Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xix</td>
</tr>
</tbody>
</table>

1. Elements of Sustainability and Bioremediation 1

Ackmez Mudhoo and Romeela Mohee

The Sustainability, Remediation and Biotechnology Link 1
- Features and Concepts in Sustainability 2
- Sustainability and Scale of Environmental Pollution Clean-up 3
- Biotechnology and Bioremediation 4
- Environmental Pollution and Biotreatment Variants 5

Main Features of Bioremediation 7

- Advantages of Bioremediation 7
- Disadvantages of Bioremediation 8
- General Approach to Bioremediation 9

In Situ Bioremediation Technologies 10

- Bioventing 10
- Biostimulation 11
- Air-sparging 12
- Natural Attenuation 13
- Landfarming 14
- Phytoremediation 15

Ex Situ Bioremediation 16

- Composting 16
- Controlled Solid Phase Biotreatment 20
- Slurry Phase Bioremediation 21

Anaerobic Digestion Processes 21

- Principles of Anaerobic Digestion Processes 22
- Pollutant Remediation by Anaerobic Processes 23
2. Natural Attenuation

R. Ryan Dupont

The Natural Attenuation and Sustainability Link

Features and Concepts in Natural Attenuation

Site Assessment, Mass Assimilation and the Need for Active Remedies

Contaminant Transformation Under Natural Site Conditions

Monitoring for Natural Attenuation

Source Area Evaluation

Source Area and Plume Connection

Source Area Delineation and Source Mass Analysis

Source Area Mass Flux Analysis

Source Area Lifetime Estimates

Quantitative Analysis of Natural Attenuation Data

Plume Stability Determination

Thiessen Polygon Method

Contaminant Degradation Rate Estimates

Plume Response to Source Removal

Decision Making Regarding Source Area Treatment

Concluding Note

References
3. Anaerobic Digestion Processes 103
 Steven I. Safferman, Dana M. Kirk,
 Louis L. Faivor and Wei Wu-Haan
 Anaerobic Digestion Fundamentals 103
 Microbial Populations 104
 Operational Parameters 105
 Nutrients 105
 Inhibition 106
 Applications 108
 Renewable Energy 108
 Waste Management 109
 Nuisance Avoidance 109
 Nutrient Management Plan 110
 Frequency of Use 110
 Project Development 110
 Feedstock Characterization 111
 Estimating Energy Potential 114
 Biochemical Methane Potential 115
 Pilot-Scale Testing 115
 Design 117
 Safety 123
 Anaerobic Digestion Economics 124
 Anaerobic Digestion Monitoring 125
 Conclusions & Future Developments 128
 References 132

4. Biosurfactants: Synthesis, Properties and Applications in Environmental Bioremediation 137
 Ramkrishna Sen, Ackmez Mudhoo
 and Gunaseelan, D.
 Introduction 138
 Enzymatic Syntheses of Surfactants 138
 Enzymatic Synthesis of Monoglycerides 139
 Enzymatic Synthesis of Sugar Esters 140
 Enzymatic Synthesis of Fatty Amides 142
 Enzymatic Synthesis of Alkyl Glycosides 145
 Enzymatic Synthesis of Lysophospholipids 146
 Microbial Synthesis of Biosurfactants 148
 Surfactin 149
 Sophorolipids 150
 Rhamnolipids 151
5. Phytoremediation: An Efficient Approach for Bioremediation of Organic and Metallic Ions Pollutants

Divya Gupta, Lalit Kumar Singh, Ashish Deep Gupta and Vikash Babu

Introduction 213
Types of Phytotechnology 215
Phytoextraction 215
Rhizofiltration 217
Phytovolatilization 218
Phytodegradation/Phytotransformation 218
Phytostabilization 219

Strategies Used in Phytoremediation

of Inorganic Pollutant 219
Accumulation of Heavy Metals in Plants 219
Chelate Enhanced Phytoextraction and Translocation 222
Transport 223
Phytotransformation 223

Strategies Used in Phytoremediation

of Organic Pollutant 225
Direct Phytoremediation 225
Indirect Phytoremediation/Rhizoremediation 232
Concluding Note 236
References 236

6. Bioleaching 241
Leo G. Leduc and Garry D. Ferroni
Introduction 241
Mechanisms of Bioleaching 242
Strategies of Bioleaching 244
Microorganisms of Bioleaching 245
Factors Affecting Bioleaching 248
Temperature 249
pH 251
Nutrients 252
Toxic Substances 253
Environmental Considerations 255
Conclusions 256
Acknowledgements 256
References 257

7. Biosorption of Heavy Metals – New Perspectives 261
Teresa Tavares and Hugo Figueiredo
Biosorption of Heavy Metals – New Perspectives 262
Materials and Processes 263
Downstream Reuse: Biosorbents based Catalysis 270
A Particular Ion: Biosorption 272
of Hexavalent Chromium 272
The Role of Supports: Usage of Zeolites 274
for the Treatment of CrVI Solutions
Inside the Industrial Circuit: Cr as Catalyst 275
for Oxidation Reactions
References 279

Smita Raghuvanshi, Subhajit Majumder
and Suresh Gupta
Introduction 286
Abatement Techniques 287
Removal of VOCs from Waste Air 287
Removal of Heavy Metals from Wastewater 289
Biological Based Methods for the Removal of VOCs
and Heavy Metals 291
9. Modeling and Implementation of Sustainable Remediation Based on Bioventing

Hillel Rubin, Eran Rubin and Holger Schüttrumpf

Introduction 318
 Basic Features of Sustainable Remediation Based on Bioventing 321
Understanding the Environment Domain - Possible Difficulties in Using Bioventing 327
 The Difference Between Layouts of Bioventing and SVE Systems 327
Cases of Bioventing as a Byproduct of Air Sparging 328
Difficulties in Using Bioventing 329
Bioventing Implementation 330
 Theoretical Background 330
 Bioventing Degradation Implementation Model 334
Sustainable Bioventing Practice 338
 General Comments 338
Preliminary Information and Basic Know-How 339
Initial Evaluation of Bioventing Effectiveness 341
Detailed Evaluation of Bioventing Effectiveness 342
Pilot Studies 350
Evaluating the Design of Bioventing Systems 352
Evaluating the Operation and Monitoring Plans 361
Concluding Note 363
References 365

10. Bioremediation of Xenobiotics 367
Komal Saxena, Gajendra Kumar Aseri, Ashish Deep Gupta and Vikash Babu

Introduction 367
Types of Bioremediation 370
In-Situ Bioremediation 370
In situ Bioremediation Comprises of 370
Ex-Situ Bioremediation 372
Methods for the Bioremediation of Xenobiotic Compounds 372
Biosparging 372
Bioaugmentation 372
Phytoremediation 373
Biostimulations 373
Photosynthesis 373
Phytodegradation (Phytotransformation) 374
Biopiling 374
Composting 374
Bioreactors Used for the Bioremediation of Xenobiotic Compound 375
Slurry Bioreactors 375
Bioreactors Having Aerobic Condition 375
Coupled with Anaerobic Conditions 378
Two-Phase Partitioning Bioreactors (TPPBs) 379
Metabolic Pathways for Bioremediation of Xenobiotics 380
Aerobic Pathways 380
Anaerobic Pathways 384
Co-Metabolic Pathway 385
Bioremediation of Various Classes of Xenobiotic Compounds 386
Explosives 386
Biremediation of BTEX 388
Biremediation of Pesticides 389
Biremediation of Organochloro Pesticides 391
Biremediation of Weedicides and Herbicides 392
Biremediation of Dyes 393
The Decolorisation of the Dyes is Assayed by Beer- Lambert's Law 394
Biremediation of Waste Water Containing Synthetic Detergents 395
Biremediation of Tannery Waste Water 396
Concluding Note 397
References 397

Index 399