CONTENTS

7 Metabolites in Safety Testing

 Ragu Ramanathan and Dil M. Ramanathan

8 A Comparison of FDA, EMA, ANVISA, and Others on Bioanalysis in Support of Bioequivalence/ Bioavailability Studies

 Bradley Nash

9 A Comparison of the Guidance of FDA, OECD, EPA, and Others on Good Laboratory Practice

 J. Kirk Smith

10 Current Understanding of Bioanalysis Data Management and Trend of Regulations on Data Management

 Zhongping (John) Lin, Michael Moyes, Jianing Zeng, Joe Rajarao, and Michael Hayes

11 Regulatory Inspection Trends and Findings of Bioanalytical Laboratories

 Frank Chou, Martin Yue, and Leon Lachman

PART III BEST PRACTICE IN LC-MS BIOANALYSIS

12 Assessment of Whole Blood Stability and Blood/Plasma Distribution of Drugs

 Iain Love, Graeme T. Smith, and Howard M. Hill

13 Best Practice in Biological Sample Collection, Processing, and Storage for LC-MS in Bioanalysis of Drugs

 Maria Pawula, Glen Hawthorne, Graeme T. Smith, and Howard M. Hill

14 Best Practices in Biological Sample Preparation for LC-MS Bioanalysis

 Guowen Liu and Anne-Françoise Aubry

15 Best Practice in Liquid Chromatography for LC-MS Bioanalysis

 Steve Unger and Naidong Weng

16 Best Practice in Mass Spectrometry for LC-MS

 Richard B. van Breemen and Elizabeth M. Martinez

17 Use of Internal Standards in LC-MS Bioanalysis

 Aimin Tan and Kayode Awaiye

18 System Suitability in LC-MS Bioanalysis

 Chad Briscoe

19 Derivatization in LC-MS Bioanalysis

 Tomofumi Santa

20 Evaluation and Elimination of Matrix Effects in LC-MS Bioanalysis

 Bernd A. Brunner and Christopher A. James

21 Evaluation and Elimination of Carryover and/or Contamination in LC-MS Bioanalysis

 Howard M. Hill and Graeme T. Smith
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Automation in LC-MS Bioanalysis</td>
<td>Joseph A. Tweed</td>
</tr>
<tr>
<td>23</td>
<td>LC-MS Bioanalysis of Drugs in Tissue Samples</td>
<td>Hong Gao, Stacy Hs, and John Williams</td>
</tr>
<tr>
<td>24</td>
<td>LC-MS Bioanalysis of Drugs in Urine</td>
<td>Allena J. Ji</td>
</tr>
<tr>
<td>25</td>
<td>LC-MS Bioanalysis of Unbound Drugs in Plasma and Serum</td>
<td>Theo de Boer and Jaap Wieling</td>
</tr>
<tr>
<td>26</td>
<td>LC-MS Bioanalysis of Drugs in Bile</td>
<td>Hong Gao and John Williams</td>
</tr>
<tr>
<td>27</td>
<td>LC-MS Bioanalysis of Intracellular Drugs</td>
<td>Fagen Zhang and Michael J. Bartels</td>
</tr>
<tr>
<td>28</td>
<td>LC-MS Bioanalysis of Endogenous Compounds as Biomarkers</td>
<td>Wenyin Jian, Richard Idom, and Naidong Weng</td>
</tr>
<tr>
<td>29</td>
<td>LC-MS Bioanalysis of Drugs in Hemolyzed and Lipemic Samples</td>
<td>Min Meng, Spencer Carter, and Patrick Bennett</td>
</tr>
<tr>
<td>30</td>
<td>Best Practices in LC-MS Method Development and Validation for Dried Blood Spots</td>
<td>Jie Zhang, Tapan K. Majumdar, Jimmy Flarakos, and Francis L.S. Tse</td>
</tr>
<tr>
<td>31</td>
<td>LC-MS Method Development Strategies for Enhancing Mass Spectrometric Detection</td>
<td>Yuan-Qing Xia and Jeffrey D. Miller</td>
</tr>
<tr>
<td>32</td>
<td>LC-MS Bioanalysis-Related Statistics</td>
<td>David Hoffman</td>
</tr>
<tr>
<td>33</td>
<td>Simultaneous LC-MS Quantitation and Metabolite Identification in Drug Metabolism and Pharmacokinetics</td>
<td>Patrick J. Rudewicz</td>
</tr>
<tr>
<td>34</td>
<td>LC-MS Bioanalysis of Ester Prodrugs and Other Esterase Labile Molecules</td>
<td>Wenkai Li, Yuanlin Fu, Jimmy Flarakos, and Daci Zhang</td>
</tr>
<tr>
<td>35</td>
<td>LC-MS Bioanalysis of Acyl Glucuronides</td>
<td>Jin Zhou, Feng (Frank) Li, and Jeffrey X. Duggan</td>
</tr>
<tr>
<td>36</td>
<td>Regulated Bioassay of N-Oxide Metabolites Using LC-MS: Dealing with Potential Instability Issues</td>
<td>Tapan K. Majumdar</td>
</tr>
</tbody>
</table>
CONTENTS

37 Hydrolysis of Phase II Conjugates for LC-MS Bioanalysis of Total Parent Drugs
Laixin Wang, Weiwei Yuan, Scott Reuschel, and Min Meng 471

38 LC-MS Bioanalysis of Reactive Compounds
Hermes Licea-Perez, Christopher A. Evans, and Yi (Eric) Yang 479

39 LC-MS Bioanalysis of Photosensitive and Oxidatively Labile Compounds
Corey M. Ohnacht 491

40 LC-MS Bioanalysis of Interconvertible Compounds
Nico van de Merbel 505

41 LC-MS Bioanalysis of Chiral Compounds
Naidong Weng 519

42 LC-MS Bioanalysis of Peptides and Polypeptides
Hongyan Li and Christopher A. James 535

43 LC-MS Bioanalysis of Nucleosides
Laixin Wang and Min Meng 551

44 LC-MS Bioanalysis of Nucleotides
Sabine Cohen, Marie-Claude Gagnieu, Isabelle Lefebvre, and Jérôme Guitton 559

45 LC-MS Bioanalysis of Steroids
Jie Zhang and Frank Z. Stanczyk 573

46 LC-MS Bioanalysis of Liposomal Drugs and Lipids
Troy Voelker and Roger Demers 591

47 LC-MS Bioanalysis of Proteins
Ziping Yang, Wenkai Li, Harold T. Smith, and Francis L.S. Tse 601

48 LC-MS Bioanalysis of Oligonucleotides
Michael G. Bartlett, Buyun Chen, and A. Cary McGinnis 607

49 LC-MS Bioanalysis of Platinum Drugs
Troy Voelker and Min Meng 629

50 Microflow LC-MS for Quantitative Analysis of Drugs in Support of Microsampling
Heather Skor and Sadasivan V. Rahavendran 639

51 Quantification of Endogenous Analytes in Biofluids by a Combination of LC-MS and Construction of Calibration Curves Using Stable-Isotopes as Surrogate Analytes with True Biological Control Matrices
Wenlin Li, Lucinda Cohen, and Erick Kindt 649

Appendix 1 Body and Organ Weights and Physiological Parameters in Laboratory Animals and Humans 659
CONTENTS

Appendix 2 Anticoagulants Commonly Used in Blood Sample Collection 661
Appendix 3 Solvents and Reagents Commonly Used in LC-MS Bioanalysis 663
Appendix 4 Glossary of Terms Used in LC-MS Bioanalysis 665
INDEX 673