<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ablation, 76–86</td>
<td></td>
</tr>
<tr>
<td>after myocardial infarction, 76–86</td>
<td></td>
</tr>
<tr>
<td>acute procedural endpoints, 83</td>
<td></td>
</tr>
<tr>
<td>long-term outcomes, 83–85</td>
<td></td>
</tr>
<tr>
<td>outcomes, 84</td>
<td></td>
</tr>
<tr>
<td>Purkinje system, 82–83</td>
<td></td>
</tr>
<tr>
<td>QRS morphology, 77</td>
<td></td>
</tr>
<tr>
<td>substrate, 76–77</td>
<td></td>
</tr>
<tr>
<td>substrate mapping, 77–82</td>
<td></td>
</tr>
<tr>
<td>catheter control systems, 178–188</td>
<td></td>
</tr>
<tr>
<td>in congenital heart disease, 141–148</td>
<td></td>
</tr>
<tr>
<td>of idiopathic ventricular tachycardias, 112–124</td>
<td></td>
</tr>
<tr>
<td>imaging techniques, 150–161</td>
<td></td>
</tr>
<tr>
<td>scar border, 107–108</td>
<td></td>
</tr>
<tr>
<td>of ventricular fibrillation, 128–139</td>
<td></td>
</tr>
<tr>
<td>Brugada syndrome, 132–134</td>
<td></td>
</tr>
<tr>
<td>ischemic cardiomyopathy, 134</td>
<td></td>
</tr>
<tr>
<td>long-QT syndrome, 132–134</td>
<td></td>
</tr>
<tr>
<td>post-acute myocardial infarction, 134–137</td>
<td></td>
</tr>
<tr>
<td>from Purkinje tissue, 129–132</td>
<td></td>
</tr>
<tr>
<td>right ventricle outflow tract, 129</td>
<td></td>
</tr>
<tr>
<td>of ventricular tachycardia, 141–148</td>
<td></td>
</tr>
<tr>
<td>voltage maps, 85</td>
<td></td>
</tr>
<tr>
<td>aborted cardiac arrest, 29, 30f, 32f</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors, 253</td>
<td></td>
</tr>
<tr>
<td>acquired sudden cardiac death, 1–13</td>
<td></td>
</tr>
<tr>
<td>acquired ventricular arrhythmias, 23–24</td>
<td></td>
</tr>
<tr>
<td>actinin, 44, 45</td>
<td></td>
</tr>
<tr>
<td>action potential duration (APD), 3–5</td>
<td></td>
</tr>
<tr>
<td>base-to-apex gradient in, 23</td>
<td></td>
</tr>
<tr>
<td>determination of, 273</td>
<td></td>
</tr>
<tr>
<td>prolongation of, 23, 25</td>
<td></td>
</tr>
<tr>
<td>action potential restitution, 230–231</td>
<td></td>
</tr>
<tr>
<td>activation mapping, 101</td>
<td></td>
</tr>
<tr>
<td>in arrhythmogenic right ventricular cardiomyopathy, 155</td>
<td></td>
</tr>
<tr>
<td>and catheter ablation, 117, 123, 129</td>
<td></td>
</tr>
<tr>
<td>of focal ventricular arrhythmia, 89</td>
<td></td>
</tr>
<tr>
<td>in ischemic cardiomyopathy, 134</td>
<td></td>
</tr>
<tr>
<td>of right ventricle outflow tract, 183</td>
<td></td>
</tr>
<tr>
<td>use of, 131</td>
<td></td>
</tr>
<tr>
<td>vs. substrate mapping, 108–109</td>
<td></td>
</tr>
<tr>
<td>active compression-decompression, 301f, 302</td>
<td></td>
</tr>
<tr>
<td>active compression-decompression devices, 303</td>
<td></td>
</tr>
<tr>
<td>acute coronary syndrome, 200, 203, 257</td>
<td></td>
</tr>
<tr>
<td>Adams-Stokes attacks, 299</td>
<td></td>
</tr>
<tr>
<td>adjunctive therapy, 254–255</td>
<td></td>
</tr>
<tr>
<td>in advanced life support, 299–300</td>
<td></td>
</tr>
<tr>
<td>antiarrhythmic agents, 256</td>
<td></td>
</tr>
<tr>
<td>beta-blockers, 258</td>
<td></td>
</tr>
<tr>
<td>Class I antiarrhythmic agents, 256</td>
<td></td>
</tr>
<tr>
<td>Class III antiarrhythmic agents, 260</td>
<td></td>
</tr>
<tr>
<td>and induced hypothermia, 306–307</td>
<td></td>
</tr>
<tr>
<td>adrenoceptors, 3</td>
<td></td>
</tr>
<tr>
<td>adult congenital heart disease (ACHD), 156</td>
<td></td>
</tr>
<tr>
<td>advanced life support, 290, 299–300, 307</td>
<td></td>
</tr>
<tr>
<td>age, 200</td>
<td></td>
</tr>
<tr>
<td>airports, cardiac arrests in, 293</td>
<td></td>
</tr>
<tr>
<td>Airway-Breathing-Circulation paradigm, 298</td>
<td></td>
</tr>
<tr>
<td>amiodarone, 61, 64, 76, 117, 249–252r, 256, 259r</td>
<td></td>
</tr>
<tr>
<td>and induced hypothermia, 306–307</td>
<td></td>
</tr>
<tr>
<td>aldosterone antagonist, 254</td>
<td></td>
</tr>
<tr>
<td>aldosterone receptor blockers, 253</td>
<td></td>
</tr>
<tr>
<td>alternans, 223–224, 274–275</td>
<td></td>
</tr>
<tr>
<td>American Airlines AED program, 291, 294f</td>
<td></td>
</tr>
<tr>
<td>American Heart Association, 300</td>
<td></td>
</tr>
<tr>
<td>4-aminopyridine, 2</td>
<td></td>
</tr>
<tr>
<td>amiodarone, 61, 64, 76, 117, 249–252r, 256, 259r</td>
<td></td>
</tr>
<tr>
<td>AMP-activated protein kinase, 45</td>
<td></td>
</tr>
<tr>
<td>Andersen-Tawil syndrome, 41</td>
<td></td>
</tr>
<tr>
<td>angiotensin-converting enzyme, 61</td>
<td></td>
</tr>
<tr>
<td>angiotensin-modifying agents, 253</td>
<td></td>
</tr>
<tr>
<td>angiotensin receptor blockade (ARB), 253</td>
<td></td>
</tr>
<tr>
<td>ankyrin B, 42</td>
<td></td>
</tr>
<tr>
<td>antiarrhythmic agents, 64, 83, 253, 254–260</td>
<td></td>
</tr>
<tr>
<td>antitachycardia pacing (ATP), 252</td>
<td></td>
</tr>
<tr>
<td>antithrombotic agents, 253</td>
<td></td>
</tr>
<tr>
<td>armadillo-repeat proteins, 54–55</td>
<td></td>
</tr>
<tr>
<td>arrhythmogenic right ventricular cardiomyopathy (ARVC), 26</td>
<td></td>
</tr>
<tr>
<td>differential diagnosis of, 117</td>
<td></td>
</tr>
<tr>
<td>electroanatomical mapping, 154–155</td>
<td></td>
</tr>
<tr>
<td>electrocardiogram, 153–154</td>
<td></td>
</tr>
<tr>
<td>intracardiac echocardiography, 156</td>
<td></td>
</tr>
<tr>
<td>magnetic resonance imaging (MRI), 155–156</td>
<td></td>
</tr>
<tr>
<td>type 2 form of, 43</td>
<td></td>
</tr>
<tr>
<td>arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C),</td>
<td></td>
</tr>
<tr>
<td>51–61</td>
<td></td>
</tr>
<tr>
<td>avoidance of competitive athletics, 61</td>
<td></td>
</tr>
<tr>
<td>clinical presentation, 51</td>
<td></td>
</tr>
<tr>
<td>diagnosis of, 51–54</td>
<td></td>
</tr>
</tbody>
</table>
arrhythmogenic right ventricular (cont.)

differential, 54
electrocardiography, 52–53
imaging of right ventricle, 53–54
myocardial biopsy, 54

genetics of, 54–57
ICD implantation, 57–59
management of, 57
medical therapy, 60–61
natural history, 51
pathophysiologic basis of, 57
prevalence of, 51
radiofrequency ablation, 59–60
surgical treatment, 61

arterioles, 67
asystole, 198, 199f, 291f, 303–304
atrial fibrillation (AF), 312
ablation, 182
and hypertrophic cardiomyopathy, 65
PARAD- algorithm, 318f
in short-QT syndrome, 135f
treatment of, 248
atropine, 131, 139, 218
automatic external defibrillation (AED), 289–291. see also
defibrillation
development of, 299
emergency personnel first-responders, 289–290
public access, 290–291
survival rates, 289

autonomic nerve activity, 271–272
and cardiac arrhythmia, 271–272
long-term monitoring of, 270–271
autonomic nervous system (ANS), 131, 213–214, 218–219
Autonomic Tone and Reflexes after Myocardial Infarction
(ATRAMI), 220
AVID trial, 259
azimilide, 248f, 252f, 258–260

bacteremia, 332
baroreflex sensitivity, 220, 248f
basic cycle lengths (BCLs), 3
beta-blockers, 60–61, 64, 117, 252f, 257–258
bidirectional conduction, 146f
bisoprolol, 248f, 257f
bradycardia, 6, 40, 66, 313f
Brugada syndrome, 5–6
and CACNA1C mutations, 43
clinical characteristics of, 135f
electrocardiographic/arrhythmic manifestation of, 7f
genetic defects in, 2f
mechanism of, 8f
monomorphic PVCs in, 132
polymorphic ventricular tachycardia in, 113f
provocative test for, 256–257
and SCN5A mutations, 39–40
and sudden cardiac death, 207
transmural dispersion of repolarization in, 12f
ventricular fibrillation in, 132–134
Bulldog lead extender, 328f
bundle branch reentry (BBR), 90
buses, cardiac arrests in, 293f
CABG-Patch Trial, 216, 243
CACNA1C mutations, 5, 42–43
CACNB2b mutations, 5
cadherins, 54–55
calcium-activated chloride current, 2–3
calcium channel current, 2, 5
calcium dynamics, 273–275
calcium ions, intracellular, 20
calcium overload, 20, 254
calsequestrin, 43
calstabin-2, 43
captopril, 253f
cardiac arrests, 215
incidence of, 199f, 289–290, 293f
mortality in, 304f
out-of-hospital survival from, 289–290
rapid defibrillation in, 304–305
Cardiac Arrhythmia Pilot Study (CAPS), 223
cardiac arrhythmias, 19f
Cardiac Arrhythmia Suppression Trial (CAST), 20
cardiac assist devices, 195
cardiac excitation, 18
cardiac magnetic resonance (CMR) imaging, 93, 96–98, 217–218
cardiac myosin-binding protein C (MYBPC3), 45f
cardiac pump model, 300
cardiac resynchronization therapy (CRT), 217, 255f
cardiac ryanodine receptor, 43, 54, 56f, 273–274
cardiac ryanodine receptor (RYR2), 54, 56f
cardiac troponin T, 45f
cardiomyopathies, 204–207
dilated, 204–205
hypertrophic, 205–206
neoplastic, 206–207
nonischemic cardiomyopathy, 221
risk stratification in, 213–233
autonomic nervous systems, 218–219
baroreflex sensitivity, 220
deceleration capacity, 220
heart rate turbulence, 219–220
left ventricular ejection fraction, 214–216
microvolt T-wave alternans, 223–229
QRS duration, 216–217
QT dispersion, 229–230
QT interval, 229
QT/RR relationship, 230–231
QT variability, 231–233
signal-averaged ECG (SAECG), 216–217
unsustained ventricular arrhythmias, 221
sudden deaths in, 213–214
cardiopulmonary resuscitation, 298–307
adjunctive pharmacotherapy in, 306–307
advanced life support, 299–300
Index 337

basic life support in, 298

current paradigms in, 303–304
defibrillation in, 304–306
direct chest compression in, 300–302
implementation of, 300
induced hypothermia in, 306–307
novel compression strategies in, 302–303

cardiovascular diseases, deaths from, 51
carvedilol, 248, 257
CASH trial, 256

catecholaminergic polymorphic ventricular tachycardia
(CPVT), 43
catecholaminergic ventricular tachycardia, 2f
catecholamines, 20, 205, 218
catheter ablation, 178–188. see also ablation
in fascicular ventricular tachycardia, 120–121
in mitral annular ventricular tachycardia, 121–123
in outflow tract ventricular tachycardia, 117
in post-acute myocardial infarction, 137
in structural heart disease, 134
of ventricular fibrillation, 132–134
catheter control systems, 178–188
future technologies, 187
remote magnetic navigation, 179–185
limitations of, 185
in supraventricular ablation, 181–182
in ventricular ablation, 182–185
robotic, 185–187

caveolae, 6, 42
caveolin-3, 2, 6, 42
CAV3 gene, 6
cell-to-cell coupling, 20–21, 24–25
Chagas’ heart disease, 167f, 170
chain of survival, 300f
chest pump mechanism, 301f
CHF-STAT drug trial, 248–252
Chicago Airport AED program, 291, 294f
chronic cardiac disease, ventricular tachycardia in, 24
chronic cyanosis, 142
churches, cardiac arrests in, 293f
cigarette smoking, 201–202
circumferential pulmonary vein ablation (CPVA), 182
Class I antiarrhythmic agents, 255–257. see also adjunctive therapy
for adjunctive therapy, 256
Class IA, 256
Class IB, 256–257
Class IC, 257
for primary prevention, 255
for secondary prevention, 256
Class I drugs, 20
Class II antiarrhythmic agents, 257–258
Class III antiarrhythmic agents, 20, 258–260
Class III drugs, 20
Class III heart failure, 193
Class IV antiarrhythmic agents, 260
Class IV heart failure, 193
cleavage planes, 279–282
clinical ventricular tachycardia, 83
closed-chest compression, 298
computed tomography, 153, 175
conducting channels, 107
conduction, 21–24
abnormalities, 26, 207, 216
bidirectional, 146f
and bundle branch reentry, 90
delay in, 216
retrograde, 316f
in sudden cardiac death syndromes, 207
conduction block, 20, 77, 131
conduction time, 4f
conduction velocity, 11, 20, 24
conductor coils, 333
congenital heart disease, 141–148
electroanatomical mapping, 156
intracardiac echocardiography, 156
ventricular tachycardia in, 141–148
congestive heart failure (CHF), 248
antiarrhythmic agents for, 248
and hypertrophic cardiomyopathy, 44
and nonischemic cardiomyopathy, 221
QRS duration in, 216
sudden cardiac arrest in, 251f

coronary artery bypass graft (CABG), 191f, 193, 243f
coronary artery disease (CAD), 202–204
deaths from, 240
dermal endocardial electrograms, 92f
diagnosis, 92
endocardial voltage abnormalities, 94f
gender differences in, 200–201
hereditary factors, 200
incidence of, 199
risk factors, 200, 201–202
risk stratification, 243f
statins for, 254
sudden cardiac death in, 37, 199
trends in, 198
coronary care units (CCUs), 221
counter-pressure, 329
countertraction, 329–330
county jails, cardiac arrests in, 293f
cross-chamber sensing, 322–323
cryoablation, 108, 147, 168, 175, 193
cusp ventricular tachycardia, 114–116
cyanosis, 142
deceleration capacity, 220
defibrillation, 277–286
anatomical heterogeneity, 279–281
and cardiac arrest, 304–306
cleavage planes, 279–281
dispersion of refractoriness, 281–285
eyear access programs for, 305–306
future directions in, 286
shock field gradients, 277–279
shock timing, 281–285
defibrillation coils, 331
defibrillation thresholds (DTF), 252, 277–279
delayed afterdepolarizations (DAD), 3, 20
delayed rectifier current, 4
depolarizations, 19–20
 abnormalities of, 242
 and action potentials, 203
 secondary, 24
ventricular, 65
 in ventricular fibrillation, 131
desmocollin 2 (DSC2), 44, 54, 56
 desmoglein 2 (DSG2), 44, 54, 56
 desmoplakin (DSP), 44, 54, 56
 desmosomal proteins, 43–44, 54–55, 57
DETERMINE Trial, 245
DIAMOND-CHF drug trial, 230, 248–252
dilated cardiomyopathy, 6, 25–26, 204–205
diltiazem, 248
disopyramide, 5, 248

dofetilide, 10
 enalapril, 253
 encainide, 20, 223, 249r, 255
endocardial electrogram, 93–96
endocardial resection, 108, 193–195
entrainment mapping, 81, 95f, 102, 105–106, 145–146, 158f, 168
environmental risk factors, 201–202
epicardial circuits, 83
epicardial dispersion of repolarization, 7f
epicardial electrogram, 93–96
epicardial mapping and ablation, 164–175
 efficacy/safety of, 170–175
 epicardial space for, 169–170
 patient identification for, 168–169
 subepicardial fibers as substrate, 164–168
epicardial ventricular tachycardia, 116
epileptiform discharges, 272–274
epinephrine, 43, 129, 298, 305
epsilon wave, 52, 53f, 55f
European Myocardial Infarct Amiodarone Trial (EMIAT), 220
Evolution extraction tool, 330–331
excitability, 20–21
excitation wavefront, 109
exercise, 51
exercise stress testing, 51
extracellular matrix, 21, 22f
extracellular space, 278f
Fallot, tetralogy of, 141–142
far-field R wave sensing, 324f
fascicular ventricular tachycardia, 117–121. see also
 ventricular tachycardia
catheter ablation, 120–121
classification, 117
ECG recognition, 119–120
management of, 120
symptoms, 119
fibrosis, 25–26
 and electrically unexcitable scar, 79, 105
lead coatings for, 322f
 and lead extraction, 334
midwall, 218
myocardial, 54, 67, 76–77, 97–99, 142
perivascular, 154–155
first-responders, 289–290
fish oil, 253
flecainide, 20, 117, 223, 248–249r, 255–257
gender, 200–201
 and causal mutations, 44
 and congenital long-QT syndrome, 207
 and lead extraction, 334
 risk reversal, 31–35
genes, 37–46
 and arrhythmogenic right ventricular dysplasia, 57
 and Brugada syndrome, 5–6
 and hypertrophic cardiomyopathy, 26, 69
 and ion channelopathies, 2f
modifier, 28
mutations, 135r
affecting I/s1Ca(L)/s0, 42–43
affecting I/s1K/s0, 39
affecting I/s1Na/s0, 39–40
modifier proteins, 42
sarcoplasmic I/s1Ca /s0, 43
and polygenic diseases, 45–46
and primary electrical diseases, 38–39
and short-QT syndrome, 11
genetic polymorphisms, 204
GESICA drug trial, 248–252, 259r
golf courses, cardiac arrests in, 293
hotels, cardiac arrests in, 293
thuman papillary muscle, extracellular matrix of, 22
hypertrophic cardiomyopathy, 25–26. see also cardiomyopathies
arrhythmic substrate in, 68f
mutations of sarcomeric proteins in, 44–45
prevention of sudden death in, 64–72
implantable cardioverter defibrillator, 69–72
pharmacologic treatment, 64–65
risk stratification, 67–68
QT prolongation in, 6
sudden cardiac death in, 205–206
hypertrophic heart, extracellular matrix of, 22f
hypokalemia, 42
hypothermia, 306–307
idiopathic ventricular tachycardia (IVT), 112–124. see also ventricular tachycardia
cusp, 114–116
differential diagnosis of, 54
epicardial mapping and ablation of, 168
left ventricular, 117–121
mitral annular, 121–123
monomorphic, 113r
outflow tract, 112–124
left ventricle, 114
right ventricle, 112–114
polymorphic, 113r
pulmonary artery, 114
tricuspid annular, 123–124
imaging techniques, 150–161
computed tomography, 153
2D echography, 150–151
electroanatomical mapping, 152–153
electrocardiogram, 150
intracardiac echocardiography, 151–152
impedance threshold devices (ITDs), 302
implantable cardioverter defibrillator (ICD), 312–324. see also defibrillation
detecting lead failure in, 320–321
implantation of, 57–59
lead extraction, 327–334
lead systems in, 321–324
minimizing painful therapy in, 317–320
prevention of sudden death with, 69–72
rhythm discrimination in, 312–317
two-tiered screening for, 225
for ventricular tachycardia patients, 76
impulse conduction, 19f
indeterminate microvolt T-wave alternans, 225
induced hypothermia, 306–307
industrial sites, cardiac arrests in, 293r
infiltrative cardiomyopathy, 206–207
inflammatory cardiomyopathy, 137, 206–207
inherited sudden cardiac death, 1–13
intercalated discs (IDs), 26, 57
International LQTS Registry, 28–35
interposed abdominal counterpulsation, 301f, 303
intracardiac echocardiography (ICE), 151–152
in congenital heart disease, 156
intra-intracardiac thrombus, 158–160
pericardial effusions, 157–158
ventricular function, 160–161
intracardiac thrombus, 158–160
intracardiac Ca/p12+/p0, 20
intracardiac Na/p12+/p0, 20
intramural reentry, 12–13
intraventricular conduction effect (IVCD), 90
inward rectifier, 4
ion channelopathies, 1, 2f, 69, 131
intrinsic channels, 2f, 6, 23, 37–39, 42, 203, 207
ischemic cardiomyopathy, risk stratification in, 213–233
autonomic nervous systems, 218–219
baroreflex sensitivity, 220
deceleration capacity, 220
heart rate turbulence, 219–220
left ventricular ejection fraction, 214–216
microvolt T-wave alternans, 223–229
QRS duration, 216–217
QT dispersion, 229–230
QT interval, 229
ischemic cardiomyopathy, risk stratification in (cont.)
 QT/RR relationship, 230–231
 QT variability, 231–233
 signal-averaged ECG (SAECG), 216–217
 unsustained ventricular arrhythmias, 221
 ischemic ventricular tachycardia, 164–166
 cardiac assist devices for, 195
 endocardial resection, 193
 heart transplantation, 195
 left ventricular reconstruction, 194–195
 revascularization, 193
 short-QT syndrome, 190–192
 surgical techniques for, 190–195
 isolated delayed component (IDC), 103–105
 isoproterenol, 11, 122, 129, 131, 139, 183
 Jervell and Lange-Nielsen syndrome (JLNS), 2
 KCNE1 gene, 2, 6, 10, 38, 40–42
 KCNE2 gene, 2, 10, 38, 40–42
 KCNH2 gene, 2, 10, 38, 40–42, 135
 KCNQ1 gene, 2, 10, 38, 40–42, 135
 laser extraction tools, 329–330
 Las Vegas Casino AED program, 295
 late gadolinium enhancement (LGE), 96, 98
 late sodium current, 4, 19, 21, 25
 lead extraction, 327–334
 lead failure, detection of, 320–321
 left bundle branch block (LBBB), 56
 left ventricular outflow tract ventricular tachycardia (LVOT VT), 114
 left ventricular ejection fraction (LVEF), 198, 199, 204, 214–216, 226, 242
 left ventricular hypertrophy (LVH), 44
 left ventricular reconstruction, 194–195
 lesions, formation of, 156–157
 lidocaine, 117, 248, 256, 260
 lifestyle risk factors, 201–202
 Lisinopril, 45
 LIM protein, 45
 load-distributing band, 302–303
 load-distributing band compression, 301
 long-QT syndrome, 2, 6–11
 M cells, 3–4
 mechanical piston devices, 303
 medical risk factors, 201–202
 Mendelian inheritance, 37
 metavinculin, 44, 45
 methoxamine, 129
 metoprolol, 248
 mexiletine, 248
 Miami-Dade County Police AED program, 289, 291
 microvolt T-wave alternans (MTWA), 223–229
 early studies, 223–224
 and ICD benefit, 225
 indeterminate, 225
 meta-analysis of studies on, 224–225
 for risk stratification, 225–228
 screening for ICD prophylaxis, 225
 midmyocardium, 3–4, 229
 midwall fibrosis, 218
 mitral annular ventricular tachycardia (MAVT), 121–123
 female predominance, 34–35
 Jervell and Lange-Nielsen syndrome, 33
 possible mechanisms, 33–34
 preadolescents, 29–31
 ventricular fibrillation, 132–134
 low-amplitude burst discharge activity (LABDA), 271–272
 LQT syndrome, 2
 lysosome-associated membrane protein, 45
 Maastricht Circulatory Arrest Registry, 215
 macroreentrant bundle branch reentry, 90–91
 magnesium, 248
 magnetic guidance system (MGS), 179
 magnetic resonance imaging (MRI), 155–156
 marts, cardiac arrests in, 293
 for risk stratification, 225–228
 screening for ICD prophylaxis, 225
 and sudden cardiac death, 207
 modifier proteins, 38–39, 42
 monogenic diseases, 37–38, 46
 monophasic action potential (MAP), 6
 moricizine, 20, 223, 249, 255
motels, cardiac arrests in, 293
motor vehicles, cardiac arrests in, 293
Multicenter Automatic Defibrillator Implantation
Trial (MADIT), 195, 201, 214–216, 225, 231, 242–244
Multicenter Post Infarction Program (MPIP), 215, 218–222
Multicenter Unsustained Tachycardia Trial (MUSTT), 214–216, 243–244
multielectrode mapping, 80
multifamily dwellings, 289
muscle LIM protein, 45
t
mutations, 39–43
in CACNA1C gene, 42–43
and modifier proteins, 42
and potassium currents, 40–42
in RYR2 gene, 43
in SCNA5A gene, 39–40
myocardial biopsy, 54
myocardial infarction, 24–25, 71
anterior wall, 166
inferior wall, 165
in ischemic cardiomyopathy, 110, 134
post-acute, 134–137
Purkinje system after, 82–83
scars, 76–77
ventricular tachycardia after, 76–86
myocardial ischemia, 69
myocardial reentry, 91–93, 166
myocardial substrate, 26, 66–67, 213–214
myocarditis, 54, 90t, 206
myocyte necrosis, 67
myocytes, 2, 25–26, 64, 229, 253, 268f
β-myosin heavy chain (MYH7), 44–45

Na-Ca exchange current, 4
Nav-X system, 144
Naxos disease, 26, 44
negative predictive accuracy (NPA), 213, 215, 223–225, 233
neoplastic cardiomyopathy, 206–207
nerve growth factor (NGF), 268–269
nerve sprouting, 267–270
in canine models, 269–270
measurement of, 267–269
and myocardial injury, 267–269
necrosis, 67
nonantiarhythmic, 253
nonclinical ventricular tachycardia, 83
noncontact mapping, 80
noninvasive imaging, 96–98
noninvasive tests, 213–233
autonomic nervous systems, 218–219
baroreflex sensitivity, 220
deceleration capacity, 220
heart rate turbulence, 219–220
left ventricular ejection fraction, 214–216
microvolt T-wave alternans, 223–229
QRS duration, 216–217

QT dispersion, 229–230
QT interval, 229
QT/RR relationship, 230–231
QT variability, 231–233
signal-averaged ECG (SAECG), 216–217
unsustained ventricular arrhythmias, 221
nonischemic cardiomyopathy, 89–99, 166–168, 221
endocardial vs. epicardial electrograms, 93–96
etiologies of, 90t
focal ventricular arrhythmia in, 89
mapping/ablation of ventricular tachycardia in, 89–99
endocardial vs. epicardial electrograms, 93–96
His-Purkinje system, 90–91
myocardial reentry, 91–93
noninvasive imaging, 96–97
ventricular arrhythmias, 89
myocardial reentrant ventricular tachycardia, 91–93
noninvasive imaging, 96–98
risk stratification in, 213–233
autonomic nervous systems, 218–219
baroreflex sensitivity, 220
deceleration capacity, 220
heart rate turbulence, 219–220
left ventricular ejection fraction, 214–216
microvolt T-wave alternans, 223–229
QRS duration, 216–217
QT dispersion, 229–230
QT interval, 229
QT/RR relationship, 230–231
QT variability, 231–233
signal-averaged ECG (SAECG), 216–217
unsustained ventricular arrhythmias, 221
ventricular tachycardia, 90–91, 110
N-terminal mutants, 57

obesity, 201–202
omega-3 fatty acids, 254
Ontario Prehospital Advanced Life Support (OPALS), 290t, 307
open-chest cardiac compression, 298–299
OPTIC study, 252t, 258, 260, 317
outdoors, cardiac arrests in, 293
outflow tract ventricular tachycardia (OT-VT), 112–124
catheter ablation, 117
electrocardiographic findings, 114t
management of, 116–117
outward potassium current, 19
pacemakers, 18–19, 332
pace mapping, 101–102
and catheter ablation, 120, 123, 131–132, 137
locating exit regions with, 79–80
and radiofrequency ablation, 105–106
of right ventricle outflow tract ventricular tachycardia, 113f, 118f, 129
pacing, 101–102
burst, 23
entrainment, 143–146
pacing (cont.)
 leads, 328
 of Purkinje network, 120
 unipolar, 109
 ventricular, 316–321
PainFree Rx II trial, 319
PARAD+ algorithm, 318f
patch clamp techniques, 2
Pediatric Radiofrequency Ablation Registry, 147
pericardial effusions, 157–158
perivalvular fibrosis, 154–155
pharmacological management, 247–260
 ACE inhibitors, 253
 aldosterone antagonist, 254
 antiarrhythmic agents, 253, 254–260
 drug selection, 252–253
 magnesium, 254
 omega-3 fatty acids, 254
 in prevention of sudden cardiac arrest, 247–252
 statins, 254
phenylephrine, 218, 220
phenytoin, 248f, 255, 272
phrenic nerve injury, 173
placebo, 249f, 251f, 252f
Placenza, Italy, public access defibrillation in, 295f
plakoglobin, 26, 44, 54, 57
plakophilin 2 (PKP2), 44, 54–57
polygenic diseases, 37–38, 45–46
polymorphic ventricular tachycardia (PMVT), 128–137, 274
polyurethane, 322
porcine hearts, 187
positive predictive accuracy (PPA), 213, 219, 224–227
post-acute myocardial infarction, 134–137
postspacing interval (PSI), 82, 93f, 102–103, 105f, 146
postshock activation cycles, 284–285f
potassium channels, 34, 40–42
preadolescents, long-QT syndrome in, 29–31
premature ventricular contractions (PVCs), 122–123f, 160f, 255, 272
presyncope, 119, 129
primary prevention, 247–252
procainamide, 5, 64, 117, 215f, 248f, 256
propafenone, 5, 248f, 251f, 256–257, 260
psychosocial stressors, 202
public access defibrillation, 290–291
pulmonary artery ventricular tachycardia (PA VT), 114
Purkinje cells, 3
Purkinje system, 82–83
 activation of, 285f
 after myocardial infarction, 82–83
 in ventricular arrhythmias, 89
 ventricular fibrillation, 129–132
 in ventricular fibrillation, 128, 131–132
PVC hypothesis, 247
P wave, 315
Q90R gene, 57
QRS complex, 52–53
duration of, 116f, 134, 216–217
 and ECG recognition, 119–120, 122–123
 morphology of, 77, 82
 in right ventricle outflow tract ventricular tachycardia, 112
 and signal-averaged ECG, 216
 QT dispersion, 229–230
 QT interval, 229
 QT/RR relationship, 230–231
 QT variability, 214f, 231–233
 QT variability index (QTVI), 231–233
 Quantas cardiac arrest intervention program, 293f
 quinidine, 34, 42, 64, 248f, 256
race, 201
radiofrequency ablation, 59–60, 78f
radionuclide ejection fraction, 217f
ramipril, 253f
rapid defibrillation, 304–306
reference catheters, 109
refractoriness, dispersion of, 281–285
remote magnetic navigation (RMN), 179–185
 limitations of, 185
 overview of, 179–181
 in supraventricular ablation, 181–182
 in ventricular ablation, 182–185
 vs. robotic control systems, 187f
repolarization
 abnormalities in, 214
 dispersion of, 21–23
 spatial dispersion of, 1–13
 restaurants, cardiac arrests in, 293f
 Restitution Hypothesis, 231
 retrograde conduction, 316f
 revascularization, 41, 193, 216–217, 226f
 R2834H gene, 57
 rhythm discrimination, 226f, 312–317
 Rhythm ID algorithm, 312
 right ventricle outflow tract ventricular tachycardia (RVOT VT), 112–114, 129, 142
risk stratification, 240–245
 and gold standard diagnosis, 241
 in hypertrophic cardiomyopathy, 67–69
 and implantable defibrillator, 67–69
 non-invasive tests for, 213–233
 autonomic nervous systems, 218–219
 baroreflex sensitivity, 220
 deceleration capacity, 220
 heart rate turbulence, 219–220
 left ventricular ejection fraction, 214–216
 microvolt T-wave alternans, 223–229
 QRS duration, 216–217
 QT dispersion, 229–230
 QT interval, 229
 QT/RR relationship, 230–231
 QT variability, 231–233
 signal-averaged ECG (SAECG), 216–217
 unsustained ventricular arrhythmias, 221
Index 343

overview of, 241–242
strategies, 243–244
techniques, 242–243
robotic catheter control systems, 185–187
Romano-Ward syndrome, 2, 6, 39, 41
R waves, 77, 113–114, 315
ryanodine receptor, 43, 54, 56, 273–274
RYR2 mutations, 43, 54, 56, 135

sarcoidosis, 54, 184, 206
sarcomeric proteins, 44–45
sarcoplasmic Ca/p12+/p0, 43
sarcoplasmic reticulum (SR), 20, 38, 229, 273
scar border ablation, 107–108
schools, cardiac arrests in, 293
SCNA5A mutations, 5, 39–40
SCN4B gene, 6
scopolamine, 218
secondary prevention, 247–252
sedentary lifestyle, 202
severe autonomic failure (SAF), 220
SHIELD drug trial, 260
shock field gradients, 277–279
shocking coils, 327
shock timing, 281–285
short-QT syndrome, 11
arrhythmogenesis in, 12
and Brugada syndrome, 5
clinical characteristics of, 135

genetic defects in, 2
mutations affecting I{s1K in/s0, 42
polymorphic ventricular tachycardia in, 113
signal-averaged ECG (SAECG), 52–53, 216–217
silicone, 322
single-chamber rhythm discrimination, 312–316
single-family dwellings, 289
single nucleotide polymorphisms (SNPs), 37–38, 42, 46, 204
sinus rhythm electrogram, 81f, 103–105
sinus tachycardia, 66, 312, 313, 47, 315–316
sodium calcium exchanger (NCX), 273–274
sodium channels, 24, 39–40
sodium ions, intracellular, 20
sotalol, 61, 76, 117, 249f, 252f, 258
sports venues, cardiac arrests in, 293
statins, 240, 253–254
stellate ganglion nerve activity (SGNA), 270–271
stenting, 331
Stereotaxis, 179
stress, 202
subendocardium, 3, 19, 76, 95
subepicardial fibers, 164–168
subepicardium, 3–4, 77
subsidiary pacemakers, 18–19
substrate mapping, 77–82, see also mapping; pace mapping
identification of isthmus with, 102–103
stimulus strength, 109–110
vs. VT activation map, 108–109
sudden cardiac arrest (SCA), 251, 253–254
sudden cardiac death syndromes, 193
accessory pathways, 207
in adolescents/young adults, 206
cardiac diseases associated with, 202–207
Brugada syndrome, 207
cardiomyopathies, 204–207
congenital long-QT syndrome, 207
coronary artery disease, 202–204
electrophysiological abnormalities, 207
causes of, 51
definition of, 198
incidence of, 199–200, 298
intramural reentry in, 1–13
mechanisms of, 65–67
monogenic/polygenic disorders, 37–38
polygenic diseases, 45–46
prevalence of, 240
prevention of, 64–72, 198
implantable cardioverter defibrillator, 69–72
pharmacologic treatment, 64–65
primary, 247–252
risk stratification, 67–68
secondary, 247–252
risk factors, 68f, 199–200
age, 200
environmental, 201–202
gender, 200–201
heredity, 200
indicators, 206
lifestyle, 201–202
medical, 201–202
race, 201
spatial dispersion of repolarization in, 1–13
trends over time, 198–199
supraventricular ablation, 181–182
surgical techniques, 190–195
cardiac assist devices, 195
deracardial resection, 193
heart transplantation, 195
history, 190–192
left ventricular reconstruction, 194–195
revascularization, 193
S waves, 77
sympathetic hyperinnervation, 267, 269
cyncope, 29, 32, 39–40, 44, 67, 68f, 129

tachyarrhythmias, 213–214
taverns, cardiac arrests in, 293

telothinon, 44, 45
terfenadine, 7f
tetralogy of Fallot, 141–142, 144–145, 156–157
thoracic pump model, 300
Timothy syndrome, 2, 38, 42–43
titin, 45
tocainide, 248, 257
tonocard, 257
Torsade de Pointes (TdP), 6, 10f, 20, 131, 133f, 135, 254
Touhy needle, 158
train terminals, cardiac arrests in, 293f
trandolapril, 253
transmembrane potential, 278f, 280
transmural dispersion of repolarization (TDR), 1–13
tricuspid anular ventricular tachycardia, 123–124
tricuspid regurgitation, 217, 332
tricuspid valve, 118f, 142, 144f, 146f, 155f, 158, 331–332
tropomyosin, 45f

T wave, 5, 7–8, 11, 55f, 119, 226
T wave alternans, 214f, 221, 223–224, 229f, 233, 243, 244
T wave inversion (TWI), 52–53, 153
T wave residua, 230, 232
T-wave residua, 230
Turbulence onset (TO), 219–220
Turbulence slope (TS), 219–220

T wave, 5, 7–8, 11, 55f, 119, 226
T wave alternans, 214f, 221, 223–224, 229f, 233, 243, 244
T wave inversion (TWI), 52–53, 153
T wave residua, 230, 232
T-wave residua, 230
two-dimensional echocardiography, 150–151
tyrosine hydroxylase, 267

unipolar pacing, 79, 105, 107f, 109
unsustained ventricular arrhythmias, 221

VALIANT Trial, 216
Vaughan Williams classification, 248t, 253
vector and timing regulation (VTR), 313
venoplasty, 331
venous stenosis, 331, 333
ventricular ablation, 182–185
ventricular arrhythmias, 23–24
genetics of, 37–46
mutations affecting I/s1Ca(L)/I0, 42–43
mutations affecting I/s1K/I0, 39
mutations affecting I/s1Na/I0, 39–40
mutations affecting modifier proteins, 42
mutations affecting sarcoplasmic I/s1Ca, 43
polygenic diseases, 45–46
primary electrical diseases, 38–39
and mechanisms of sudden death, 65–67
in nonischemic cardiomyopathy, 89
pharmacological management of, 247–261
ACE inhibitors, 253
aldosterone antagonist, 254
antiarrhythmic agents, 253, 254–260
drug selection, 252–253
magnesium, 254
omega-3 fatty acids, 254
statins, 254
ventricular fibrillation, 128–139
ablation, 128–139
in normal hearts, 128
in structural heart disease, 134–137
tips and tricks, 137–139
in Brugada syndrome, 132–134
electrical storms, 134–137
initiation of, 128–129
in long-QT syndrome, 132–134
mechanisms of, 267–275
autonomic nerve activity, 270–272
calcium dynamics, 274–275
high-amplitude spike discharge activity, 272–274
nerve sprouting, 267–270
from Purkinje tissue, 129–132
from right ventricle outflow tract ventricular outflow tract, 129
ventricular function, 160–161
ventricular myocardium, 1–3
abnormalities in, 19
action potential, 38f
cell types, 1–2
dispersion of repolarization in, 4, 6, 39
electrical heterogeneities in, 23
electrical heterogeneity within, 1–3
fibrofatty replacement of, 43
hypertrophic, 20
lesion formation in, 174
ventricular premature complexes (VPCs), 215f, 221–223
ventricular premature contractions (VPCs), 218–220
ventricular tachyarrhythmias, 224–225, 228, 242–243, 312f, 316
and mechanisms of sudden death, 65–67
substrate for, 242–243
ventricular tachycardia, 18–26
ablation of, 76–86
complications, 157–160
in congenital heart disease, 141–148
imaging techniques, 150–161
lesion formation in, 156–157
acquired ventricular arrhythmias, 23–24
arrhythmogenic right ventricular cardiomyopathy, 26
automaticity, 18–19
in chronic heart disease, 24
clinical implications, 139
in congenital heart disease, 141–148
anatomic/pathological factors, 141–142
mapping/ablation of, 144–148
dilated/hypertrophic cardiomyopathy, 25–26
dispersion of repolarization/conduction, 21–23
epicardial, 116
genetics of, 43–45
inherited cardiomyopathies, 43
mutations affecting desmosomal proteins, 43–44
mutations affecting sarcomeric proteins, 44–45
and His-Purkinje system, 90–91
idiopathic, 168
ischemic, 164–166
mapping/ablation of, 76–86
acute procedural endpoints, 83
long-term outcomes, 83–85
Purkinje system, 82–83
QRS morphology, 77
radiofrequency ablation, 78f
substrate, 76–77
substrate mapping, 77–82
myocardial infarction, 24–25, 76–86
myocardial reentrant, 91–93
nonischemic, 166–168
in nonischemic cardiomyopathy, 89–99, 110
radiofrequency ablation of, 59–60
reentrant excitation, 20–21
surgical techniques for, 190–195
cardiac assist devices, 195
diaphragm resection, 193
heart transplantation, 195
history, 190–192
left ventricular reconstruction, 194–195
revascularization, 193
triggered activity, 19–20
delayed afterdepolarizations (DAD), 20
early afterdepolarizations (EAD), 19–20
ventriculotomy, 61, 141–142, 190, 191f, 250t
verapamil, 55f, 64, 120, 131, 248t, 250t, 260
vinculin, 44, 45f
virtual electrode, 79, 109–110, 278–280
V30M gene, 57
voltage maps, 79, 85f, 94f, 103, 143–145, 155f, 166
warning arrhythmias, 221
wavelet algorithm, 313
Whooley wire, 330
Wolff-Parkinson White syndrome, 20, 113, 207
W233X gene, 57
zofenopril, 253t