Accrued interest, 46–49
American swaptions, 250
Annuities, formulas for duration and convexity, 38–40
Asset duration, 333–334

Banking crises in developing countries, 3–4
Barbell/ladder/bullet portfolios:
 - key rate durations, 274, 303
 - principal component durations/model, 304, 308
 - stochastic process risk, 87
Bermudan swaptions, 250
Black and Cox model (default-prone securities), 352, 353–356
Black-Scholes-Merton option-pricing model, 334
Bond index replication, 126
Bond options, hedging with (a general Gaussian framework), 180–217
durations of European options on coupon bonds and callable coupon bonds, 203–217
callable coupon bond, 215–216
call option on a coupon bond, 208–214
coupon bond options using Vasicek and extended Vasicek models, 207–217
generalization to extended Vasicek model, 216–217
put option on a coupon bond, 214–215
zero-coupon bond, 207–208
duration vectors of bond options, 186–196
 - bounds, 191–193
 - call options, lower bound on duration vector of, 191–192
 - estimation, using implied volatilities, 195–196
 - estimation, using non-Gaussian term structure models, 202–203
 - put options, upper bound on duration vector of, 192–193
duration vectors of callable bonds, 196–202
general Gaussian framework for pricing zero-coupon bond options, 181–186
numerical simulations, 193–195
bond volatility, 194, 200–201
exercise price, 193–194, 200
interest rate, 194–195, 201–202
Bond price(s):
 - and spot rates and forward rates, 45–55
 - under continuous compounding, 16–20
 - yield relationship with tangent line (graph), 25
Bootstrapping method, 45, 55–60
Bullet/barbell/ladder portfolios:
 - key rate durations, 274, 303
 - principal component durations/model, 304, 308
 - stochastic process risk, 87
Callable zero, 36
Call options, 191–192, 208–214
Call risk, interaction of interest rate with, 14–15
Caps/caplets, pricing/hedging with, 239–244
comparative analysis, floors/collars, 254–263
duration vector (using LIBOR market model):
cap, 243–244
caplet, 242–243
pricing, 239–242
Collars, interest rate:
comparative analysis (caps/floors), 254–263
duration vector, 248
embedded, pricing of floating-rate bonds with, 248–249
pricing and hedging with (LIBOR market model), 247–248
Collateralized mortgage obligations (CMOs), 312
Collin-Dufresne and Goldstein model, 353, 370, 371–376
Comparative cost advantage, 223
Complex securities, principal component risk measures, 324–325
Continuous compounding, bond prices under, 16–20
Conversion factor (T-bond futures), 160–161
Convexity(ies):
defined, 6, 25–26
interest rate risk models (see
Duration and convexity models)
M-square versus, 76, 90–99
ex-ante returns, 97–98
immunization risk, 98–99
paradox, 92, 93–97
principal component durations and, 300–304
risk and (graph), 100
theta trade-off, 42
Corporate bonds and stocks, 328–331
Coupon effect, 49
Credit risk, interaction of interest rate risk with, 14
Credit spread changes, interest rate changes and, 349–352
Cubic-spline method (McCulloch), 60–67
Day-count basis, 47–48, 221–222
actual/actual, 47
actual/360, 47, 48, 221
actual/365, 221
30/360, 47, 48, 222
360/365, 221
Default-free coupon bonds, European options on, 181
Default-free zero-coupon prices, 44
Default-prone securities, duration models for, 328–376
asset duration, 333–334
corporate bonds and stocks, 328–331
first passage models (duration of default-prone coupon bond), 352–370
Black and Cox model, 352, 353–356
Collin-Dufresne and Goldstein model, 353, 370, 371–376
Longstaff and Schwartz model, 352, 356–370
Merton framework (pricing and duration of a default-prone zero-coupon bond), 334–352
bond and stock durations versus financial and operating leverage, 345–348
Geske’s extension, 352
Nawalkha-Shimko et al. models, 336–340, 370
numerical analysis, 340–352
relationship between asset
duration, bond duration, and
stock duration, 341–345
relationship between credit spread
changes and interest rate
changes, 349–352
Vasicek model (pricing and duration
of a default-free zero-coupon
bond), 331–333
Discount function, 45–46
basis functions of, 66
cubic polynomial spline of, 61
Duration:
defined, 85
M-absolute versus, 84–90
models for default-prone securities
(see Default-prone securities,
duration models for)
Duration and convexity models, 5–7,
16–43, 44
bond price under continuous
compounding, 16–20
bond price/yield relationship with
tangent line (graph), 25
definitions/examples:
convexity, 6, 25–26
duration, 6, 20–24
fallacies, 27–36, 41–42
applications to callable bonds, 31–32
explanation, 29–31
numerical examples, 31
simple counter examples, 28–30
formulas, 36–40
for annuities and perpetuities, 38–40
for regular bonds, 37–38
graphs, 32–36
instantaneous return versus yield,
34, 35, 36
log price versus yield, 33
traditional (price versus yield), 25
overview, 5–7
Duration vector(s):
of calls/puts, 188
of Eurodollar futures, 171–174
hedging strategies (see Bond options,
hedging with (a general Gaussian
framework))
of T-bond futures, 166–170, 174–179
Duration vector models, 8–9, 111–142
advantage shared with key rate
duration model, 294
applications, 126
active trading strategies, 126
bond index replication, 126
duration gap analysis of financial
institutions, 126
hedging strategies, 126–128
closed-form formulas for duration
measures, 128–132
derivations:
duration vector models, 112–117
generalized duration vector
models, 137–141
deviations of actual values from
target values, 125
generalized, 111–112, 132–141
hedging strategies based on, 126–128
overview, 8–9
Eigenvectors/eigenvalues, and principal
components, 297, 311, 319–324
Error-weighing schemes, 72–74
Eurodollar futures, 144–156
duration vector of, 171–174
futures prices and futures interest
rates, 145–148
hedging with, 148–156
European options, 180, 181
European swaptions, 250
Ex-ante returns, 97–98
Expectations hypothesis, term
structure, 53–54
return-to-maturity, 54
unbiased, 54
yield-to-maturity, 54
Factor analysis, 326
Fannie Mae/TBA FNMA pass-through,
127, 317–320, 329
Financial institutions:
applications of interest rate models, 12–13
duration gap analysis of, 126
highly leveraged (such as Fannie Mae and Freddie Mac), 127
Financial intermediary, interest rate swaps, 222–223
First passage models (duration of default-prone coupon bond), 352–370
Black and Cox model, 352, 353–356
Collin-Dufresne and Goldstein model, 353, 370, 371–376
Longstaff and Schwartz model, 352, 356–370
Fixed leg, 218
Floating leg, 218
Floating rate bonds with embedded collars, pricing of, 248–249
Floors/flowlets, pricing/hedging with, comparative analysis, caps/collars, duration vector (using LIBOR market model), floor, floorlet, pricing, 245
Foreign exchange risk, interaction of interest rate risk with, 15
Forward rate(s):
instantaneous: defined, 51 measuring shifts in term structure of, 80–84 shock in term structure of, 122 key rate shift and its effect on curve, 282 spot rates versus, 49–52
Forward rate agreements (FRAs):
defined, 234–235 duration vector of, 235–237
Futures, 143–179
Eurodollar, 144–156, 171–174
Treasury bill, 144, 156–158
Treasury bond, 144, 158–170, 174–169
Treasury note, 144, 170–171
GARCH models, 326
Gaussian term structure models, 180. See also Bond options, hedging with (a general Gaussian framework)
Generalized duration vector models. See also Duration vector models derivation of, 137–141 described, 9, 111–112, 132–137
Geske model, 352
Hedging:
with bond options, 180–217
durations of European options on coupon bonds and callable coupon bonds, 203–217
duration vectors of bond options, 186–196
duration vectors of callable bonds, 196–202
general Gaussian framework, 181–186
numerical simulations, 193–195
with interest rate futures, 143–179
Eurodollar, 144–156, 171–174
Treasury bill, 144, 156–158
Treasury bond, 144, 158–170, 174–169
Treasury note, 144, 170–171
ratio interpretation, 183
strategies based on duration vector model, 126–128
with swaps and interest rate options, 218–263
forward rate agreements (FRAs), 234–237
interest rate options, pricing/hedging with, 237–249
interest rate swaps, 218–234
interest rate swaptions, 249–254
numerical analysis, comparative
static analysis, 254–263
Hypotheses, term structure, 52–55
expectation hypothesis, 53–54
return-to-maturity, 54
unbiased, 54
yield-to-maturity, 54
liquidity premium hypothesis, 53, 54
market segmentation hypothesis, 53, 54
preferred habitat hypothesis, 53, 54–55

Immunization risk, 98–99
Implied volatility, 181, 195–196
Index replication, 188
Instantaneous forward rates:
defined, 51
measuring shifts in term structure of, 80–84
Instantaneous return versus yield,
graphing, 34
for callable zero, 36
for different initial yields, 35
Interest only/principal only (IO/PO), 312
Interest rate caps/caplets, pricing/
hedging with, 239–244
comparative analysis, floors/collars, 254–263
duration vector (using LIBOR
market model):
cap, 243–244
caplet, 242–243
pricing, 239–242
Interest rate changes, relationship
between credit spread changes, 349–352
Interest rate floors/floorlets, pricing/
hedging with, 245–247
comparative analysis, caps/collars, 254–263
duration vector (using LIBOR
market model), 245–246
floor, 246–247
floorlet, 245–246
pricing, 245
Interest rate futures, 143–179
Eurodollar, 144–156, 171–174
Treasury bill, 144, 156–158
Treasury bond, 144, 158–170, 174–169
Treasury note, 144, 170–171
Interest rate risk:
importance of managing, 1
interaction with other risks, 14–15
typical example (commercial bank), 3
Interest rate risk modeling, 1–15
applications to financial institutions, 12–13
overviews of five types of models, 4–5
(see also specific model type)
duration and convexity models, 4, 5–7
duration vector models, 4–5, 8–9
key rate duration models, 5, 9–10
M-absolute/M-square models, 4, 7–8
principal component duration
models, 5, 10–12
Interest rate swaps, 218–234
comparative cost advantage, 223
day-count conventions, 221–222
defined, 218
duration vector of, 230–234
financial intermediary, 222–223
introduction/overview, 219–223
motivations for, 223–227
notional amount, total, 218
pricing and hedging with, 227–234
principal amount (notional), 218
Interest rate swaptions, 249–254
American, 250
Bermudan, 250
duration vectors of payer and receiver
swaptions, 253–254
European, 250
Interest rate swaptions (Continued)
payer, Black model for pricing, 251–252
receiver, Black model for pricing, 252–253
Interest rate term structure. See Term structure of interest rates (TSIR)
International Swaps and Derivatives Association (ISDA), 222
Intertemporal capital asset pricing model (ICAPM), 41–42
Iraq war talk, 314

Key rate duration model, 9–10, 264–293, 294
comparison to duration vector models, 264–265, 294
computing key rate risk measures, 286–293
for complex securities, using finite difference approximations, 286–287
maturity mismatch, using interpolations and mapping techniques, 288–293
key rate changes, 265–267
key rate convexities, 269–273
key rate durations, 268–269
limitations, 281–286
choice of key rates, 281–282
loss of efficiency, 285–286
shape of key rate shifts, 282–285
overview, 9–10
risk measurement and management, 273–279
term structure shift (graph), 268
value at risk (VaR) analysis and, 279–281
Knot points, 61, 63

Ladder/barbell/bullet portfolios:
key rate durations, 274, 303
principal component durations/model, 304, 308
stochastic process risk (barbell versus bullet), 87
Lehman Brothers MBS Index, 313, 314, 318
Lehman U.S. government bond index, 13
Leverage, financial/operating; bond and stock durations versus, 345–348
LIBOR market models, 218–263
forward rate agreements (FRAs), 234–237
duration vector of, 235–237
interest rate options, pricing/hedging with, 237–249
caps, 239–244
collars, 247–248
floors, 245
pricing of floating-rate bonds with embedded collars, 248–249
interest rate swaps, 218–234
day-count conventions, 221–222
defined, 218
duration vector of, 230–234
financial intermediary, 222–223
pricing/hedging with, 227–234
principal amount, 218
interest rate swaptions, 249–254
American, 250
Bermudan, 250
European, 250
payer/receiver, Black’s model for pricing, 251–253
payer/receiver, duration vectors of, 253–254
numerical analysis, comparative static analysis, 254–263
Liquidity premium hypothesis, term structure, 53, 54
London Interbank Bid Rate (LIBID), 179
London Interbank Offer Rate (LIBOR): definition, 144
Eurodollar deposits, 144
Longstaff and Schwartz duration model, 352, 356–370
duration of a default-prone bond, 363–366
numerical analysis, 366–370
M-absolute and M-square risk measures, 7–8, 76–110, 111
closed-form solutions, 99–103
derivation, 103–107
limitation, 111
M-absolute model:
deviations of actual values from target values, 90
versus duration, 84–90
immunization approach, 86
measuring term structure shifts, 77–84
instantaneous forward rates, 80–84
zero-coupon yields, 77–80
M-square model:
versus convexity, 90–99
ex-ante returns, convexity and, 97–98
immunization risk, convexity and, 98–99
paradox, convexity, 92, 93–97
two-term Taylor-series-expansion approach to, 107–110
overview, 7–8
versus traditional duration model, 111
Market segmentation hypothesis, term structure, 53, 54
Maturity mismatches:
key rate risk measures, using interpolations and mapping techniques, 288–293
principal component risk measures, 325–326
McCulloch cubic-spline method, 45, 60–67
Merton framework (pricing and duration of a default-prone zero-coupon bond), 334–352
bond and stock durations versus financial and operating leverage, 345–348
Geske's extension, 352
Nawalkha-Shimko et al. models, 336–340, 370
numerical analysis, 340–352
relationship between asset duration, bond duration, and stock duration, 341–345
relationship between credit spread changes and interest rate changes, 349–352
Mortgage-backed securities (MBS):
applications of principal component analysis to, 312–319
first stage, estimation of principal components (PCA), 315–316
second stage, estimating of empirical PC durations, 316–319
TBA (to-be-announced), 317–320
default probability, low, 328
M-square models. See M-absolute and M-square risk measures
M-vector models, 141, 142. See also M-absolute and M-square risk measures
Nawalkha-Shimko et al. models, 336–340, 370
Nelson and Siegel model, 45, 68–72
Nonsystematic risks, 132
Notional amounts, 2, 144, 218
OLS regression, 67, 72
Option(s):
on coupon bonds (duration vector model not easily extended to), 181
embedded in T-bond futures, 163
Merton pricing framework, 329 (see Call options and Put options)
Penalty functions, 74
Perpetuities, formulas for duration and convexity, 38–40
Preferred habitat hypothesis, term structure, 53, 54–55
Principal component duration models, 10–12, 294–327
application to mortgage securities, 312–319
Principal component duration models
(Continued)
estimating empirical PC durations
(second stage), 316–319
estimating principal components
(first stage), 315–316
application to Treasury bond markets, 295
computing principal component risk
measures, 324–326
complex securities, 324–325
maturity mismatches, 325–326
eigenvectors/eigenvalues, 297, 311,
319–324
limitations, 308–312
static factors arising from dynamic
volatility structure, 308–310
using zero-coupon rate changes or
forward rate changes, 310–312
overview, 10–12
principal component coefficients, 296
principal component durations and
convexities, 300–304
risk measurement and management
with, 304–306
term structure movements and, 295–300
VaR analysis using, 306–308
Put options:
on a coupon bond, duration of
(Vasicek model), 214–215
upper bound on duration vector of, 192–193
Replicating portfolio interpretation, 183
Return-to-maturity expectations hypothesis, 54
Risk(s), interaction of interest rate risk
with others, 14–15
Savings and loans (S&Ls) bank crisis, 3
Short positions, 86, 92
Slope shifts, 7, 76
Speculation, 13
Spot rates versus forward rates, 49–52
Stochastic process risk, 87
Stock(s):
default-prone securities, 328–331
durations:
and asset and bond durations,
341–345
versus financial and operating
leverage, 345–348
STRIPS, 44
Swaps, interest rate, 218–234
comparative cost advantage, 223
day-count conventions, 221–222
defined, 218
duration vector of, 230–234
financial intermediary, 222–223
introduction/overview, 219–223
motivations for, 223–227
notional amount, total, 218
pricing and hedging with, 227–234
principal amount (notional), 218
swap rate, 218
Swaptions, interest rate, 249–254
American, 250
Bermudan, 250
duration vectors of payer and receiver
swaptions, 253–254
European, 250
payer, Black model for pricing,
251–252
receiver, Black model for pricing,
252–253
Taylor series expansion, 93, 107–110,
111, 270
T-bills. See Treasury bills (T-bills)
T-bonds. See Treasury bonds
(T-bonds)
Term structure of interest rates (TSIR),
44–75, 77–84, 118, 294, 295–300
basic shapes, 53
bond prices, spot rates, and forward
rates, 45–55
accrued interest, 46–49
discount function, 45–46
spot rates versus forward rates, 49–52
yield to maturity, 49
duration vector models and, 118
estimation methods:
 advanced, 72–74
 basic, 55–72
 bootstrapping, 45, 55–60
 cubic-spline, 60–67
 Nelson and Siegel model, 68–72
hypotheses, 52–55
 expectations hypothesis, 53–54
 liquidity premium hypothesis, 53, 54
 market segmentation hypothesis, 53, 54
 preferred habitat hypothesis, 53, 54–55
of instantaneous forward rates, 80–84, 118
movements, to principal components, 294, 295–300
shifts, measuring, 77–84
 instantaneous forward rates, 80–84
 zero-coupon yields, 77–80
term structure movie, 81
zero-coupon yields, 77–80, 118
T-notes. See Treasury notes (T-notes)
Trading strategies, active, 126
Treasury bills (T-bills), 144, 156–158
futures contracts:
 denomination/exchange/open interest, 144
 prices and futures interest rates, 157–158
 pricing, 156–157
Treasury bonds (T-bonds):
 futures, 144, 158–170, 174–179
 cheapest-to-deliver bond, 161–162
conversion factor, 160–161
denomination/exchange/open interest, 144
duration vector of, 166–170, 174–179
options embedded in, 163
pricing, 163–166
principal component analysis and, 295
yield, 10-year (graph), 314
Treasury notes (T-notes), 144, 170–171
Unbiased expectations hypothesis, 54
U.S. Treasury bills/bonds/notes. See Treasury bills (T-bills); Treasury bonds (T-bonds); Treasury notes (T-notes)
Value at risk (VaR) analysis:
 key rate durations, 279–281
 principal component model (PCA), 306–308
Vasicek model, 207–217, 331–334, 337
 bond price, 337
 default-free zero-coupon bond, 331–334
 asset duration, 333–334
 pricing, 331–333
 duration, 207–217
 of callable coupon bond, 215–216
 of call option on coupon bond, 208–214
 of put option on coupon bond, 214–215
 of zero-coupon bond, 207–208
extended, 216–217
Volatility:
 forward rates versus zero-coupon rates, 51
 implied, 181, 195–196
 static factors arising from dynamic volatility structure, 308–310
Wild card play, 163

Yield-to-maturity:
 defined, 49
 expectations hypothesis, 54

Zero-coupon:
 bonds, duration (Vasicek model),
 207–208

 rate changes, principal component
 analysis using, 310–312
 yields, measuring shifts in term
 structure of, 77–80