Index

A
algorithm
 exchange, 275
 Fedorov exchange, 278
 Mitchell, Miller and Wynn, 278
 multiplicative, 279
 Pronzato and Zhigljavsky, 280
 Torsney, 274
 Wynn, 273

C
characteristic set, 70, 74
 Chebyshev
 property, 31
 regression, 85, 86
 range, 89, 117
 complexity, 2
 accuracy, 3
 confidence set, 178
 Loewner ellipsoid, 179

criterion
 A-criterion, 182
 C-criterion, 183
 c-criterion, 183
 D-criterion, 181, 249
 E-criterion, 182
 G-criterion, 181, 249
 Kiefer class, 187
 minimax, 183
 orthogonality, 185
 robust, 184

Turing, 182
 critical point, 45
 Kolmogorov, 51

D
D-optimality
 direct sum model, 264
 invariance, 264
 size of the support, 265
 tensor product model, 263

design
 approximate, 268
 continuous, 268
 exact, 268

domain
 operative, 249
 real, 268
 theoretical, 249

E
Elfving set, 112, 133, 137
 cylinder, 140
 and outer approximation, 142
 ellipsoid, 140
 frontier points, 138
 outer approximation, 142
error, 1
 approximation, 45
 curve, 24
 local, 3
estimable forms
 characterization, 120
unbiasedness
 linear form, 118
experimental design
definition, 91
extrapolation
 Chebyshev regression
 linear form, 109
 Gauss-Markov estimator, 93

F, G
 feasible cone, 111
 Fedorov design
 continuous operative domain, 271
function
 discontinuous, 10
 relation with the sup norm, 12
 periodic function, 6
Gauss-Markov estimator
 heteroscedastic model, 174
 Aitken transform, 174
 Loewner order, 176
variance
 linear form, 125
 lower bound for linear forms, 129
guest design
 Chebyshev regression
 linear form, 203

H, I, L
 Hoel-Levine optimal design, 85
integer part, 9
interpolation, 40
 linear form
 Chebyshev regression, 107
 estimable, 111, 112
 feasible cone, 133
 unbiasedness, 110
linear space
 Haar vector space, 28, 40
 Hilbert space, 18
 non Hilbertian normed space, 21
 strict, 14
 strict linear space, 17
 sequences, 16
localization, 119
 Loewner order, 114

M
 Mantissa, 9
matrix
 Fisher information, 219
 weighted, 254
 Gramm, 21
 information
 linear transform, 178
 moment matrix, 91, 110, 113
 phi-optimality, 187
 minimax optimality, 262
model
 heteroscedastic, 216
 linear
 Aitken transform, 213
 analytic regression, 227
 heteroscedantic and correlated, 211
 heteroscedastic model, 209
 test on the degree, 229
 unknown degree, 225
 multivariate, 250, 255, 266
 heteroscedastic and correlated, 254
 non linear, 216–218
 exponential model, 218
 logistic model, 218
 Michaelis-Mertens, 218
moment matrix
 generalized inverse, 112

N
 nodes, 23
norm
 Chebyshev, 9
 gauge, 112, 137
 Hilbertian, 9
 Lagrangian, 9
 least square, 9
 linear operator, 22
 minimax, 9
 robust, 24
 robustness, 24
 strict, 14, 15, 17
 uniform, 9, 23
optimal approximation
 non existence, 15
 sequences, 15
optimal design
 A-criterion
 explicit form, 199
 linear form, 200
 c-criterion, 215
 support, 238
Chebyshev regression
 characterization of the frequencies, 102
 explicit form for the extrapolation, 104
 frequencies, 102
 support, 97
D-optimality
 Frechet differentiability, 190
 linear form
 Hoel-Levine, 160
 Lagrange interpolation, 161
 non linear
 characterization, 225
 phi-optimality, 259
 size of the support, 188
Studden theorem
 Chebyshev points, 236
 support, 235
 support
 Chebyshev points, 229
optimal designs
 universally, 259

P, R
polynomial
 generalized, 40
 roots, 44
 Hermite, 206
 Jacobi, 206
 Lagrange elementary, 81
 Laguerre, 206
 Legendre, 206
 projection, 21
 rate of convergence
 Chebyshev system

Remez algorithm, 84
 de la Vallée Poussin
 Hölder condition, 80
 root
 nodal, 44

S, T
 splines, 6
 polynomial, 6
 cubic, 6
 standard regression model, 119
 system
 Chebyshev, 27, 29
 Haar, 29
 T, 29
 unisolvent, 29
 theorem
 Borel-Chebyshev, 24, 28, 67, 86
 Chebyshev systems
 oscillations, 64
de la Vallée Poussin
 characteristic set and Chebyshev systems, 70
 generalized polynomial, 69
 lower bound for the uniform error, 69
 Elfving heteroscedastic model, 225
equivalence
 Atwood, 198
 Kiefer-Wolfowitz, 193
 linear transform, 199
 Pukelsheim, 198
 Gauss-d’Alembert, 28, 29
generalized Borel-Chebyshev, 58
 Haar-Kolmogorov, 46, 52
 Holland-Letz-Dette-Pepelyshev, 215
 Karlin-Studden
 existence and uniqueness of optimal generalized polynomial, 67
 minimax optimal generalized polynomial, 66
 Kolmogorov, 47
 Laplace, 40
 Maehly-Witzgall
 functional continuity of the approximation, 71
Remez
 approximation error, 81
 generalized polynomial, 69
Schoenberg
 weight function and D-optimality, 206
Silvey optimality criterion
 experimental point, 261
 information matrix, 260
spectral, 114
upper bound of the uniform error
 finite set, 77

\(U, V, W \)
uniform approximation
 existence and uniqueness
 oscillation properties, 64
finite set of points, 74
 oscillation properties, 58
Vertex Direction Method, 269
weight function, 8, 206