Index

A
ABL gene 148
acetylation 10
acetylcholinesterase (AChE) inhibitors 211
actionable targets, by clinical molecular profiling 157
 actionable mutations in different tumor types 158
 actionable primary resistance mutations, identification 173–175
 actionable secondary resistance mutations
 actionable treatment, strategies for 169–173
 AGC kinases 272–275
 airway hyperresponsiveness (AHR) 255
 ALK gene 26
 ALK translocation partners 73
 allosteric inhibitor 354
 Alzheimer’s disease (AD) 211, 227
 amyloid plaques as biomarker 212–214
 cerebral β-amyloid (Aβ) deposition 212, 213, 220
 – disease risk 212
 – drug candidates failed 212
 – etiology 212
 – quantification of specific proteins 212
 – theranostics 219, 220
 2-amino-5-aryl-3-benzyloxypyridine scaffold 74, 75
 amyloid aggregates 214, 215, 218, 219. See also Alzheimer’s disease (AD)
 amyloid plaques as biomarker in AD 212–214
 – detection 214–218
 – development of amyloid chemical probes 218
 – F-labeled tracer, use for 216, 217
 – medicinal chemistry perspective 215
 – BTA-1 215
 – thioflavin-T (ThT) 215
 – perspectives 220–222
 – PET imaging 214
 – agents 217
 – SAR campaign
 – identified hydroxylated derivative 215, 216
 – trial of benzothiazole amyloid imaging agent 216
 – use of polymeric nanoparticles 218
 – amyloid precursor protein (APP) 213
 – anacertapib 12, 17
 – anaplastic lymphoma kinase (ALK) 72
 – activators 72
 – role in 73
 – angiogenesis 14, 42, 45
 – Kras 42
 – modulators 44
 – promoting factor 23
 – animal models, LRRK2 function 233–234
 – dopamine replacement drugs 233
 – preclinical testing 233
 – dopaminergic neurons 233
 – dopaminergic system 234
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>kinase-dead knock-in mouse 234</td>
</tr>
<tr>
<td>kinase-dead mutation 233</td>
</tr>
<tr>
<td>nonselective LRRK2 kinase inhibitor 233</td>
</tr>
<tr>
<td>pathological phenotypes 234</td>
</tr>
<tr>
<td>antiangiogenic agents 23</td>
</tr>
<tr>
<td>antibacterial agents 8</td>
</tr>
<tr>
<td>antibody–drug conjugates 2</td>
</tr>
<tr>
<td>approach 15</td>
</tr>
<tr>
<td>anticancer drugs 5, 14, 23, 28</td>
</tr>
<tr>
<td>discovery of predictive biomarkers</td>
</tr>
<tr>
<td>anti-inflammation cotreatment 15</td>
</tr>
<tr>
<td>apoptosis 6, 37, 79, 83, 121, 123, 197, 231, 276, 316</td>
</tr>
<tr>
<td>AS1410 122, 124</td>
</tr>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>-- classifying methods 255</td>
</tr>
<tr>
<td>-- clinical study 256</td>
</tr>
<tr>
<td>-- clinical symptoms 255</td>
</tr>
<tr>
<td>-- etiology 255</td>
</tr>
<tr>
<td>-- genetic testing 255, 256</td>
</tr>
<tr>
<td>-- pathophysiology 256</td>
</tr>
<tr>
<td>-- patient categories 255</td>
</tr>
<tr>
<td>ataxia telangiectasia 185</td>
</tr>
<tr>
<td>-- mutated 185</td>
</tr>
<tr>
<td>atherosclerosis 320</td>
</tr>
<tr>
<td>ATM/ATR pathways 123</td>
</tr>
<tr>
<td>ATP-mimetic therapies 34</td>
</tr>
<tr>
<td>automation technology 2</td>
</tr>
<tr>
<td>autoradiography 290</td>
</tr>
<tr>
<td>Avastin 23</td>
</tr>
</tbody>
</table>

b

| bapineuzumab 212, 219, 318 |
| basal-cell carcinomas (BCCs) 102, 113 |
| -- hedgehog 102 |
| -- vismodegib treatment, clinical study 112–114 |
| BCR-ABL fusion oncogene 24, 147 |
| BCR gene 5, 148 |
| bioinformatic analyses, genome sequence 343 |
| biomarkers 8, 212 |
| -- amyloid plaques as the biomarker in AD 212–214 |
| -- angiogenetic 13 |
| -- challenges associated with identifying 23 |
| -- determine/modulate antiangiogenic drug activity |
| -- for agents targeting VEGF axis 43 |
| -- diagnostic 9 |
| -- discovery using cell line models 29, 30 |
| -- drug efficacy 9 |
| -- imaging 289 |
| -- for novel oncology drugs 22 |
| -- pharmacodynamic 9 |
| -- in drug developments 289 |
| -- predictive, for cancer drug therapy 23 |
| -- and targeted therapies 213 |
| -- in targeting patients 9 |
| blood–brain barrier (BBB) 212, 215, 292, 293, 294, 300, 308, 320, 324 |
| BMSG-SH-3 124 |
| bortezomib 354 |
| BRACO-19 compound 123, 124 |
| BRAF gene 27, 148 |
| B-Raf inhibitor 148, 172, 345 |
| BRAF inhibitors 27, 41, 72, 91, 92 |
| B-RAF kinase 345 |
| BRAF (V600)-mutated metastatic melanoma 92 |
| Btk 266 |
| -- BTK gene, mutation 266 |
| -- X-linked agammaglobulinemia 266 |
| -- clinical development 266 |
| -- cytoplasmic protein tyrosine kinase 266 |
| -- expression 266 |
| -- ibrutinib (PCI-32765), an irreversible inhibitor 266 |
| -- clinical trials 266 |
| -- immunosuppressant effect 266 |
| -- important role 266 |

c

| camptothecin 4, 5, 16 |
| cancer |
| -- cancer stem cells 204 |
| -- FDG-PET MIP images 316 |
| -- G-quadruplexes as therapeutic targets in (See quadruplexes) |
| -- identifying actionable targets 147 |
| -- immunotherapy 23 |
| -- multiple genetic changes 183 |
| -- types of driver genome alterations in human 149 |
| cancer cell lines |
| -- challenges/limitations of cell line models 32, 33 |
| -- genomic characteristics 31 |
| -- historical application, in cancer research 28, 29 |
| -- as models of human cancer 31 |
| -- as model system for discovery predictive biomarkers 28 |
| -- properties with primary tumors 32 |
| Cancer Genome Project 30 |
| case studies 194 |
--- APE1 198
- Chk1-DNA repair 197
- DNA ligases 198
- DNA-PK-mTOR 197, 198
- MGMT 199
- MLH1/MSH2 194
- p53-ATM 197
- RAD51 199
- WEE1 198

catalytic carboxylation 301
-- nucleophilic attack with 302
-- palladium-mediated 301
-- rhodium-mediated 302, 303
CDK1 (cyclin-dependent kinase 1) 192
Cdk1/cyclin B complex 198
cell death 51, 121, 186, 189, 201
-- assay 231
CETP inhibitors 12
-- clinical trials 12
Charcot–Marie–Tooth disease 352
chemical genomics 10
Chk1 inhibitor 41
chromosomal aberrations 21
chromosomal translocations 24, 26
chronic myelogenous leukemia (CML) 5,
24, 147
-- BCR-ABL fusion gene, actionable
mutation 148
-- cancer therapeutics, and driver
mutations 150
-- chromosomal translocation 346
-- drugs to target secondary mutations 170
-- FDA-approved and investigational kinase
inhibitors 27
-- genomic alteration 54
-- imatinib-resistant 34, 37
-- resistance to Gleevec 7
-- treatment with ABL tyrosine kinase
inhibitor 24
cisplatin 162, 188, 195, 197, 291
c-Kit 268, 269
-- allergen-induced asthma murine
models 269
-- c-Kit/SCF pathways 269
-- inhibition 269
-- clinical trials 269
-- important role 269
-- inhibitors, multikinase activity 268
-- structure 269
-- investigation 269
-- kinase domain 120
-- mouse studies 269
-- multikinase activity 268
-- stem cell factor (SCF) 268
tyrosine kinase family, member of 268
clinical imaging biomarkers 290
clinical validation 156, 290, 325
-- PET tracer 324
c-myc oncogene 119
c-myc promoter 120, 125
collagen-induced arthritis (CIA) model 259
Committee for Medicinal Products for Human
Use (CHMP) 234
copy number variations (CNVs) 148
CP529414 17
CP-690550. See tofacitinib
CPT drug 16
CRAF inhibitor 92
crizotinib 26, 28, 73, 74
-- ALK abnormalities to 26
-- ALK-derived pharmacological effects 79
-- 2-amino-3-benzyloxy pyridine series, scaffold
for 83
-- autoinhibitory conformation of MET 78
-- bind MET kinase domain 76
-- BioLume Ames assay 80
-- cocrystal structure 76, 79
-- discovery of 74, 76
dose-dependent antitumor efficacy 79
-- human clinical efficacies of 80–83
-- inhibition of MET signaling by 83
-- kinase selectivity of 77, 78
PHA-665752 76, 77
pharmacokinetic parameters of 80
pharmacology 78–80
potently inhibited NPM-ALK
phosphorylation 79
stabilizing interactions to Tyr-1230 residue 78
TKI drugs, cancers develop resistance to 82
CRTH2 receptor antagonist 349
crystallization techniques 4
cyclic peptide cRGD 13
cyclopamine 103
-- as SMO antagonist 102, 103
cycloposine 103
CYP3A4 inhibitor 75
cytokines 45
cytotoxic drug 14
cytotoxicity 14, 17, 122, 197, 199

d
dabrafenib 92
dalcetrapib 12, 17
dasatinib 7, 17
deacetylation 10
demethylation
– of histone lysines/histone arginines 350
and oxidation provided vemurafenib 97
designer 33-mer peptide Anginex 13
deuBiquitination 353, 354
dicarboxypropyl)ureidopentanedioic acid (DUPA) 14, 15
DNA “bar code” 3
DNA damage 41, 183
– double-strand breaks 185
induced nuclear RAD51 foci 205
major DNA damage response proteins 184
repair proteins and typical lesions repaired for 185
response 184, 185
DNA damage response (DDR) 183
– pathways 183, 204
DNA encoded library technology 3
DNA-mediated toxicity 117
DNA methylation 9, 10
DNA modifications 10
DNA repair 185
– base excision repair (BER) 184
direct repair 184
homologous recombination (HR) 185
mismatch repair 184
nonhomologous end joining (NHEJ) 185
nucleotide excision repair (NER) 184
proteins 188
dopamine replacement therapy 228
doxorubicin 14, 17, 162
drug delivery systems 4
– designing 12, 13
drug design 11, 12
drug differentiation 11
drug discovery 1, 211
– Gleevec 5
drug–drug interactions 15, 16, 75, 237
– potential 109
drug efficacy 11
druggable genome 343
drug-likeness 3
drug resistance 22, 37, 38, 40, 72
– mechanisms and markers, for targeted agents 35, 36
mutations 345
rational combination approaches 37
second-generation therapies 37
through activation of alternative pathways 34
transporters 310
drugs design 1, 11, 189
– computer-assisted 344
hydrophobic core designing 14
structure-based 3
drugs targeting kinases 344–347
drugs targeting phosphatases 347, 348
drug–target networks 343
drug-target superfamilies 353, 354
dual ALK/MET kinase inhibitor 26
dual erbB1 and erbB2 tyrosine kinase inhibitor (Tykerb) 9
e4E-BP protein 231
– genetic studies, Drosophila 231
hLRRK2 overexpression 231
impact of LRRK2 kinase inhibitors 232
phosphorylation 231
EGFR 267, 268
– activation, EGFR in vitro 268
– pharmacological effects 268
– EGF expression elevation 267
EGFR immunoreactivity elevation 267
ErbB receptors 267
– expression 267
– erythoblastic leukemia viral oncogene homolog, (ErbB) family 267
kinase inhibitors 22
normal human airway epithelial (NHBE) cells 268
recent investigations 268
small-molecule ErbB inhibitors, cancer treatment 267
– clinical trials 267
– dual EGFR/ErbB2 inhibitors (lapatinib) 267
– erlotinib 267
– selectively targeting EGFR (gefitinib) 267
– structure 268
– in vitro study 268
– asthmatic bronchial mucosa 268
EGFR mutations 26
EML4-ALK fusion gene 73
epigenetic regulation 350–352
epigenetics 9, 10
– modifications 10
epigenomics 1
ERBB2 gene 25
erbB2 receptor 5
ERK 260, 261
– activation 261
inhibitors
– indolizines 260
– naphthyridine-dione 261
– isoforms 260
– ERK1 260
– ERK2 260
MEK1 inhibitors 260
erlotinib 22, 26, 27, 36, 150, 166, 172, 267, 268, 346
– with onartuzumab 26
eritrofobia 347

FLT3-inhibitor 346
fragment-based drug discovery 3
Friedreich’s ataxia 352

galactin-1 inhibitor 13
GDC-0449. See vismodegib
geritinib 22, 27, 35, 71, 150, 171, 267
– resistance 37
gene amplification 37
– ALK fusion 82
BCR-ABL oncogene 34
gene expression signatures 22
genetic aberrations 147
genetic alterations 45
genetic polymorphisms 12
genoce wide association study (GWAS) 8, 279
genomics 11
genomic sequencing 147, 148, 163, 175–177
– high-throughput 166
impact on identification of actionable mutations 149, 151, 154–157
genotype-phenotype relationships 8
GG211 16
Gleevec 2, 7, 16, 24, 29, 120, 269
– for CML patients 7
efficacy 6
molecular targets of 5, 6
Glivec 5
glycogen synthesize kinase-3 (GSK-3) 277, 278
– function 277
GSK3α 277
– important role 277
– GSK3β
– allergic airway inflammation, treatment 278
– chemical inhibition 277
– future studies 278
– important role 277
– knockout mice 278
– mice study 277
– role in asthma patients 278
– role in neurological disease 278
– structure 278

– TGFB1-driven extracellular matrix production 278
Gorlin syndrome 102
GW572016 17

h
HDAC6 inhibitor 352
HDAC6 inhibitors
– in clinical testing 352
HDAC3-selective drug 352
healthcare 1, 16, 217, 260, 267, 275
hedgehog (Hh) pathway 101
– aberrant activation 102
genes 24
inhibitor (See vismodegib)
leading to FDA drug approval 25
potencies and screening pharmacological properties of inhibitors 106
signaling pathway, representation 102
hepatocyte growth factor receptor (HGFR) 71
HER2 amplification 27
Herceptin 2
– estimation of overall survival 25
exceptional efficacy 5
to paclitaxel 25
HER2/HER3-directed therapies 30
HER2 kinase 30
HER2 signaling 25
HGFMET signaling 72
– pathway 72
histone 10, 55
histone deacetylases 351, 352
histone demethylases 350
histone-modifying enzymes 350
host gene–microbe interactions 8
hTERTgene 135
hypoxia 45

i
IGFR signaling network 7
IGF signaling computational analysis 7
IkB kinase (IKK) 275, 276
– composition 275
expression 275
IkB-NF-κB protein complex 275
– activation 275
– nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 275
phosphorylation 275
selective IKKβ inhibitors 275
– asthma treatment 275
– clinical development 276
– development 275
Index

k
kinase inhibitors 9
– FDA-approved and investigational inhibitors 27, 28
future aspects 279
kinase inhibitors, tested in clinical trials 345
kinase mutants, resistant to drug treatments 344
kinase-targeted drug treatments 21. See also oncogene addiction
KINOMEScan technology 346

l
lapatinib 17, 150, 267, 345
late-stage melanoma 256
– diagnostics 256
treatment 256
Lck 263, 264
– Bruton’s tyrosine kinase inhibitor 264
–– PCI-32765 264
– inhibitors 263
–– family 263
– nonselective Lck inhibitors 263, 264
on-target systemic Lck inhibition 263
– consequences 263
– toxicities 263
– protein tyrosine kinase inhibitor 264
–– Dasatinib (Sprycel) 264
– selective Lck inhibitors 263
– challenge 263
– signaling cascade initiation 263
T-cell activation 263
leukocyte tyrosine kinase (LTK) 72
liposomes 13
– dual targeted 13
long-acting beta-2 agonists (LABAs), inhaled 255
LRRK2-associated PD
– biomarker strategies 235
challenge, using imaging biomarkers 235
clear LRRK2-associated biomarker absence 234, 235
clinical studies 234–236
clinical trial, novel LRRK2 inhibitor 236
DATATOP study 235
disease modification, demonstration 234
disease-modifying treatments 234
disease modifying, two-step procedure 234
ethical challenges 235, 236
18F-DOPA, assessing striatal DAT function 235
future prospects 236
imaging study, LRRK2-targeted treatment 235
Index | 371

in vivo protection 238
— medium- to high-throughput screening 242
— inhibitors discovered 242
— mouse PK experiments 243
— in vitro cellular studies, GSK2578215A 243
— MRCT-Genentech-published patent applications 243
— docking models 244
— GNE diaminopyrimidine HTS hit (magenta) 244
— selective lead G7080 (cyan) 244
— docking studies 244
— nonselective kinase inhibitors screening 238
quantitative chemoproteomics method 240
— CZC-25146/CZC-54252 discovery 240
— properties 240
— strategies used to identify 238–246
structural diversity 246
structures 239
TAE684 241
— favorable mouse PK profile 242
— increased total brain penetration 242
— multiple kinases inhibition 242
— properties 241, 242
— in vivo inhibition, LRRK2
autophosphorylation 245
in vivo pharmacokinetic profiles 241
LRRK2 mutatnt 231
— ectopic expression 231
— LRRK2 protein 230
— autophosphorylation
— catalytic activity 230
— demonstration, mass spectrometry 230
— sites as biomarkers, kinase activity 232
— brain-penetrable LRRK2 inhibitors 232
composition 229
dose-dependent dephosphorylation 232
exonic variants 228
genetic association with PD 229
gnotyping studies 228
GTPase activity, ROC domain 230
GTP binding, affects 230
kinase activity 229
— in vitro kinase assay 230
— in vitro studies 229, 230
— kinase activity reduction 231
kinase inhibitors
— cellular potency and selectivity, modification of 231
— CZC-25146 231
— inhibition constants 232
— knockout mouse 230, 231
large genome-wide association studies 228

Index

lengthy clinical trials 235
LRRK2 population 236
multiyear study 235
mutation prevalence rate 236
pathogenic LRRK2 mutation 236
single-agent therapy 235
treatment perspective 234
LRRK2-familial PD 228
vs. sporadic PD 228
LRRK2 function
— animal models (See animal models, LRRK2 function)
biochemical studies 229, 230
cellular studies 230–233
— biomarkers discovery 230
— kinase function
— in vitro monitoring 231
— in vivo monitoring 231
— wild type 233
LRRK2 kinase domain, structural models 237, 238
— homology modeling 237
— inhibition profile-based approach in template selection 237
— kinome phylogenetic tree analysis 237
ROCK1-derived model 238
ROCK1/H-1152 crystal structure 238
ROCK1 kinase inhibitors 238
Roco4 kinase domain crystal structures 238
structural understanding 237
three-dimensional models 237
tyrosine kinase-like (TKL) subfamily 237
LRRK2 kinase inhibitors 240
— ATP-competitive kinase inhibitors 240
— high-throughput kinase profiling 241
— blood-brain barrier 245
broad-spectrum kinase inhibitors 238
— structures 239
— $B_{\text{m}}/P_{\text{n}}$ ratios 246
CNS-targeted kinase programs 246
diaminopyrimidine inhibitors 245
disease-modifying effect 238
extensive PK profiling,
diaminopyrimidines 245
future prospect 246
G7080 245
Genentech’s 2011 patent application 244
GSK2578215A 243
— physicochemical properties 243
— kinase selectivity 243
LRRK2 autophosphorylation inhibition,
Ser1292 245
LRRK2 toxicity 238
LRRK2 inhibitors development 229
LRRK2 PD mutations 230
LRRK2[pSer1292] 232
-- antibodies against of 233
-- overexpression 231
phosphorylation 232
-- as biomarker 232
-- protein structure, confirmed familial PD
mutations and risk factors 228
transgenic mice studies 232
variants 232
-- associated with familial PD 229
LRRK2 small-molecule inhibitors 236, 237
-- ATP-competitive kinase inhibitors 237
cellular studies 237
discovering new medicines 236
druggability 237
LRRK2[G2019S] protein 236
necessary 237
therapeutic strategy 236
-- LRRK2-associated PD treatment 236
-- in vivo experiments 237
lysine demethylases inhibitors 351

m
magnetic resonance imaging (MRI)
techniques 290
malignant melanoma 27
MAP kinase (MAPK) cascade 27
MAPK pathways 7, 9
medicinal chemistry 1, 2, 14
MEK inhibitor 28
memantine 211
metabolomics 1
metagenomics 8
metal binding proteins 3
MET amplification 26
metastatic medulloblastoma 25
methylation 10, 55, 297, 299
MET inhibitor 74
-- N-substituents on the 5-pyrazol-4-yl
group 75
MET TKI inhibitors in cancer
patients 83
midkine (MK) 72
mitogen-activated protein kinases
(MAPK) 256–261
-- inflammatory response, external
triggers 256
Mitogen-activated protein kinase (MAPK)
pathway 257
stress-activated protein kinase 257
-- c-Jun N-terminal kinase (JNK) (See JNK)
-- extracellular regulating kinase (ERK)
(See ERK)
-- p38MAP kinase (p38) (See p38)
MK0859 17
molecular aberration 24
molecular design, evolution 4–6
molecular profiling, identifying secondary/
novel mutations 165
monoclonal antibody 25, 317
-- anti-HER2 receptor 25
phase II clinical study 26
mutations 6, 21, 22
-- BRAF 91
BRCA1/2 189
C1156Y 82
driver/passenger mutations 148
EGFR 72
EGFR T790M 22
G1269A 82
G1202R 82
HSP110 54
IDH 149
KRAS 82
L1196M 82
MEK 37
MET 72, 83
NRAS 37
oncogenic mutations 148
p53 42, 45
PIK3CA 27
PTCH1 24
Rad6 188
Rad18 188
RAS 149
SMO 24
S1206Y 82
T790M
-- gatekeeper 26, 82
-- V600E 96
myeloid lineage 5

n
nanoparticles 2, 13
-- dual targeted 13
liposomal 13
optimization along with target potency, and
efficacy 14
nanotechnology 13
neurite outgrowth cellular assay 231
neurodegenerative diseases 211
nonreceptor protein tyrosine kinases 261–266
-- Bruton’s tyrosine kinase (Btk) (See Btk)
IL-2-inducible Tcell kinase (ITK) (See ITK)
The Janus kinase (JAK) (See JAK)
Lymphocyte-specific protein tyrosine kinase (Lck) (See Lck)
Spleen tyrosine kinase (Syk) (See Syk)
non-small cell lung cancer (NSCLC) 26
 – de novo highly MET-amplified patient 83
 – MET amplification and stromal HGF, role in resistance to 83
mutations affecting various receptor tyrosine kinases 26
mutation spectrum in 30
ROS1 rearrangements 83
Novartis tertiary amine library (TAM) 349
NSCLC. See non-small cell lung cancer (NSCLC)

 o
 onartuzumab 26, 28
oncogene addiction 22, 24. See also predictive biomarkers
 – defined 24
 – role of 27
utility of predictive biomarkers 24

 p
p38 257–259
 – future medicine strategy prospects 259
 – inhibitors 257
 -- catalytic activity inhibition 257
 -- losmapimod 258, 259
 -- ML3403 257
 -- pyridazine 259
 -- SB203580 257, 258
 -- UR-13870 258
 -- urea 259
 -- isoforms 257
 p38α 257
 -- development 257
 -- inhibitors 257
 -- proinflammatory cytokines, synthesis regulation 257
Palau Pharma’s p38 inhibitor 279
pan- and isoenzyme-selective HDAC inhibitors 352
Parkinson’s disease 15
Parkinson’s disease (PD) 15, 227
 – genetic cause 228
 origin 228
 symptoms 227
PARP inhibitors 42, 188
 – case study 188, 189
 clinical development 190–192
 clinical trials 193
 discovery 189, 190
 nicotinamide-derived PARP inhibitors 190
 perspectives 192, 194
 patched homolog 1 (PTCH1) protein 101
 PD. See Parkinson’s disease (PD)
 PD-related neurodegeneration 231
 personalized medicines 1
 – in autoimmune/inflammatory diseases 8
 diagnostic/biomarker-based codiscovery 11
 rapid progress in 15–18
 PF-02341066. See crizotinib
 PGDFR 269, 270
 – asthma, study for 269
 biological effects 269
 family 269
 genetic study 269, 270
 inhibitor 270
 PDGF/PDGF signaling route 269
 PDGF-α promoter polymorphism 270
 P-glycoprotein 109
 PHA-665752 74
 pharmacodynamics (PD) 290
 phenotypic screening 3
 Philadelphia chromosome 5
 phosphatase inhibitors, structure-guided design 348
 Phosphatidylinositol-3 kinases 270–272
 – activation 271
 broad-spectrum inhibitor 271
 – mouse study 271, 272
 – classification 271
 clinical studies 272
 dual PI3K/δ inhibitor 272
 – TG100-115 272
 – function 270, 271
 genetic deletions study 271
 – results 271
 – intracellular signal transducer enzymes, family of 270, 271
 isoforms 271
 -- expression pattern 271
 – pharmacological inhibition study 271
 – results 271
 – PI3Kδ inhibitor 271
 – structure 271
 – PI3Kδ signal transduction pathway 271
 – clinical studies 271
 – selective inhibition, IC87114 271
 – PI3Kγ inhibitor 271
 – AS-604850 272
 – asthma, examined for 272
 – mouse study 272
structure 271
phosphorylation
– MET 74
p53 56
PI3K inhibitors 28
PI3K signaling 7, 27
PKC 272, 273
– advanced PKC inhibitors 273
– 4-amino-3-cyanopyridine 273
– clinical trials 273
– sotrastaurin 273
– staurosporine analogs 273
– challenges 273
isoforms 272
– atypical isoforms 273
– classical isoforms 272
– novel isoforms 273
– serine/threonine kinases family 272
in vitro studies 273
planar scintigraphy 290
pleiotrophin (PTN) 72
PLX4032. See Vemurafenib
poly(ADP-ribose) polymerases 352, 353
polyamides 117
polypharmacy 1, 15
positron emission tomography (PET) 290
– cameras 291
11C/18F-labeled PET tracers, development of 292–294
in cardiology 319, 320
detection of photons 291
imaging
– in clinic, research, and drug development 315
– neuroimaging 317–319
in oncology 315–317
positron-emitting radionuclides
– from cyclotron products/cyclotron products 291
– properties 290
– tracer kinetic modeling for quantification of tracer uptake 320–325
posttranslational modifications 55, 56
predictive biomarkers
– cancer cell lines, as a model system for discovery 28
for cancer drug therapy 23
current challenges in discovering 51, 52
– access to tumor cells, limited during treatment 51–53
– drivers and passengers 53, 54
– epigenetic regulation, and complexity 54, 55
– regulatory posttranslational modifications 55, 56
– discovery for antiangiogenic agents 42, 43
– challenges 43, 44
– on-treatment effects, as a surrogate of drug efficacy 45
– pathway activity, as predictor of drug efficacy 44, 45
– predicting inherent resistance 45
– discovery, in context of treatment combinations 38–42
– combination analysis 38, 39
– Loewe additivity model 39
– gene expression signatures as 47
– diagnostic development: 48, 50
– signature discovery: unsupervised clustering 47–49
– modeling drug resistance to discover 33, 34, 37, 38
– experimental approaches 33
– random mutagenesis screens 34
– rational combinations, include targeted agents with 41
prodrug strategy 14
– advantages 15
ligand-targeted 14
PSMA (prostate-specific membrane antigen)-targeted 14
Protein Data Bank (PDB) 344
protein kinases 256
protein tyrosine phosphatases (PTPs) 347
proteomics 1, 11
PTEN expression 27
purified LRRK2 in vitro 230
– optimized substrate sequence, WWRFYTLRA (Nictide) 230
peptide substrate sequence 230
– iterative optimization 230
q
quadruplexes
– as anticancer targets 123–125
developing superior binding ligands 130–134
fundamentals 117–119
genomic 119, 120
G-quadruplex small molecules 124
– antitumor efficacy 124
– G-quartet, core hydrogen-bonding motif 118
in human telomeres 120–123
informatics studies, location to nonhuman species 119
– overrepresentation 119, 120
– native structures 125–130
--- crystal structure (PDB ID 3QXR) 127
--- mixed parallel/antiparallel topologies 126
--- molecular dynamics-derived structure 129
--- NMR (PDB ID 2O3 M) 127
--- NMR structures determined for a c-myc promoter complex 132
--- selected crystal and NMR structures 128, 129
-- quadruplex approach, advantages in 135
small-molecule structures 130
--- crystal structure, tetrasubstituted
naphthalene diimide compound 131
-- structures of representative quadruplex-binding small molecules 122
quarflaxin 122, 124
quizartinib 346

r
radiolabeling compounds, with 11C 294
-- 11C and basic reactive intermediates, preparations 294, 295
11C methylations 295, 296
-- formation of 11C–C bond 297, 298
-- formation of 11C–X bond 295, 296
-- heteroatom methylation using 296
-- Pd-mediated 297
-- Pictet–Spengler reaction 296
-- Suzuki and Stille cross-coupling 298
-- Wittig synthesis 298
-- 11CO, reactions with 301–303
11CO2, reactions with 299–301
H11 CN, reactions with 303, 304
radiolabeling compounds, with 18F 304
-- aliphatic nucleophilic 18F-fluorination 306–309
aromatic nucleophilic 18F-fluorination 309–313
C–18F bond, formation of 304–306
electrophilic 18F-fluorination 313, 314
18F-Al, Si, B bond, formation of 314, 315
radiological imaging techniques 289
RAF kinases 91
receptor-mediated endocytosis 15
receptor tyrosine kinase (RTK) 71
-- activation 71
inhibitors 71
molecular architecture 71
receptor tyrosine kinases (RTKs) 266–270
-- c-Kit (See c-Kit)
definition 266, 267
Epidermal growth factor receptor (EGFR)
(See EGFR)

platelet-derived growth factor (PDGF)
(See PDGF)
role in asthma pathophysiology 267
tyrosine kinase receptor 267
vascular endothelial growth factor (VEGF)
(See VEGF)
rheumatoid arthritis 15
RHPS4 compound 122, 123
RNA sequencing 163
ROCK 273–275
-- activation 274
aminofurazan-based inhibitor
GSK269962A 274
function 273, 274
implication 274
inhibitors 274
-- development 274
-- fasudil 274
-- shortcomings 274
-- Y-27632 274
-- myosin phosphatase phosphorylation 274
ROCK1 273
ROCK2 273
serine–threonine protein kinases, AGC
superfamily 273
treatment 274
in vivo biological findings 274, 275
ROS expression 73
ROS kinase 73

s
Saccharomyces cerevisiae 187, 199
saridegib 103
selective inhibitors, of Jak kinases 346
semagacestat 212
serine/threonine–protein kinases 185
serine/threonine–protein kinases ATR 185
signaling inhibitors 7
single-photon emission computed tomography (SPECT) 290
smoothened homolog (SMO) protein 101
-- optimization 103
small-molecule inhibitors 103–107
structure–activity relationship 104, 105
somatostatin receptor subtype 5 (SSTR5) 349
sorafenib 95, 164
-- multitargeted kinase inhibitor 92
SP-600125 259, 260
-- clinical test results 259, 260
sphingosine kinase (Sph K) 276, 277
-- allergic asthma, preclinical models 277
clinical trials 276
function 276