51
- spin–lattice relaxation 49–51

orbital mixing 15

orbital splitting 16

orbitals
- frontier see frontier orbitals
- molecular see molecular orbitals

organic light-emitting diodes see OLEDs

organic light-emitting polymers see PLEDs

organic molecules
- photoluminescence quantum yield 38
- singlet-triplet splitting 36

organic-transition metal compounds, emission band structures 39

organometallic complexes 333–334
- current efficiency 135
- iridium 131–162
- phosphorescent emitters 134–136
- phosphorescent lifetime 134
- phosphors 143
- Pt(II) 34

organo-transition metal complexes 24, 29
- CI (configuration interaction) 30
- electronic excitations 11
- metal-to-ligand charge transfer 21
- MO-model 19
- singlet-triplet splittings 36–37
- spin–lattice relaxation 56
- triplet emitters 1, 18–40

ORTEP diagram
- molecular design 169
- osmium-based emitters 199

orthometallated iridium complexes 377

[Os(bpy)]^{2+} 31
[Os(phen)(dppe)]^{2+} 31
[Os(phen)]^{3+} 31

osmium-based emitters
- blue 193–198
- phosphorescent OLED applications 193–203
- photophysical properties 195, 200

oxadiazole
- carbazole tuning 322
1,3,4-oxadiazole 343

p

PAA see poly(acrylic acid)
Pd(qol), 31
Pd(thpy), 31
PDI dendrimers 231
bis(phenoxo)diimine complexes 273–276
2-phenylpyridine-based neutral iridium complexes 367

tris-phenylpyridine iridium(III) see Ir(ppy), PhLPPP see poly(para-phenylene)

phonons
- sidebands 84–87
- spin–lattice relaxation 49, 51

phosphor doping 136–139

phosphorescence
- decay 110
- colors 366–377
- enhancement 294–301
- modulation 121
- spectra 169–171, 176
- spin states 107–125
- yields 171–173
- see also electric field modulated fluorescence and phosphorescence

phosphorescent devices 223–243
- confinement 239–243

phosphorescent emitters 313–314
- host materials 314–325
- organometallic complexes 134–136
- tuning 318–322
phosphorescent iridium complexes
 – emission energy 174–175
 – excited states 165–167, 175–176
 – highly efficient 163–184
 – molecular design 167–169
 – molecular engineering 366–378
 – phosphorescence yield 171–173
 – redox potential 174–175
 – state decay 175–176
 – tuning 174–175
phosphorescent materials
 – chemical structure 287, 289
 – cyclometallated organoiridium complexes 131–132
 – development 332–335
 – energy transfer 286–288
 – saturation 260
phosphorescent molecules
 – blue 288–294
 – guest 283–310
phosphorescent OLEDs
 – applications 193–216
 – energy transfer 283–310
 – near-UV luminescence 151
phosphorescent PLEDs see PLEDs
phosphorescent polymer LEDS see PLEDs
phosphorescent Pt(II) materials 259–282
photoluminescence
 – delayed emission properties 151
 – iridium-based emitters 210
 – intensity 106
 – quantum yield 38
 – quenching see quenching
 – spin persistence 120
photoluminescence spectra
 – Alq 296
 – Alq thin films 298
 – ancillary ligands 147
 – BAhvq thin film 303, 305
 – CBP thin film 288
 – FIrpic 291
 – Ir(ppy),doped Alq thin film 301
 – PDI dendrimers 230–231
 – poly(para-phenylene) 109
 – ruthenium containing polymers 354–355
 – spin persistence 115
 – [Tb(acac-azain)] 407
photophysics
 – phosphorescent emitters 322–325
 – ruthenium complexes 335–336
 – spin persistence 120
 – [Tb(acac-azain)] 407
π-system expansion 150
planar organometallic Pt(II) compounds 34
plasmons 103
platinum-based emitters 212–216
 – aggregation 215
 – photophysical properties 213
platinum octaethylporphyrin see PtOEP
platinum(II) materials see Pt(II) materials
PLEDs 221, 311–328, 331
 – excited states 312–313
 – singlet excited states 312–313
PMMA 343
point group symmetry 14
polaron pairs 123
polarons
 – recombination 7
 – spin correlations 101
poly(acrylic acid) (PAA) 346
polyamides 348
polycrystalline matrices 82
polyester 348
polyfluorene 250–251
polymer-based electrophosphorescent devices 221–258
 – excitation transfer 222
 – singlet-triplet splittings 223
 – spin statistics 221
polymer-based light-emitting diodes see PLEDs
polymer films
 – delayed emission modulation 122
 – electric field modulated fluorescence 109
 – photoluminescence quenching 112
 – spin persistence 114
polymer hosts 200–202
polymer LEDs see PLEDs
polymer matrices 243–258
polymeric materials
 – development 334–335
 – metal-containing 330–335
polymers
 – carbazole see carbazole polymers
 – conjugated see conjugated polymers
 – containing complexes 337–339
 – dendritic 339
 – metal complexes 329–362
 – metal-containing 335–357
 – nonconjugated 346–347
 – phosphorescent emitters 322–325
 – rhenium containing see rhenium containing polymers
Index

– red-phosphorescent iridium complexes 165
– triplet emitters 1
quasi-octahedral complexes 34
quasi-square planar organometallic Pt(II) compounds 34
quenching
– field 119
– fluorescence 248
– photoluminescence 112

r
radiative decay
– ancillary ligands 145
– electric field modulated fluorescence 111
– metal-containing polymers 329
– metal-to-ligand charge transfer 24–29
radiative lifetimes 132
– organometallic complexes 135
radiative rate constant 25
– ancillary ligands 144
– phosphorescence yield 172
Raman process
– phosphorescence dynamics 51
– spin–lattice relaxation 49
rare earth complexes 333, 400
RC time constant 132
reaction sequence
– ligand synthesis 187
– pyridyl pyrrole 188
– pyridyl triazole 189
recombination
– electroluminescence 7
– exciton 10
– PVK 228
– spin persistence 116
– spin-dependent 103–107
– thermal energy 8
recombination zone distribution 383
red electroluminescence 396–404
red OLED 179
red emitting materials 165
– osmium-based emitters 198–203
red-phosphorescent iridium complexes
– 5d metal ions 164
– emission quantum yield 165
– highly efficient 163–184
– HOMO 166
relaxation paths
– electroluminescence 7
– osmium-based emitters 197
– see also spin–lattice relaxation
Re(phbt)(CO)₉ 31
Re(phen)(CO)₉(Cl) 31
[Rh(bpy)₃]²⁺ 31
rhenium complexes 17–18, 344
rhenium containing polymers
– chemical structure 349
– physical properties 351
Ru(bpy)₁²⁺ 31, 336
ruthenium-based emitters 203–207
ruthenium complexes 335–357
– light-emitting devices 339–343
– multifunctional 347–356
– nonconjugated polymers 346–347
– photophysics 335–336
– synthesis 344
ruthenium containing polymers 346–357
– bathochromic shift 350
– carrier mobilities 355
– chemical structure 338, 340–341, 348–349
– electroluminescence performance 342, 353
– electronic configuration 335
– PAA 346
– pendant metal complexes 356–357
– physical properties 351
ruthenium dipyridophenazin (DPPZ) 354

s
satellite structures 63–76
– low-temperature 75–76
– temperature-time-dependence 68–74
– vibrational see vibrational satellite structures
– zero-field splitting 39
Schiff bases 270–273
Shpol’skii spectroscopy 42
singlet density 106
singlet excitons
– formation 105
– phosphorescent devices 239–243
singlet-triplet splittings
– metal character 37
– MLCT excitation 19
– organo-transition metal compounds 36–37
– polymer-based electrophosphorescent devices 223
singlet-triplet transitions 39
SLR see spin–lattice relaxation
smOLED 325
SOC see spin–orbit coupling
spectral broadening
 – cryogenic temperatures 81
 – dephasing 82
 – energy relaxation time 82
 – homogeneous linewidths 82–85
 – inhomogeneous linewidths 81–82
 – phonon sideband 84–87
 – phonon progression 84
 – polycrystalline matrices 82
 – Pt(thpy)$_2$ 85–86
 – pure dephasing time 82
 – simulation 86–87
 – solid matrix 81
 – temperature dependence 81
 – triplet emitters 81–87
 – zero-phonon line (ZPL) 83–86
spectrum
 – 1.3 K, Herzberg–Teller induced emission 69–70
 – 20 K, Franck–Condon activity 70–72
 – absorption see absorption spectra
 – Alq$_3$ 298
 – electroluminescence see electroluminescence spectra
 – emission see emission spectra
 – linewidth broadening 88–89
 – low-temperature emission 77
 – luminescent see luminescent spectrum
 – organo-transition metal compounds 39
 – photoluminescence see photoluminescence spectra
spin conversion 114
spin correlations
 – binding energy 101–102
 – charge localization 101
 – molecular excitation 101
 – organic light-emitting diodes 99–130
 – relaxation 100, 103–107
spin–lattice relaxation (SLR) 49–56, 103–107
 – chain length dependence 105
 – electron spin resonance 105
 – exchange splitting 104
 – lattice vibrations 49
 – longer molecules 105
 – metal compounds 56
 – molecular level population 104
 – phosphorescence dynamics 49–56
 – Raman scattering 51
 – short molecules 105
 – singlet recombination 105
 – spin-flips 49
 – temperature dependence 50–51, 54
 – times 80–81, 116
 – triplet emitters 3
spin mixing 103
 – electric field modulated fluorescence 111
spin–orbit coupling (SOC) 19, 27
 – matrix elements 28
 – metal-to-ligand charge transfer 24–29
 – PVK 224
 – routes 27, 35
 – strength 28
 – triplet emitters 1
spin persistence 114–125
 – charge carrier pairs 119–120
 – emission overshoot 123
spin resonance, electron 105
spin states 107–125
 – energy transfer 284
 – interconversion 99
 – triplet formation rate 113–114
spin wavefunction 100
spin–vibronic coupling 67
splittings
 – electronic excitations 11–15
 – exchange 13, 104
 – ligand field 15, 364–365
 – LC excitation 14
 – MC excitation 16
 – singlet-triplet see singlet-triplet splittings
 – zero-field see zero-field splitting
states
 – charge transfer see charge transfer states
 – degenerate 21–22
 – electroluminescence 3–10
 – electronic excitations 11–29
 – energy see energy states
 – excited see excited states
 – LC 11–15, 365
 – metal triplet emitters 18–29
 – metal-centered transitions 15–18
 – MLCT 29
 – modification 143–145
 – perturbed 26
 – singlet excited 312–313
 – spin see spin states
 – triplet see triplet states
substates
- Herzberg–Teller-induced emission 69–70
- Ir(btp)₃ (acac) emission 75
- LC excitation 13
- lowest triplet 46
- magnetic field-induced shifts 61
- metal-to-ligand charge transfer 24–29
- organo-transition metal compounds 30
- triplet see triplet substates
- vibrational satellite structure 70–72
substituent effects
- tuning 148
substituted ligands 174
substrates, glass see glass substrate
surface plasmons 103
symmetry
- C₃ 21–23
- crystal structure 43
- lowest triplet state 43–45
- matrix cages 44
- MC excitation 15
- Oₙ 15–16, 26, 35
- point group 14
Tanabe-Sugano diagrams 16
[Tb(acac-azain)₃]₂
- molecular structure 406
- PL spectra 407
Tb(eb-PMP)₃ (TPPO) 405
Tb(III) β-diketonate 405
temperature-time-dependence 68–74
terbium carboxylates 404
terbium complexes
- coordination environments 410
- energy transfer 411
- green electroluminescence 404–411
- HOMO energies 408
terbium pyrazolonate complexes 407
ternary lutetium complexes 417
tetradentate Pt(II) complexes 270–273
thin films
- Alq₂ 296, 298
- Alq₃ 298
- Balq 303, 305
- blue phosphorescent molecules 293
- CBP 288
- energy transfer 283
- see also films; layers; polymer films
thiocyanate ligands 376–377
time-resolved emission 113
- Boltzmann distribution 74
- Pt(thpy)₃ 73
- vibrational satellite structure 72–74
TPD see N,N′-diphenyl-N,N′-(bis[3-methylphenyl]-1,1-biphenyl)-4,4′-diamine
transient electroluminescence 113–114
transient photoluminescence 240, 293–294, 352
transition metal complexes
- chemical structure 314
- high-efficiency polymer LEDs 313
- pyrazole 186
- triplet emitters 29–40
transitions
- dipole-forbidden 45
- electronic see electronic transitions
- forbidden 38, 42
- forbiddenness 44
- high magnetic fields 58
- highly resolved 42–43
- ligand-centered see ligand-centered (LC) transitions
- metal-centered see metal-centered (MC) transitions
- singlet-triplet 39
- spectral broadening 83
- zero-field splitting 79
trapping
- carrier 225–226
- charge see charge trapping
- electron 233
- excitons 8
- phosphorescent devices 227–239
- recombination 7
tridentate Pt(II) complexes 264–270
- current density 269–270
- electroluminescence spectra 267
- emission spectra 266
- ligand modifications 266
- luminance characteristics 269–270
- thermal stability 265
- voltage characteristics 269–270
triphenylamine 343
triplet emitters 1–97
- characterization 45–48
- emission linewidths 81–87
- field splitting 29–40
- highly resolved electronic transitions 42–43
- homogeneous linewidths 82–85
- inhomogeneous linewidths 81–82
- metal 18–29
Index

- phosphorescence dynamics 49–56
- photophysical properties 34–40
- Pt(II) Schiff base 271

triplet energies
- carbazole derivatives 317–318, 320–321
- carbazole polymers 322–323
- cyclometallated complexes 146–148
- host 315
- polyphenyl molecules 321

triplet energy transfer 300
- guest-host systems 285

triplet excited states 39–40
- blue phosphorescent molecules 288
- PLEDs 312–313
- thermal equilibrium 301–306

triplet excitons
- confinement 136–139
- diffusion 284
- phosphorescent devices 239–243

triplet harvesting 10
- excitation confinement 241

triplet states
- delocalization 20
- emission decay 80–81
- energy distribution 77–78
- environmental effects 76–81
- excited see triplet excited states
- formation rate 113–114
- geometry changes 39–40
- high magnetic fields 56–63
- high-energy 288
- LC excitation 13
- lowest see lowest triplet state
- relaxation times 80–81

triplet substates
- energies 24
- metal-to-ligand charge transfer 24–29
- perturbed 26
- phosphorescence dynamics 51–56
- spin–lattice relaxation 51
- zero-field splitting 39

triplet-triplet annihilation 5
- Ir(ppy), and Alq3 297, 300
- iridium complexes 385
- organometallic complexes 134
- polymer-based electrophosphorescent devices 222
- spin persistence 122

triplets 40–45
- density 106

- diffusion rate 114
- diffusivity 108
- electric field modulated fluorescence 107
- emission overshoot 123

vibration, color see color tuning
two-phonon Raman scattering 51

\nu

vacuum deposition
- Er-containing OLEDs 412
- thermal stability 177

vibrational satellite structures 63–76
- Herzberg–Teller-induced emission 69–70
- low-temperature 75–76
- side bands 63
- temperature-time-dependence 68–74
- time-resolved emission 72–74

vibrational satellites
- background 63–76
- cage modes 70
- decay times 72
- dipole moment 65
- FC activity 63–66, 70, 72–74, 75–76
- harmonic oscillator functions 65
- harmonic potentials 64
- HT activity 66–70, 72–74
- organo-transition metal compounds 39
- Pt(thpy)2 70
- substates 70–72

temperature-time-dependence 68–74
time-resolved emission 72–74

voltage characteristics see current–voltage characteristics

\w

wavefunctions
- LC excitation 13
- overlap 37
- recombination 9
- triplet substates 24
- vibrational satellites 65

\y

ytterbium complexes 411–415
yttrium complexes 415–417

\z

Zeeman shifts 59
zero-field splitting (ZFS) 38–39, 78–80
- admixtures 38
- allowedness 30
– emitter compounds 32–33
– ligand-centered (LC) excitation 14
– metal-to-ligand charge transfer 24–29
– ordering scheme 31–34

– site energy distribution 78
– transitions 79
– triplet emitters 2, 29–40
– triplet substates 39

zero-phonon line (ZPL) 83–86