Contents

Preface ix

1 The Emerging Core and Metropolitan Networks 1
Andrea Di Giglio, Angel Ferreiro and Marco Schiano

1.1 Introduction 1
 1.1.1 Chapter’s Scope and Objectives 1

1.2 General Characteristics of Transport Networks 1
 1.2.1 Circuit- and Packet-Based Network Paradigms 2
 1.2.2 Network Layering 3
 1.2.3 Data Plane, Control Plane, Management Plane 4
 1.2.4 Users’ Applications and Network Services 4
 1.2.5 Resilience 5
 1.2.6 Quality of Service 7
 1.2.7 Traffic Engineering 8
 1.2.8 Virtual Private Networks 10
 1.2.9 Packet Transport Technologies 11

1.3 Future Networks Challenges 12
 1.3.1 Network Evolution Drivers 12
 1.3.2 Characteristics of Applications and Related Traffic 12
 1.3.3 Network Architectural Requirements 17
 1.3.4 Data Plane, Control Plane, and Management Plane Requirements 24

1.4 New Transport Networks Architectures 31
 1.4.1 Metropolitan Area Network 33
 1.4.2 Core Network 36
 1.4.3 Metro and Core Network (Ultra-long-term Scenario) 38

1.5 Transport Networks Economics 39
 1.5.1 Capital Expenditure Models 39
 1.5.2 Operational Expenditure Models 42
 1.5.3 New Business Opportunities 44

Acronyms 52

References 54
4.3 Receiver 202
 4.3.1 Overview of Common Receiver Components 202

4.4 The Optical Fiber 212
 4.4.1 Short Introduction to the Waveguide Principle 213
 4.4.2 Description of Optical Single-Mode Fibers 216
 4.4.3 Special Fiber Types 222

4.5 Optical Amplifiers 223
 4.5.1 Introduction to Optical Amplifiers 225
 4.5.2 Principle of Operation 229
 4.5.3 Gain Saturation 231
 4.5.4 Noise 234
 4.5.5 Gain Dynamics 235
 4.5.6 Optical Fiber and Semiconductor Optical Amplifiers 236
 4.5.7 Raman Amplifiers 239
 4.5.8 Lasers and Amplifiers 243

4.6 Optical Filters and Multiplexers 245
 4.6.1 Introduction 245
 4.6.2 Optical (De-)Multiplexing Devices 246
 4.6.3 Overall Assessment of (De-)Multiplexing Techniques 256
 4.6.4 Optical Filters 257
 4.6.5 Tunable Filters 260

References 263

5 Assessing Physical Layer Degradations 267

Andrew Lord, Marcello Potenza, Marco Forzati and Erwan Pincemin

5.1 Introduction and Scope 267

5.2 Optical Power Budgets, Part I 268
 5.2.1 Optical Signal-to-Noise Ratio and Q Factor 268
 5.2.2 Noise 273
 5.2.3 Performance Parameters. Light Path Evaluation Rules 290
 5.2.4 Transmission Impairments and Enhancements: Simple Power Budgets 295

5.3 System Bandwidth 334
 5.3.1 System Bandwidth, Signal Distortion, Intersymbol Interference 334
 5.3.2 Fiber-Optical Nonlinear Effects 346
 5.3.3 Optical Transients 356

5.4 Comments on Budgets for Nonlinear Effects and Optical Transients 362
 5.4.1 Compensators/Equalizers 363
 5.4.2 CD Equalization 363
 5.4.3 PMD Equalization 364
 5.4.4 Simultaneous Presence of Distortions, Electronic Equalization, and Cumulative Filtering 364
 5.4.5 General Features of Different Modulation Formats 368

5.5 Semianalytical Models for Penalties 370

5.6 Translucent or Hybrid Networks 370
 5.6.1 Design Rules for Hybrid Networks 371