Contents

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>xx xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xx v</td>
</tr>
</tbody>
</table>

CHAPTER 1

Interest Rate Risk Modeling: An Overview

- Duration and Convexity Models .. 5
- M-Absolute and M-Square Models 7
- Duration Vector Models ... 8
- Key Rate Duration Models ... 9
- Principal Component Duration Models 10
- Applications to Financial Institutions 12
- Interaction with Other Risks .. 14
- Notes .. 15

CHAPTER 2

Bond Price, Duration, and Convexity

- Bond Price under Continuous Compounding 16
- Duration .. 20
- Convexity ... 25
- Common Fallacies Concerning Duration and Convexity 27
 - Simple Counter Examples .. 28
 - Explanation of the Fallacies ... 29
 - Applications to Callable Bonds 31
 - A New Graph .. 32
- Formulas for Duration and Convexity 36
 - Duration and Convexity Formulas for Regular Bonds 37
 - Duration and Convexity Formulas for Annuities and Perpetuities 38
CONTENTS

Appendix 2.1: Other Fallacies Concerning Duration and Convexity 41

Notes 42

CHAPTER 3

Estimation of the Term Structure of Interest Rates 44

- Bond Prices, Spot Rates, and Forward Rates 45
 - The Discount Function 45
 - Accrued Interest 46
 - Yield to Maturity 49
 - Spot Rates versus Forward Rates 49
 - Term Structure Hypotheses 52

Term Structure Estimation: The Basic Methods 55

- Bootstrapping Method 55
- Cubic-Spline Method 60
- Nelson and Siegel Model 68

Advance Methods in Term Structure Estimation 72

Notes 74

CHAPTER 4

M-Absolute and M-Square Risk Measures 76

- Measuring Term Structure Shifts 77
 - Shifts in the Term Structure of Zero-Coupon Yields 77
 - Shifts in Term Structure of Instantaneous Forward Rates 80

M-Absolute versus Duration 84

M-Square versus Convexity 90

- Resolving the Convexity/M-Square Paradox 93
- Convexity, M-Square, and Ex-Ante Returns 97
- Convexity, M-Square, and Immunization Risk 98

Closed-Form Solutions for M-Square and M-Absolute 99

Appendix 4.1: Derivation of the M-Absolute and M-Square Models 103

Appendix 4.2: Two-Term Taylor-Series-Expansion Approach to the M-Square Model 107

Notes 110

CHAPTER 5

Duration Vector Models 111

- The Duration Vector Model 112
 - Hedging Strategies Based on the Duration Vector Model 126
 - Closed-Form Formulas for Duration Measures 128
Generalized Duration Vector Models 132
Appendix 5.1: Derivation of the Generalized Duration Vector Models 138
Notes 142

CHAPTER 6
Hedging with Interest-Rate Futures 143

Eurodollar Futures 144
 Futures Prices and Futures Interest Rates 145
 Hedging with Eurodollar Futures 148
Treasury Bill Futures 156
 Treasury Bill Pricing 156
 Futures Prices and Futures Interest Rates 157
Treasury Bond Futures 158
 Conversion Factor 160
 Cheapest-to-Deliver Bond 161
 Options Embedded in T-Bond Futures 163
 Treasury Bond Futures Pricing 163
 Duration Vector of T-Bond Futures 166
Treasury Note Futures 170
Appendix 6.1: The Duration Vector of the Eurodollar Futures 171
Appendix 6.2: The Duration Vector of the T-Bond Futures 174
Notes 179

CHAPTER 7
Hedging with Bond Options: A General Gaussian Framework 180

A General Gaussian Framework for Pricing Zero-Coupon Bond Options 181
The Duration Vectors of Bond Options 186
 Bounds on the Duration Vector of Bond Options 191
 Numerical Simulations 193
 Estimation of the Duration Vectors Using Implied Volatilities 195
The Duration Vector of Callable Bonds 196
 Numerical Simulations 199
Estimation of Duration Vectors Using Non-Gaussian Term Structure Models 202
The Durations of European Options on Coupon Bonds and Callable Coupon Bonds 203
CHAPTER 8

Hedging with Swaps and Interest Rate Options Using the LIBOR Market Model 218

A Simple Introduction to Interest Rate Swaps 219
Day-Count Conventions 221
The Financial Intermediary 222
Motivations for Interest Rate Swaps 223
Pricing and Hedging with Interest Rate Swaps 227
Duration Vector of an Interest Rate Swap 230
Forward Rate Agreements 234
The Duration Vector of an FRA 235
Pricing and Hedging with Caps, Floors, and Collars 237
Using the LIBOR Market Model 239
Pricing and Hedging with Interest Rate Caps 239
Pricing and Hedging with Interest Rate Floors 245
Pricing and Hedging with Interest Rate Collars 247
Pricing of Floating-Rate Bonds with Embedded Collars 248
Interest Rate Swaptions 249
The Black Model for Pricing a Payer Swaption 251
The Black Model for Pricing a Receiver Swaption 252
Duration Vectors of Payer and Receiver Swaptions 253
Numerical Analysis 254
Notes 263

CHAPTER 9

Key Rate Durations with VaR Analysis 264

Key Rate Changes 265
Key Rate Durations and Convexities 268
Key Rate Durations 268
Key Rate Convexities 269
Risk Measurement and Management 273
Key Rate Durations and Value at Risk Analysis 279
Limitations of the Key Rate Model 281
The Choice of Key Rates 281
The Shape of Key Rate Shifts 282
Loss of Efficiency 285
Appendix 9.1: Computing Key Rate Risk Measures for Complex Securities and under Maturity Mismatches 286
 Effective Key Rate Risk Measures for Complex Securities: Using Finite Difference Approximations 286
 Maturity Mismatch: Using Interpolations and Mapping Techniques 288
Notes 293

CHAPTER 10
Principal Component Model with VaR Analysis 294
 From Term Structure Movements to Principal Components 295
 Principal Component Durations and Convexities 300
 Risk Measurement and Management with the Principal Component Model 304
 VaR Analysis Using the Principal Component Model 306
 Limitations of the Principal Component Model 308
 Static Factors Arising from a Dynamic Volatility Structure 308
 Principal Component Analysis: Using Zero-Coupon Rate Changes or Forward Rate Changes 310
 Applications to Mortgage Securities 312
 First Stage: Estimation of Principal Components 315
 Second Stage: Estimation of Empirical PC Durations 316
Appendix 10.1: Eigenvectors, Eigenvalues, and Principal Components 319
Appendix 10.2: Computing Principal Component Risk Measures for Complex Securities and under Maturity Mismatches 324
Notes 326

CHAPTER 11
Duration Models for Default-Prone Securities 328
 Pricing and Duration of a Default-Free Zero-Coupon Bond under the Vasicek Model 331
 The Asset Duration 333
 Pricing and Duration of a Default-Prone Zero-Coupon Bond: The Merton Framework 334
 Nawalkha-Shimko et al. Models 336
 Numerical Analysis 340
 Pricing and Duration of a Default-Prone Coupon Bond: The First Passage Models 352