Table of Contents

Introduction

<table>
<thead>
<tr>
<th>Introduction</th>
<th>xv</th>
</tr>
</thead>
</table>

Chapter 1. Mathematical Prerequisites

1.1. Frequently used special functions	1
1.1.1. The “rectangle” function	2
1.1.2. The “sinc” function	3
1.1.3. The “sign” function	4
1.1.4. The “triangle” function	5
1.1.5. The “disk” function	5
1.1.6. The Dirac δ function	6
1.1.6.1. Definition	6
1.1.6.2. Fundamental properties	8
1.1.7. The “comb” function	9
1.2. Two-dimensional Fourier transform	10
1.2.1. Definition and existence conditions	10
1.2.2. Theorems related to the Fourier transform	11
1.2.2.1. Linearity	13
1.2.2.2. Similarity	13
1.2.2.3. Translation	13
1.2.2.4. Parseval’s theorem	13
1.2.2.5. The convolution theorem	14
1.2.2.6. The autocorrelation theorem	14
1.2.2.7. The duality theorem	14
1.2.3. Fourier transforms in polar coordinates	15
1.3. Linear systems	17
1.3.1. Definition	17
1.3.2. Impulse response and superposition integrals	18
1.3.3. Definition of a two-dimensional linear shift-invariant system	19
Chapter 2. The Scalar Theory of Diffraction

2.1. Representation of an optical wave by a complex function
 2.1.1. Representation of a monochromatic wave
 2.1.2. Complex amplitude of the optical field in space
 2.1.2.1. Plane waves
 2.1.2.2. Spherical waves
 2.1.3. Complex amplitudes of plane and spherical waves in a front plane
 2.1.3.1. Complex amplitude of a plane wave in a front plane
 2.1.3.2. Complex amplitude of a spherical wave in a front plane
 2.2. Scalar theory of diffraction
 2.2.1. Wave equation
 2.2.2. Harmonic plane wave solutions to the wave equation
 2.2.3. Angular spectrum
 2.2.4. Kirchhoff and Rayleigh–Sommerfeld formulae
 2.2.5. Fresnel approximation and Fresnel diffraction integral
 2.2.6. The Fraunhofer approximation
 2.3. Examples of Fraunhofer diffraction patterns
 2.3.1. Fraunhofer diffraction pattern from a rectangular aperture
 2.3.2. Fraunhofer diffraction pattern from a circular aperture
 2.3.3. Fraunhofer diffraction pattern from a sinusoidal-amplitude grating
 2.4. Some examples and uses of Fresnel diffraction
 2.4.1. Fresnel diffraction from a sinusoidal-amplitude grating
 2.4.2. Fresnel diffraction from a rectangular aperture
 2.5. Collins’ formula
 2.5.1. Description of an optical system by an ABCD transfer matrix
 2.5.2. ABCD law and paraxial systems equivalent to a lens
 2.5.2.1. ABCD law of a spherical wave propagating across an optical system
 2.5.2.2. System equivalent to a lens
 2.5.2.3. Properties of the transfer matrix
 2.5.3. Proof of Collins’ formula
 2.5.3.1. Transmission from a thin lens
 2.5.3.2. Expression of the ideal image
Chapter 3. Calculating Diffraction by Fast Fourier Transform

3.1. Relation between the discrete and analytical Fourier transforms
 3.1.1. Sampling and periodic expansion of a continuous
 two-dimensional function
 3.1.2. The relation between the discrete and
 continuous Fourier transforms
3.2. Calculating the Fresnel diffraction integral by FFT
 3.2.1. Calculating diffraction by the S-FFT method
 3.2.2. Numerical calculation and experimental demonstration
 3.2.3. The D-FFT method
 3.2.4. Practical sampling conditions due to the energy
 conservation principle
 3.2.5. Experimental demonstration of the D-FFT method
3.3. Calculation of the classical diffraction formulae using FFT
 3.3.1. Kirchhoff and Rayleigh-Sommerfeld formulae in
 convolution form
 3.3.2. Unitary representation of the classical diffraction formulae
 3.3.3. Study of the sampling conditions of the classical formulae
 3.3.4. Example of calculations of the classical diffraction formulae
 3.3.5. Calculation of diffraction by convolution: summary
3.4. Numerical calculation of Collins’ formula
 3.4.1. Collins’ direct and inverse formulae
 3.4.2. Calculating Collins’ formula by S-FFT
 3.4.3. Calculating the inverse Collins’ formula by S-FFT
 3.4.4. Calculating Collins’ formula by D-FFT
 3.4.5. Calculating the inverse Collins’ formula by D-FFT
 3.4.6. Numerical calculation and experimental demonstration
 3.4.6.1. Demonstration of the S-FFT and S-IFFT methods
 3.4.6.2. Demonstration of the D-FFT method
 3.4.6.3. Demonstration of the S-FFT and S-IFFT methods
 3.4.6.4. Demonstration of the D-FFT method
3.5. Conclusion

Chapter 4. Fundamentals of Holography

4.1. Basics of holography
 4.1.1. Leith–Upatnieks holograms
 4.1.1.1. Illumination in the propagation direction of
 the original reference wave

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1.2</td>
<td>Illumination with a wave propagating along the z-axis</td>
<td>121</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Condition for the separation of the twin images and the zero order</td>
<td>123</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Case where the reference wave is planar</td>
<td>123</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>The case where the reference wave is no longer planar</td>
<td>125</td>
</tr>
<tr>
<td>4.2</td>
<td>Partially coherent light and its use in holography</td>
<td>127</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Analytic signal describing a non-monochromatic wave</td>
<td>127</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Analytic signal describing a monochromatic wave</td>
<td>127</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Analytic signal describing a non-monochromatic wave</td>
<td>128</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Analytic signal and spectrum of a laser wave</td>
<td>129</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Recording a hologram with non-monochromatic light</td>
<td>131</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Total coherence approximation conditions</td>
<td>134</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Identical wave train model</td>
<td>134</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Temporal coherence of a source emitting identical wave trains</td>
<td>135</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Recording a Fresnel hologram</td>
<td>139</td>
</tr>
<tr>
<td>4.3</td>
<td>Study of the Fresnel hologram of point source</td>
<td>141</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Reconstructing the hologram of a point source</td>
<td>142</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Hologram illuminated by a spherical wave with the same wavelength</td>
<td>142</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Hologram illuminated by a spherical wave with a different wavelength</td>
<td>145</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Case where the reference and reconstruction waves are plane waves</td>
<td>145</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Magnifications</td>
<td>146</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Transverse magnification of the reconstructed image</td>
<td>146</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Longitudinal magnification</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Resolution of the reconstructed image</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Influence of the size of the illuminating source</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Influence of the spectral width of the light source</td>
<td>148</td>
</tr>
<tr>
<td>4.4</td>
<td>Different types of hologram</td>
<td>149</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The Fraunhofer hologram</td>
<td>149</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Fourier hologram</td>
<td>150</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Component $\tilde{C}u_1(x_i,y_j)$</td>
<td>153</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>Component $\tilde{C}u_2(x_i,y_j)$</td>
<td>153</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Component $\tilde{C}u_3(x_i,y_j)$</td>
<td>154</td>
</tr>
<tr>
<td>4.4.2.4</td>
<td>Component $\tilde{C}u_4(x_i,y_j)$</td>
<td>154</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The lensless Fourier hologram</td>
<td>155</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The image hologram</td>
<td>158</td>
</tr>
<tr>
<td>4.4.5</td>
<td>The phase hologram</td>
<td>160</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>163</td>
</tr>
</tbody>
</table>
Chapter 5. Digital Off-Axis Fresnel Holography

5.1. Digital off-axis holography and wavefront reconstruction by S-FFT

5.1.1. Characteristics of the diffraction from a digital hologram impacted by a spherical wave

5.1.1.1. Virtual object
5.1.1.2. Conjugate object
5.1.1.3. Zero order

5.1.2. Optimization of the experimental parameters

5.1.3. Experimental reconstruction by S-FFT

5.1.4. Quality of the reconstructed image

5.2. Elimination of parasitic orders with the S-FFT method

5.2.1. Diffraction efficiency of a digital hologram

5.2.2. Methods of direct elimination

5.2.2.1. Method directly eliminating the object and reference waves
5.2.2.2. Method with an arbitrary phase shift of the reference wave

5.2.3. Method of extracting the complex amplitude of the object wave

5.3. Wavefront reconstruction with an adjustable magnification

5.3.1. Convolution with adjustable magnification

5.3.2. Experiment with adjustable magnification

5.3.3. Elimination of the perturbation due to the zero order

5.3.3.1. Spectral distribution and determination of the center of the object wave
5.3.3.2. Spectral position of the object wave

5.3.4. Method eliminating the perturbation due to the zero order

5.4. Filtering in the image and reconstruction planes by the FIMG4FFT method

5.4.1. Adjustable magnification reconstruction by the FIMG4FFT method

5.4.1.1. Filtering the image plane
5.4.1.2. Experimental results
5.4.1.3. Local reconstruction by the FIMG4FFT method

5.5. DBFT method and the use of filtering in the image plane

5.5.1. DBFT method

5.5.2. Sampling of the DBFT algorithm

5.5.3. Improvement of the DBFT method

5.5.4. Experimental demonstration of the DDBFT method

5.6. Digital color holography

5.6.1. Recording a digital color hologram
5.6.2. Standardization of the physical scale of reconstructed monochromatic images .. 215
5.6.3. Fresnel transform with wavelength-dependant zero-padding 216
5.6.4. Experimental study of the different methods of reconstructing color images ... 218
 5.6.4.1. Two-color image calculated by the zero-padding method. ... 220
 5.6.4.2. Reconstruction by the FIMG4FFT and the DDBFT with adjustable magnification 221
 5.6.4.3. Three-color digital holography 222
5.7. Digital phase hologram ... 224
 5.7.1. Formation of a digital phase hologram and reconstruction by S-FFT .. 225
5.8. Depth of focus of the reconstructed image 229
 5.8.1. Theoretical analysis .. 229
 5.8.2. Comparison with a digital holographic simulation 231
 5.8.3. Experiments .. 233
5.9. Conclusion ... 235

Chapter 6. Reconstructing Wavefronts Propagated through an Optical System .. 237

 6.1. Theoretical basis .. 238
 6.1.1. Case of a convergent lens ... 239
 6.1.2. Impulse response of the process 240
 6.1.2.1. Matrix description of the digital holographic system 240
 6.1.2.2. Impulse response from the digital holographic system 241
 6.1.2.3. Experimental reconstruction with an afocal system 243
 6.2. Digital holography with a zoom 246
 6.2.1. Principle of the zoom .. 247
 6.2.2. Study of the zoom .. 248
 6.2.3. Design of the zoom ... 249
 6.2.4. Experimental validation ... 251
 6.3. Reconstructing an image by Collins’ formula 251
 6.3.1. Reconstruction algorithm 251
 6.3.1.1. Experimental setup .. 251
 6.3.1.2. Reconstruction by calculating the inverse Collins formula .. 252
 6.3.2. Adjustable-magnification reconstruction after propagation across an optical system 254
 6.3.2.1. Reconstruction with an adjustable magnification in the detector space ... 255
6.3.2.2. Experimental demonstration for the reconstruction of color images .. 257

6.4. Using the classical diffraction formulae to reconstruct the wavefront after propagation across an optical system. .. 259

6.4.1. Use of the rigorous diffraction formulae .. 259

6.4.1.1. Simulation of the overall process .. 260

6.4.1.2. Experimental results .. 264

6.4.2. Reconstruction of the object wave in the object and image spaces .. 265

6.4.2.1. Parameters .. 265

6.4.2.2. Reconstruction in the image space .. 266

6.4.2.3. Reconstruction in the object space .. 267

6.4.2.4. Experimental results .. 268

6.5. Conclusion .. 269

Chapter 7. Digital Holographic Interferometry and Its Applications .. 271

7.1. Basics of holographic interferometry .. 273

7.1.1. Reconstructing the phase of the object field .. 273

7.1.2. Optical phase variations and the sensitivity vector .. 274

7.1.3. Phase difference method .. 275

7.1.4. Spatial filtering of the phase .. 276

7.1.5. Phase unwrapping .. 277

7.1.6. Out-of-plane sensitivity .. 279

7.1.7. In-plane sensitivity .. 280

7.1.8. 3D sensitivity .. 280

7.1.9. Sensitivity variation across the field of view .. 282

7.2. Digital holographic microscopy .. 282

7.2.1. Principles and advantages .. 282

7.2.2. Architectures .. 283

7.2.3. Reconstruction of the object field .. 285

7.2.4. Phase contrast .. 287

7.3. Two-wavelength profilometry .. 288

7.3.1. Principle .. 288

7.3.2. Two-wavelength profilometry with spatio-chromatic multiplexing .. 289

7.4. Digital holographic photomechanics .. 291

7.4.1. Introduction .. 291

7.4.2. Twin-sensitivity measurement with monochromatic multiplexing .. 292

7.4.2.1. Principle .. 292

7.4.2.2. Application: polymer concrete in a three-point bending test .. 293
7.4.2.3. Experimental results ... 294
7.4.2.4. Comparison with finite element modeling 296
7.4.3. Twin-sensitivity measurement with spatio-chromatic multiplexing ... 297
 7.4.3.1. Principle .. 297
 7.4.3.2. Application to crack detection in electrical components 297
7.4.4. 3D measurement by three-color digital holography 299
 7.4.4.1. Principle .. 299
 7.4.4.2. Illustration .. 301
 7.4.4.3. Application to the study of the mechanical behavior of composite materials ... 302
7.5. Time-averaged digital holography ... 303
 7.5.1. Principle .. 303
7.6. Tracking high-amplitude vibrations 309
 7.6.1. Introduction .. 309
 7.6.2. Principle .. 310
7.7. Three-color digital holographic interferometry for fluid mechanics .. 314
 7.7.1. Principle ... 314
 7.7.2. Application to turbulent flows 317
7.8. Conclusion ... 318

Appendix. Examples of Digital Hologram Reconstruction Programs 319

A1.1. Diffraction calculation using the S-FFT algorithm 319
 A1.1.1. Code for the program: LIM1.m 319
 A1.1.2. Examples of diffraction calculations using LIM1.m 321
A1.2. Diffraction calculation by D-FFT .. 323
 A1.2.1. Code for the program: LIM2.m 323
 A1.2.2. Examples of diffraction calculations using LIM2.m 325
A1.3. Simulation of a digital hologram .. 326
 A1.3.1. Code for the program: LIM3.m 326
 A1.3.2. Example of the calculation of a hologram with LIM3.m 329
A1.4. Reconstruction of a hologram by S-FFT 330
 A1.4.1. Code for the program: LIM4.m 330
 A1.4.2. Example of reconstruction with LIM4.m 332
A1.5. Adjustable-magnification reconstruction by D-FFT 333
 A1.5.1. Code for the program: LIM5.m .. 333
 A1.5.2. Example of adjustable-magnification reconstruction
 with LIM5.m .. 336

Bibliography .. 339

Index .. 355