Contents

List of Contributors XIII

1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy 1
 Marc Vrakking

 1.1 Introduction 1
 1.2 The Emergence of Attosecond Science 2
 1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses 3
 1.2.2 Characterization of Attosecond Laser Pulses 4
 1.2.3 Experimental Challenges in Attosecond Science 5
 1.2.4 Attosecond Science as a Driver for Technological Developments 6
 1.3 Applications of Attosecond Laser Pulses 7
 1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers 9
 1.5 The Interplay between Experiment and Theory 11
 1.6 Conclusion and Outlook 12
 References 13

Part One Laser Techniques 17

2 Ultrafast Laser Oscillators and Amplifiers 19
 Uwe Morgner

 2.1 Introduction 19
 2.2 Mode-Locking and Few-Cycle Pulse Generation 20
 2.3 High-Energy Oscillators 23
 2.4 Laser Amplifiers 25
 References 29

3 Ultrashort Pulse Characterization 37
 Adam S. Wyatt

 3.1 Motivation: Why Ultrafast Metrology? 37
 3.1.1 Ultrafast Science: High-Speed Photography in the Extreme 38
 3.2 Formal Description of Ultrashort Pulses 42
 3.2.1 Sampling Theorem 45
 3.2.2 Chronocyclic Representation of Ultrashort Pulses 46
 3.2.3 Space-Time Coupling 46
 3.2.4 Accuracy, Precision and Consistency 49
Contents

3.3 Linear Filter Analysis 51
3.4 Ultrafast Metrology in the Visible to Infrared 53
3.4.1 Temporal Correlations 53
3.4.2 Spectrography 55
3.4.3 Sonography 60
3.4.4 Tomography 60
3.4.5 Interferometry 63
3.5 Ultrafast Metrology in the Extreme Ultraviolet 73
3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy 75
3.5.2 XUV Interferometry 81
3.6 Summary 85
References 85

4 Carrier Envelope Phase Stabilization 95
Vincent Crozatier
4.1 Introduction 95
4.2 CEP Fundamentals 96
4.2.1 Time Domain Representation 96
4.2.2 Frequency Domain Representation 97
4.3 Stabilization Loop Fundamentals 99
4.3.1 The Noisy Source 99
4.3.2 Noise Detection 100
4.3.3 Open-Loop Noise Analysis 101
4.3.4 Feedback 102
4.3.5 Closed-Loop Noise Analysis 103
4.4 CEP in Oscillators 104
4.4.1 Oscillators Peculiarities 105
4.4.2 CEP Detection 107
4.4.3 Actuation 110
4.5 CEP in Amplifiers 115
4.5.1 Amplifier Peculiarities 116
4.5.2 CEP Detection 119
4.5.3 Actuation 123
4.5.4 Feedback Results 124
4.5.5 Parametric Amplification 126
4.6 Conclusion 129
References 129

5 Towards Tabletop X-Ray Lasers 135
Philippe Zeitoun, Eduardo Oliva, Thi Thu Thuy Le, Stéphane Sebban, Marta Fajardo, David Ros, and Pedro Velarde
5.1 Context and Objectives 135
5.2 Choice of Plasma-Based Soft X-Ray Amplifier 137
5.2.1 Basic Aspects of High Harmonic Amplification 138
5.2.2 Basic Aspects of Plasma Amplifiers 140
Contents

Part One Experimental Methods

5.3 2D Fluid Modeling and 3D Ray Trace 141
5.3.1 ARWEN Code 142
5.3.2 Model to Obtain 2D Maps of Atomic Data 143
5.4 The Bloch–Maxwell Treatment 149
5.5 Stretched Seed Amplification 157
5.6 Conclusion 170
References 171

Part Two Theoretical Methods 177

6 Ionization in Strong Low-Frequency Fields 179
Misha Ivanov
6.1 Preliminaries 179
6.2 Speculative Thoughts 179
6.3 Basic Formalism 181
6.3.1 Hamiltonians and Gauges 181
6.3.2 Formal Solutions 182
6.4 The Strong-Field Approximation 184
6.4.1 The Volkov Propagator and the Classical Connection 185
6.4.2 Transition Amplitudes in the SFA 186
6.5 Strong-Field Ionization: Exponential vs. Power Law 189
6.5.1 The Saddle Point Approximation and the Classical Connection 190
6.6 Semiclassical Picture of High Harmonic Generation 195
6.7 Conclusion 198
References 199

7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane 201
Olga Smirnova and Misha Ivanov
7.1 Introduction 201
7.2 The Simple Man Model of High Harmonic Generation (HHG) 203
7.3 Formal Approach for One-Electron Systems 205
7.4 The Lewenstein Model: Saddle Point Equations for HHG 209
7.5 Analysis of the Complex Trajectories 214
7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane 221
7.6.1 Factorization of the HHG Dipole in the Frequency Domain 222
7.6.2 Factorization of the HHG Dipole in the Time Domain 224
7.7 The Photoelectron Model of HHG: The Improved Simple Man 227
7.8 The Multichannel Model of HHG: Tackling Multielectron Systems 231
7.9 Outlook 238
7.10 Appendix A: Supplementary Derivations 241
7.11 Appendix B: The Saddle Point Method 242
7.11.1 Integrals on the Real Axis 243
7.11.2 Stationary Phase Method 248
7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions 250
Contents

8 **Time-Dependent Schrödinger Equation** 257
Armin Scrinzi
8.1 Atoms and Molecules in Laser Fields 258
8.2 Solving the TDSE 259
8.2.1 Discretization of the TDSE 260
8.2.2 Finite Elements 263
8.2.3 Scaling with Laser Parameters 265
8.3 Time Propagation 266
8.3.1 Runge–Kutta Methods 267
8.3.2 Krylov Subspace Methods 268
8.3.3 Split-Step Methods 269
8.4 Absorption of Outgoing Flux 269
8.4.1 Absorption for a One-Dimensional TDSE 270
8.5 Observables 272
8.5.1 Ionization and Excitation 272
8.5.2 Harmonic Response 274
8.5.3 Photoelectron Spectra 275
8.6 Two-Electron Systems 278
8.6.1 Very Large-Scale Grid-Based Approaches 278
8.6.2 Basis and Pseudospectral Approaches 278
8.7 Few-Electron Systems 282
8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree–Fock 283
8.7.2 Dynamical Multielectron Effects in High Harmonic Generation 285
8.8 Nuclear Motion 287
References 290

9 **Angular Distributions in Molecular Photoionization** 293
Robert R. Lucchese and Danielle Dowek
9.1 Introduction 293
9.2 One-Photon Photoionization in the Molecular Frame 297
9.3 Methods for Computing Cross-Sections 302
9.4 Post-orientation MFPADs 304
9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation 304
9.4.2 MFPADs for Nonlinear Molecules in the Axial Recoil Approximation 306
9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation 308
9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion 309
9.4.5 Electron Frame Photoelectron Angular Distributions 309
9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization 310
9.6 Pre-orientation or Alignment, Impulsive Alignment 314
9.7 Conclusions 315
References 315

Appendix D: Finding Saddle Points for the Lewenstein Model 251
References 253
Contents

Part Three High Harmonic Generation and Attosecond Pulses 321

10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction 323
 Anne L'Huillier

10.1 Early Work, 1987–1993 323
10.2 Three-Step Model, 1993–1994 325
10.3 Trajectories and Phase Matching, 1995–2000 328
10.4 Attosecond Pulses 2001 331
10.5 Conclusion 332

References 335

11 Strong-Field Interactions at Long Wavelengths 339
 Manuel Kremer, Cosmin I. Blaga, Anthony D. DiChiara, Stephen B. Schoun,
 Pierre Agostini, and Louis F. DiMauro

11.1 Theoretical Background 340
11.1.1 Keldysh Picture of Ionization in Strong Fields 340
11.1.2 Classical Perspectives on Postionization Dynamics 341
11.1.3 High-Harmonic Generation 342
11.1.4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp 342
11.1.5 In-situ and RABBITT Technique 344
11.2 Mid-IR Sources and Beamlines at OSU 346
11.2.1 2-µm Source 346
11.2.2 3.6-µm Source 347
11.2.3 OSU Attosecond Beamline 347
11.3 Strong-Field Ionization: The Single-Atom Response 348
11.4 High-Harmonic Generation 350
11.4.1 Harmonic Cutoff and Harmonic Yield 350
11.4.2 Attochirp 352
11.4.3 In-situ Phase Measurement 352
11.4.4 RABBITT Method 355
11.5 Conclusions and Future Perspectives 356

References 356

12 Attosecond Dynamics in Atoms 361
 Giuseppe Sansone, Francesca Calegari, Matteo Lucchini, and Mauro Nisoli

12.1 Introduction 361
12.2 Single-Electron Atom: Hydrogen 362
12.3 Two-Electron Atom: Helium 365
12.3.1 Electronic Wave Packets 366
12.3.2 Autoionization: Fano Profile 371
12.3.3 Two-Photon Double Ionization 373
12.4 Multielectron Systems 380
12.4.1 Neon: Dynamics of Shake-Up States 381
12.4.2 Neon: Delay in Photoemission 384
12.4.3 Argon: Fano Resonance 386
Contents

12.4.4 Krypton: Auger Decay 388
12.4.5 Krypton: Charge Oscillation 390
12.4.6 Xenon: Cascaded Auger Decay 391
References 393

13 Application of Attosecond Pulses to Molecules 395
Franck Lépine
13.1 Attosecond Dynamics in Molecules 395
13.2 State-of-the-Art Experiments Using Attosecond Pulses 397
13.2.1 Ion Spectroscopy 398
13.2.2 Electron Spectroscopy 402
13.2.3 Photo Absorption 404
13.3 Theoretical Work 405
13.3.1 Electron Dynamics in Small Molecules 405
13.3.2 Electron Dynamics in Large Molecules 406
13.4 Perspectives 413
13.4.1 Molecular Alignment and Orientation 413
13.4.2 Electron Delocalization between DNA Group Junction 414
13.4.3 Similar Dynamics in Water and Ice 416
13.4.4 More 416
13.5 Conclusion 416
References 417

14 Attosecond Nanophysics 421
Frederik Süßmann, Sarah L. Stebbings, Sergey Zherebtsov, Soo Hoon Chew,
Mark I. Stockman, Eckart Rühl, Ulf Kleineberg, Thomas Fennel, and
Matthias F. Kling
14.1 Introduction 421
14.2 Attosecond Light-Field Control of Electron Emission and Acceleration
from Nanoparticles 425
14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles 426
14.2.2 Microscopic Analysis of the Electron Emission 429
14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons 433
14.3.1 Basics of Spectral Interferometry 433
14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses 435
14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium
Clusters 437
14.4 Measurements of Plasmonic Fields with Attosecond Time
Resolution 439
14.4.1 Attosecond Nanoplasmonic Streaking 439
14.4.2 The Regimes of APS Spectroscopy 441
14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated
Nanoparticles 442
14.4.4 Attosecond Nanoscope 444
14.4.5 Experimental Implementation of the Attosecond Nanoscope 446
14.5 Nanoplasmonic Field-Enhanced XUV Generation 449
Contents

14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG 450
14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG 452
14.6 Conclusions and Outlook 454
References 455

Part Four Ultra Intense X-Ray Free Electron Laser Experiments 463

15 **Strong-Field Interactions at EUV and X-Ray Wavelengths** 465
Artem Rudenko

15.1 Introduction 465
15.2 Experimental Background 467
15.2.1 What is a “Strong” Field? 467
15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources 469
15.2.3 Detection Systems 471
15.3 Atoms and Molecules under Intense EUV Light 473
15.3.1 Two-Photon Single Ionization of Helium 473
15.3.2 Few-Photon Double Ionization of Helium and Neon 476
15.3.3 Multiple Ionization of Atoms 485
15.3.4 EUV-Induced Fragmentation of Simple Molecules 487
15.4 EUV Pump–EUV Probe Experiments 493
15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses 493
15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules 495
15.4.3 Isomerization Dynamics of Acetylene Cations 498
15.5 Experiments in the X-Ray Domain 499
15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations 500
15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms 506
15.6 Summary and Outlook 510
References 512

16 **Ultraintense X-Ray Interactions at the Linac Coherent Light Source** 529
Linda Young

16.1 Introduction 529
16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers 531
16.1.2 X-Ray Atom Interactions 533
16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses 536
16.2.1 Nonresonant High-Intensity X-Ray Phenomena 537
16.2.2 Resonant High-Intensity X-Ray Phenomena 540
16.3 Ultrafast X-Ray Probes of Dynamics 543
16.4 Characterization of LCLS Pulses 544
16.5 Outlook 546
References 549

17 **Coherent Diffractive Imaging** 557
Willem Boutu, Betrand Carré, and Hamed Merdji

17.1 Introduction 557
17.2 Far-Field Diffraction 559
17.2.1 Optical Point of View 559
17.2.2 Born Approximation 561
17.2.3 Resolution 562
17.2.4 Comments on the Approximations 564
17.3 Source Requirements 565
17.3.1 Coherence 565
17.3.2 Signal-to-Noise Ratio 568
17.3.3 Dose 569
17.3.4 Different XUV Sources Comparison 572
17.4 Solving the Phase Problem 572
17.4.1 Oversampling Method 572
17.4.2 Basics on Iterative Phasing Algorithms 574
17.4.3 Implementations of Phase Retrieval Algorithms 577
17.5 Holography 583
17.5.1 Fourier Transform Holography 583
17.5.2 HERALDO 587
17.6 Conclusions 590
References 592
Index 599