CONTENTS

Contributors xiii
Preface xvii
Acknowledgments xix

1 AUTOPHAGY AND IMMUNITY 1
Xu Liu and Daniel J. Klionsky
1.1 Introduction 1
1.2 Autophagy 2
 1.2.1 Types of autophagy 2
 1.2.2 Morphology 3
 1.2.3 Molecular machinery 3
 1.2.4 Physiological roles 5
1.3 Autophagy and immunity 6
 1.3.1 Xenophagy: autophagic clearance of intracellular microorganisms 6
 1.3.2 Autophagy and cryptides 9
 1.3.3 Autophagy and pattern recognition receptors (PRRs) 9
 1.3.4 Autophagy and MHC antigen presentation 10
 1.3.5 Autophagy regulation by immune signaling molecules 11
 1.3.6 Autophagy, inflammation, and autoimmunity 11
1.4 Conclusion 12
References 12

2 TECHNIQUES FOR STUDYING AUTOPHAGY 19
Isei Tanida and Masato Koike
2.1 Introduction 19
2.2 Reagents and tools for studying autophagy 21
 2.2.1 Reagents to monitor the lysosomal flux of LC3-II 21
 2.2.2 Reagents that induce autophagy 21
 2.2.3 Reagents and recombinant tools that inhibit autophagy 22
2.3 Detection of LC3-I AND LC3-II by immunoblotting 22
2.4 Immunofluorescent analyses of endogenous LC3 23
2.5 Monitoring autophagy using fluorescent protein-tagged LC3 23
2.6 Morphological analyses of autophagosomes and autolysosomes by TEM 24
 2.6.1 Reagents or stock solutions 26
 2.6.2 Resin embedding of cell pellets or microbes 26
CONTENTS

3 ROLE OF AUTOPHAGY IN DNA VIRUS INFECTIONS IN VIVO 33
Xiaonan Dong and Beth Levine
3.1 Introduction 33
3.2 In vivo interplay between autophagy and DNA viruses in plants and invertebrates 34
3.3 In vivo interplay between autophagy and DNA viruses in vertebrates 35
 3.3.1 Autophagy is an essential antiviral mechanism that protects against HSV-1 in vivo 35
 3.3.2 The autophagy-HBV interplay in vivo: a balance between viral exploitation and tumor suppression 40
 3.3.3 Autophagy may suppress γ-herpesvirus persistent infection 42
3.4 Conclusion 43
Acknowledgments 44
References 44

4 STUDYING RNA VIRUSES AND AUTOPHAGY IN VIVO 49
Mehrdad Alirezaei and J. Lindsay Whitton
4.1 Introduction 49
4.2 In vivo interactions between autophagy and RNA viruses in plants and invertebrates 50
 4.2.1 Plants 50
 4.2.2 Invertebrates 50
4.3 In vivo Interactions between autophagy and RNA viruses in vertebrates 51
 4.3.1 Togaviridae 51
 4.3.2 Caliciviridae 51
 4.3.3 Orthomyxoviridae 53
 4.3.4 Flaviviridae 53
 4.3.5 Picornaviridae 54
4.4 Conclusion 62
Acknowledgments 63
References 63

5 AUTOPHAGY AND PICORNAVIRUS INFECTION 67
Tom Wileman, Zhigang Zhou, Matthew Whelband, Eleanor Cottam, Stephen Berryman, Terry Jackson and Rebecca Roberts
5.1 Introduction 67
5.2 Selective autophagy involves autophagy receptors with LC3-interacting domains 69
5.3 Autophagy is activated during virus infection 69
5.4 Picornaviruses and autophagy 69
 5.4.1 Poliovirus 70
 5.4.2 Coxsackievirus 72
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3 Human enterovirus 71</td>
<td>73</td>
</tr>
<tr>
<td>5.4.4 Encephalomyocarditis virus</td>
<td>73</td>
</tr>
<tr>
<td>5.4.5 Foot-and-mouth disease virus</td>
<td>74</td>
</tr>
<tr>
<td>5.4.6 Human rhinoviruses</td>
<td>75</td>
</tr>
<tr>
<td>5.5 Caution in interpretation of induction of LC3 puncta and</td>
<td>75</td>
</tr>
<tr>
<td>double-membraned vesicles in the context of autophagy</td>
<td></td>
</tr>
<tr>
<td>5.5.1 LC3 puncta</td>
<td>75</td>
</tr>
<tr>
<td>5.6 Conclusions and future research</td>
<td>77</td>
</tr>
<tr>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>

6 FLAVIVIRUSES AND AUTOPHAGY

Tristan X. Jordan and Glenn Randall

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>81</td>
</tr>
<tr>
<td>6.2 Flaviviruses</td>
<td>83</td>
</tr>
<tr>
<td>6.3 Dengue virus</td>
<td>83</td>
</tr>
<tr>
<td>6.3.1 Autophagosomes as a platform for replication?</td>
<td>85</td>
</tr>
<tr>
<td>6.3.2 Modulation of lipid metabolism</td>
<td>86</td>
</tr>
<tr>
<td>6.3.3 Potential role for the autophagy-related proteins USP10 and USP13 in DENV virion maturation</td>
<td>87</td>
</tr>
<tr>
<td>6.3.4 Cytoprotective autophagy</td>
<td>88</td>
</tr>
<tr>
<td>6.3.5 The role of autophagy in an ADE model of monocyte infection</td>
<td>89</td>
</tr>
<tr>
<td>6.3.6 Autophagy in DENV infections in mice</td>
<td>89</td>
</tr>
<tr>
<td>6.4 Other Flaviviruses</td>
<td>90</td>
</tr>
<tr>
<td>6.4.1 Japanese encephalitis virus</td>
<td>90</td>
</tr>
<tr>
<td>6.4.2 Modoc virus</td>
<td>90</td>
</tr>
<tr>
<td>6.4.3 West Nile virus</td>
<td>90</td>
</tr>
<tr>
<td>6.5 Concluding remarks</td>
<td>92</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>

7 AUTOPHAGY: A HOME REMODELER FOR HEPATITIS C VIRUS

Marine L.B. Hillaire, Elodie Décembre, and Marlène Dreux

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>101</td>
</tr>
<tr>
<td>7.1.1 Autophagy</td>
<td>101</td>
</tr>
<tr>
<td>7.1.2 Hepatitis C virus (HCV) disease, genome and replication</td>
<td>103</td>
</tr>
<tr>
<td>7.2 HCV induces a proviral autophagy</td>
<td>111</td>
</tr>
<tr>
<td>7.3 How does HCV trigger autophagy vesicle accumulation?</td>
<td>111</td>
</tr>
<tr>
<td>7.4 Dynamic membrane remodeling by autophagy</td>
<td>113</td>
</tr>
<tr>
<td>7.5 Interlinkage of autophagy with the innate immune response</td>
<td>114</td>
</tr>
<tr>
<td>7.6 Autophagy and cell death</td>
<td>115</td>
</tr>
<tr>
<td>7.7 Removal of aberrant deposits and organelles by autophagy:</td>
<td>116</td>
</tr>
<tr>
<td>implications for liver injury associated with chronic hepatitis C</td>
<td>116</td>
</tr>
<tr>
<td>7.7.1 Autophagy and lipid metabolism</td>
<td>116</td>
</tr>
<tr>
<td>7.7.2 Mitophagy and HCV persistence</td>
<td>117</td>
</tr>
<tr>
<td>7.8 Conclusions and future directions</td>
<td>118</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>119</td>
</tr>
<tr>
<td>References</td>
<td>119</td>
</tr>
</tbody>
</table>
8 MODULATING AUTOPHAGY TO CURE HUMAN IMMUNODEFICIENCY VIRUS TYPE-1

Stephan A. Spector and Grant R. Campbell

8.1 Introduction 127
8.2 HIV subverts autophagy to promote its own replication 129
8.3 HIV infection inhibits autophagy during permissive infection while induction of autophagy leads to inhibition of HIV 130
8.4 HIV-induced autophagy in bystander CD4+ T cells results in cell death 130
8.5 Modulation of autophagy as a mechanism for HIV-associated neurocognitive impairment 132
8.6 How can autophagy be exploited to control and eradicate HIV? 134
Acknowledgments 137
References 138

9 AUTOPHAGY IN THE INFECTED CELL: INSIGHTS FROM PATHOGENIC BACTERIA

Andrea Sirianni and Sergei Mostowy

9.1 Introduction 143
9.2 Autophagy–bacteria interactions 143
 9.2.1 Salmonella typhimurium 144
 9.2.2 Mycobacterium tuberculosis 145
 9.2.3 Legionella pneumophila 146
 9.2.4 Listeria monocytogenes 147
 9.2.5 Shigella flexneri 149
 9.2.6 Mycobacterium marinum 150
9.3 Conclusions 151
Acknowledgments 151
References 152

10 Rab PROTEINS IN AUTOPHAGY: STREPTOCOCCUS MODEL

Takashi Nozawa and Ichiro Nakagawa

10.1 Introduction 159
10.2 Rab GTPase 160
10.3 Rab GTPases in starvation-induced autophagy 160
10.4 Rab localization in autophagy during Streptococcus infection 161
10.5 Involvement of Rab7 in the initial formation of GcAV 163
10.6 Requirement of Rab23 for GcAV formation 163
10.7 Facilitation by Rab9A of GcAV enlargement and lysosomal fusion 164
10.8 Conclusion and perspective 165
References 167

11 HELICOBACTER PYLORI INFECTION CONTROL BY AUTOPHAGY

Laura K. Greenfield, Frances Dang, and Nicola L. Jones

11.1 Helicobacter pylori 171
11.2 H. pylori and evasion of host immune responses 176
11.3 Autophagy 178
11.4 Acute H. pylori infection: induction of autophagy in gastric epithelial cells 180
CONTENTS

11.5 Chronic *H. pylori* infection: suppression of autophagy in gastric epithelial cells 184
11.6 *H. pylori* induction of autophagy in immune cells 185
11.7 Host genetics affecting autophagic clearance of *H. pylori* 185
11.8 *H. pylori* disrupted autophagy and gastric cancer 186
11.9 *H. pylori* therapy: is autophagy a contender? 187
11.10 Concluding remarks 188
Acknowledgments 189
References 189

12 INTERACTIONS BETWEEN *SALMONELLA* AND THE AUTOPHAGY SYSTEM 201
Teresa L.M. Thurston and David W. Holden
12.1 Introduction 201
12.2 *Salmonella*’s life within the host 201
12.3 *Salmonella*’s survival in a harsh intracellular habitat 202
12.4 Models for studying *Salmonella* infection 203
12.5 Mechanisms of *Salmonella* autophagy 204
 12.5.1 *Salmonella* is targeted for antibacterial autophagy 204
 12.5.2 Antibacterial autophagy induction 205
 12.5.3 Eat-me signals for antibacterial autophagy 206
 12.5.4 Autophagy receptors provide cargo specificity 208
12.6 Autophagy of *Salmonella* in vivo 209
12.7 Bacterial countermeasures 210
 12.7.1 Could *Salmonella* counteract autophagy? 210
 12.7.2 Potential autophagy avoidance mechanisms 210
 12.7.3 SseL deubiquitinates autophagy-targeted protein aggregates 210
 12.7.4 Does *Salmonella* inhibit selective antibacterial autophagy? 211
12.8 Perspectives 211
References 213

13 HOST FACTORS THAT RECRUIT AUTOPHAGY AS DEFENSE AGAINST *TOXOPLASMA GONDII* 219
Carlos S. Subauste
13.1 Introduction 219
13.2 CD40, autophagy and lysosomal degradation of *T. gondii* 220
13.3 Events downstream of CD40 involved in the stimulation of autophagy 222
13.4 Relevance of autophagy during *in vivo* infection with *T. gondii* 224
13.5 IFN-γ and ATG5 in *T. gondii* infection 224
13.6 *T. gondii* manipulates host cell signaling to inhibit targeting by LC3+ structures and to maintain the nonfusogenic nature of the parasitophorous vacuole 227
13.7 Autophagy machinery within *T. gondii* 228
13.8 Conclusion 229
Acknowledgments 229
References 229
14 MYCOBACTERIUM TUBERCULOSIS AND THE AUTOPHAGIC PATHWAY

Gabriela María Recalde and María Isabel Colombo

14.1 Mycobacterium tuberculosis, a pathogen that resides in a self-tailored compartment to avoid killing by the host cell 233
14.2 The ESX-1 secretion system 235
14.3 Mycobacterium marinum, a close relative that escapes and forms actin tails in the cytoplasm 235
14.4 Mycobacterium actively modulates autophagy 236
14.5 Mycobacterium tuberculosis, a pathogen also able to escape toward the cytoplasm 239
14.6 Concluding remarks 240
References 241

15 AUTOPHAGY ENHANCES THE EFFICACY OF BCG VACCINE

Arshad Khan, Christopher R. Singh, Emily Soudani, Pearl Bakhru, Sankaralingam Saikolappan, Jeffrey D. Cirillo, N. Tony Eissa, Subramanian Dhandayuthapani and Chinnaswamy Jagannath

15.1 Introduction 246
15.2 Induction of autophagy through mTOR enhances antigen presentation via the MHC-II pathway in macrophages and dendritic cells 247
15.2.1 Rapamycin-induced autophagy enhances antigen presentation in APCs 248
15.2.2 Rapamycin and Torin1-induced autophagy enhances both antigen presentation and IL-1β secretion from BCG infected APCs 248
15.3 Intracellular mechanisms of autophagic routing of particulate BCG vaccine and secreted Ag85B into autophagosomes and enhanced MHC-II mediated antigen presentation 251
15.3.1 Overexpression of secreted Ag85B in BCG vaccine leads to aggresome formation in the cytosol of APCs 251
15.3.2 Overexpressed Ag85B from BCG vaccine forms aggresomes, which enhance antigen presentation through autophagy 251
15.3.3 Discussion: in vitro studies on autophagy and antigen presentation 253
15.4 Rapamycin activation of dendritic cells enhances efficacy of DC-BCG vaccine 255
15.4.1 Discussion 256
15.5 Rapamycin coadministration with BCG vaccine in mice enhances CD4 and CD8 T cell mediated protection against tuberculosis 256
15.5.1 Discussion 262
15.6 Conclusions 262
Acknowledgments 263
References 263
CONTENTS

16 AUTOPHAGY’S CONTRIBUTION TO INNATE AND ADAPTIVE IMMUNITY: AN OVERVIEW 267
Christina Bell, Michel Desjardins, Pierre Thibault and Kerstin Radtke

16.1 Autophagy: different routes to the same goal? 267
16.2 Xenophagy: it is a dog-eat-dog world 269
16.3 Autophagy and Toll-like receptors: a mutual turn-on 269
16.4 Autophagy and antigen presentation: a cry for help to clear pathogenic invaders 270
16.5 Autophagy and inflammasomes: Mutual regulation for an effective immune response 273
16.6 Cross-talk between autophagy and cytokines 273
Acknowledgments 275
References 275

17 AUTOPHAGY IN IMMUNE RESPONSES TO VIRUSES 279
Christophe Viret and Mathias Faure

17.1 Innate immunity against viruses 279
17.2 Autophagy in antiviral innate immunity 281
 17.2.1 Virus sensing for autophagy induction 281
 17.2.2 Role of autophagy in xenophagy of viruses 282
 17.2.3 Role of autophagy in antiviral innate immunity signaling 283
17.3 Autophagy manipulation by viruses to resist innate immunity 285
 17.3.1 Autophagy manipulation by viruses to prevent IFN-I synthesis 285
 17.3.2 Viruses subvert autophagy to interfere with inflammatory responses 286
 17.3.3 Autophagy and cell death during virus infection 287
17.4 Autophagy in antiviral adaptive immunity 287
 17.4.1 Promotion of adaptive immune responses to viral infection by autophagy 287
 17.4.2 MHC class II-restricted presentation of viral epitopes 288
 17.4.3 MHC class I-restricted presentation of viral epitopes 290
 17.4.4 Autophagy and cross-presentation 292
17.5 Autophagy manipulation by viruses to escape adaptive immunity 294
 17.5.1 MHC class II antigen presentation pathway 294
 17.5.2 MHC class I antigen presentation pathway 295
 17.5.3 Autophagy and antigen-presenting cell function 295
17.6 Concluding remarks 296
Acknowledgments 296
References 297

18 PROCESSING AND MHC PRESENTATION OF ANTIGENS AFTER AUTOPHAGY-ASSISTED ENDOCYTOSIS, EXOCYTOSIS, AND CYTOPLASM DEGRADATION 303
Christian Münz

18.1 Introduction 303
18.2 Substrate recognition by macroautophagy 305
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 Antigen processing for MHC class II presentation by macroautophagy</td>
<td>307</td>
</tr>
<tr>
<td>18.4 A role of macroautophagy in MHC class I antigen presentation</td>
<td>308</td>
</tr>
<tr>
<td>18.5 Antigen release by autophagy-assisted exocytosis</td>
<td>309</td>
</tr>
<tr>
<td>18.6 Autophagy-assisted phagocytosis</td>
<td>310</td>
</tr>
<tr>
<td>18.7 Conclusions and outlook</td>
<td>312</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>312</td>
</tr>
<tr>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td>Index</td>
<td>317</td>
</tr>
</tbody>
</table>