Index

acetone process, 192, 193
active constraint control, see control
adipic acid process, 192, 193
alkylation process
 auto-refrigerated, 192, 193
e external cooling, 192, 193
ammonia process, 192, 193, 195, 275, 279
approach, 181, 182, 233
 heuristics, 15, 183
 mathematical, 15, 184
 mixed, 185
 optimization, 185
Aspen HYSYS, 125, 138, 206, 217, 298, 459
Aspen Dynamics, 289, 326, 333
Aspen Plus, 289, 298, 321, 323
Aspentech membrane extension, 206
augmented price-driven method, 425
autonomous controllers, 389, 394
benzene chlorination process, 192, 193
biodiesel process, 4, 192, 193, 293, 468
bioethanol process, 192, 193
block relative gain (BRG), 80
bottleneck, 123, 126, 142, 172, 240, 245
branch and bound method, 56
brute-force optimization, see optimization
butane isomerization process, 192, 193
butyl acetate process, 192, 193
carbon capture process, 37, 192, 193
centralized control, see control
centrifugal separator, 345
classification, 181, 182, 187
cold shot cooling, 277
combinatorial optimization, see optimization
component material balances, 215, 307
constraint control, see control
constraints, 46, 62, 209, 212, 306
control
 active constraint, 122
 centralized, 187
 constraint, 349
 co-ordinated, 419, 421
decentralized, 187
distributed, 388, 392, 408, 418
fresh feed flow, 266
hierarchy, 234, 235
inventory, 161, 213, 326
model predictive (MPC), 339, 430
multiloop, 350
multivariable, 350
optimal, 142
PID, 5, 206, 233, 246, 259, 332, 375
regulatory, 5, 121, 125, 133, 232, 245, 346, 374, 379
self-optimizing, 46, 185, 186, 197, 239, 373
supervisory, 5, 128, 138, 232, 246, 370, 375, 379
total feed flow, 266
unit-level, 207
total feed flow, 266
total feed flow, 266
control degrees of freedom (CDOF), 21, 23, 24, 209, 304
control valve sizing, 467
controlled variables (CVs), 5, 46, 121, 212, 213, 231, 234, 306, 307, 337, 347, 349, 370, 443, 446
controller tuning, 13, 111, 209, 217, 289, 305, 308, 332, 357, 375, 422, 430, 467, 471
coordinated control, see control crystallization, 341
cumene process, 192, 193
cyclone separator, 344
decentralized control, see control decomposition
 horizontal, 187
 vertical, 187
degrees of freedom (DOFs), 21, 45, 62, 87, 234, 235, 370, 377
design trade-offs, 98
deviation from the production target (DPT), 257, 265, 269, 270, 315
dimethyl ether process, 192, 193
dissipativity, 389, 395
distributed control, see control disturbance
 propagation, 157, 183
 rejection, 14, 81, 143, 148, 175, 247, 399
 scenario, 14
dynamic disturbance sensitivity (DDS), 257, 263, 269, 270, 315
dynamic initialization, 468
dynamic input-output pairing matrix (DIOPM), 85, 90
dynamic model/modeling, 15, 45, 343, 364, 399, 430
dynamic relative gain array (DRGA), 78
dynamic simulation, see simulation
eco-efficiency, 445
economic operation, 123, 231
effective relative gain array (ERGA), 79
etherification process, 192, 193
ethyl acetate process, 321
ethyl benzene process, 192, 193
ethylene glycol plant, 453

exact local method, 51, 243
exergy, 445

fatty-acid methyl ester (FAME), 293
flowsheet-oriented method, 28, 35, 37
forced-circulation evaporator, 61, 433
fresh feed flow control, see control
fresh feed management, 102
fruit concentrate process, 192, 193
furnace off-gas system, 368, 377
gain matrix, 76, 79, 81, 460

Hankel interaction index array (HIIA), 85
heuristics, 13, 98, 116, 183, 206, 213, 294, 301
heuristics approach, see approach
H-infinity (H∞) norm, 398, 403
HYSYS, see Aspen HYSYS

industrial off-gas system, 192, 193, 362, 370
input-output stability, 395, 402
integrated framework, 184, 187, 197, 206, 294, 301
interaction analysis, 94, 388
interaction measure, 82
integrated gasification combined cycle plant, 192, 194
inventory, 33, 152
inventory control, see control

large-scale optimization, see optimization
leakage, 363, 371
local methods, 50
loop configuration, see pairing selection
Luyben's heuristic procedure, 184, 196

manipulators, see manipulated variables
mathematical approach, see approach
mathematical tools, 183
MATLAB, 132, 371, 375, 378, 433
measurement selection, 231, 241
measurement systems, 14
membrane separator, 204, 259
methanol process, 192, 194
methodologies (for PWC design), 15, 181, 182, 187, 195, 203
methoxy-methyl-heptane process, 192, 194
methyl acetate process, 192, 194
methyl amines process, 192, 194
minimum singular value (MSV), 50
mixed approach, see approach
mixed structure, see structure
model predictive control (MPC), see control
mono-isopropyl amine process, 192, 194
multiloop control, see control
multi-stage crystallizers, 341
multivariable control, see control
network approach, 389
Niederlinski index (NI), 77, 182
nonlinear relative gain array, 92
null space method, 53, 243
numerical errors, 469
optimal control, see control
optimal design, 323, 325
optimal operation, 3, 45, 234, 238, 347, 371, 377
optimization, 45, 49, 239, 348, 371, 378, 422, 423, 427
approach, see approach
brute-force, 48, 243
combinatorial, 57
large-scale, 419, 422
techniques, 183
overall absolute component accumulation, 256, 261, 263
pairing selection, 73, 83, 87, 233, 235, 442
para-xylene process, 192, 194, 340
participation matrix (PM), 84
performance assessment, 253, 268
performance measure, 195, 254, 255, 256, 259, 266, 269, 314
PID control/controller, see control
plant production rate, 257
plantwide connective stability, 402
plantwide control (PWC) applications, 182, 189
prediction-driven principle, 428
price decomposition principle, 423
process
bottleneck, see bottleneck
constraints, see constraints
settling time, 256, 257, 261, 262, 269, 314
variation, 147, 149
product quality, 117, 147, 150, 212, 257, 262, 306, 328
propagation path, 169
pulp mill process, 192, 194, 430
reaction
alkali-catalyzed transesterification, 294
esterification, 321
reactive distillation (RD), 319, 321
reactor
adiabatic, 275, 282
continuous stirred tank (CSTR), 31, 125, 131, 299
cooled, 279, 282, 286
plug-flow (PFR), 31, 204
reactor separator recycle, 5
recycle, 97, 99, 115, 204, 209, 215, 289, 308
module, 461
redundancy, 38
regulatory layer, see control
relative disturbance gain array (RDGA), 81
relative exergy array (REA), 444, 445, 452, 456
relative gain array (RGA), 75, 87, 88, 92, 182, 212, 248, 331, 350, 443
relative order matrix, 91
resource allocation matrix, 426
restraining number, 28, 30
RGA analysis, see relative gain array
roaster off-gas system, 364, 370
Index

self-consistency, 183, 213
self-optimizing control, see control
set-point changes, 268
simulation
dynamic, 99, 138, 206, 217, 218, 289, 301, 308, 326, 375, 380, 459
steady-state, 206, 209, 301, 306, 326, 459
simulators, 459
simulator version, 460
smelter off-gas system, see industrial off-gas system
snowball effect, 102, 143, 172, 221
steady-state
economics, 234
model, 15, 238, 431
operating cost, 255, 259
simulation, see simulation
structure, 181, 187
mixed, 187
structured singular value (SSV), 83, 88
styrene monomer process, 192, 194, 195, 461
sulfur dioxide (SO$_2$), 361
supervisory layer, see control
supply rates, 395
Tennessee Eastman (TE) process, 182, 189, 194
tert-amyl methyl ether process, 192, 194
time scale separation, 231
throughput handle, see throughput manipulator
throughput manipulator (TPM), 114, 116, 122, 142, 183, 210, 234, 244, 305, 336
throughput maximization, 123, 126, 183
toluene hydrodealkylation (HDA) process, 114, 182, 189, 193, 204, 259, 466, 467
total feed flow control, see control
total variation (TV), 258, 265, 269
triglyceride, 293, 298
two-port systems, 390, 392
uncertainty, 14, 87
unit-level control, see control
variability propagation, 148, 162
vinyl acetate monomer process, 192, 194
vinyl chloride monomer process, 192, 194
VMGSim, 442, 448, 450, 453