CONTENTS

Preface xvii
Foreword xxi
List of Contributors xxiii
About the Companion Websites xxv

1 Risk Assessments: Their Significance and the Role of the Safety Professional 1

Fred A. Manuele

1.1 Objectives, 1
1.2 Introduction, 1
1.3 What is a Risk Assessment? 2
1.4 Activities at the American Society of Safety Engineers (ASSE), 2
1.5 An Example of a Guideline that gives Risk Assessment due Recognition, 3
1.7 ANSI/ASSE Z590.3-2011: Prevention through Design: Guidelines for Addressing Occupational Hazards and Risks in Design and Redesign Processes, 4
1.8 THE ANSI/ASSE Z690-2011 Series, 6
1.9 ANSI B11.0-2015: Safety of Machinery. General Safety Requirements and Risk Assessment – A Standard of Major Consequence, 7
1.10 European Union: Risk Assessment, 8
1.11 EN ISO 12100-2010: Safety of Machinery. General Principles for Design. Risk Assessment, and Risk Reduction, 8
1.12 Additional European Influence, 9
1.14 Certain Governmental Views, 11
1.14.1 Risk Reduction Program, 12
CONTENTS

1.15 Canada, 12
1.16 Fire Protection, 13
1.17 Developments in Aviation Ground Safety, 13
1.18 OSHA Requirements, 14
1.19 EPA Requirements, 15
1.20 The Chemical Industry: The Extensive Body of Information, 16
1.21 Conclusion, 16

Review Questions, 16
References, 17

Appendix 1.A: A List of Standards, Guidelines, and Initiatives That Require or Promote Making Risk Assessments: Commencing with Year 2005, 18

2 Risk Assessment Standards and Definitions 23
Bruce Hollcroft & Bruce K. Lyon

2.1 Objectives, 23
2.2 Introduction, 23
2.3 The Need for Risk Assessments, 24
2.4 Key Standards Requiring Risk Assessments, 24
2.5 OSHA Compliance and Risk Assessments, 24
 2.5.1 1910.132, Personal Protective Equipment Standard, 25
 2.5.2 1910.119, Process Safety Management Standard, 25
 2.5.3 Other OSHA Standards, 26
2.6 Consensus Standards Requiring Risk Assessment, 27
2.8 ISO 31000/ANSI/ASSE Z690 Risk Management Series, 28
2.9 ANSI/ASSE Z590.3-2011, Prevention through Design, 29
2.10 ANSI B11.0 Machine Safety, 30
2.11 NFPA 70E, 31
2.13 Key Terms and Definitions, 32
2.14 Summary, 46
 Review Questions, 47
 References, 47

3 Risk Assessment Fundamentals 49
Bruce Hollcroft & Bruce K. Lyon

3.1 Objectives, 49
3.2 Introduction, 49
3.3 Risk Assessment within the Risk Management Framework, 50
3.4 Risk Assessments and Operational Risk Management Systems, 51
3.5 The Purpose of Assessing Risk, 52
3.6 The Risk Assessment Process, 53
3.7 Selecting a Risk Assessment Matrix, 53
3.8 Establishing Context, 55
3.9 The Risk Assessment Team, 57
3.10 Hazard/Risk Identification, 58
CONTENTS

3.11 Risk Analysis, 59
 3.11.1 Consequence Analysis, 59
 3.11.2 Likelihood Analysis, 59
 3.11.3 Assessment of Controls, 60
3.12 Risk Evaluation, 60
3.13 Risk Treatment, 61
3.14 Communication, 61
3.15 Documentation, 62
3.16 Monitoring and Continuous Improvement, 63
3.17 Summary, 64
 Review Questions, 64
 References, 64

4 Defining Risk Assessment Criteria
Bruce K. Lyon & Bruce Hollcroft

 4.1 Objectives, 67
 4.2 Introduction, 67
 4.3 Defining Risk Criteria, 68
 4.4 Risk Scoring Systems, 69
 4.5 Risk Assessment Matrices, 71
 4.6 Defining Risk Values, 71
 4.6.1 Qualitative Risk Models, 72
 4.6.2 Semiquantitative Risk Models, 72
 4.6.3 Quantitative Risk Models, 73
 4.7 Risk Factors, 74
 4.8 Risk Levels, 74
 4.9 Risk Scoring, 75
 4.10 Severity of Consequence, 76
 4.11 Likelihood of Occurrence, 77
 4.12 Exposure, 79
 4.13 Risk Reduction and the Hierarchy of Controls, 79
 4.13.1 Using a Protection Factor, 83
 4.14 Acceptable and Unacceptable Risk Levels, 84
 4.15 Documenting Risk, 85
 4.16 Communicating Risk Criteria, 88
 4.17 Summary, 88
 Review Questions, 88
 References, 89
 Appendix 4.A, 90

5 Fundamental Techniques
Bruce K. Lyon

 5.1 Objectives, 91
 5.2 Introduction to Fundamental Hazard Analysis and Risk Assessment, 91
 5.3 Assessments Within an Operational Risk Management System, 93
 5.4 Hazard Analysis Versus Risk Assessment, 94
 5.5 The Hazard Analysis and Risk Assessment Process, 96
 5.6 Fundamental Methods, 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Informal Methods, 100</td>
</tr>
<tr>
<td>5.8</td>
<td>Formal Methods, 103</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Fundamental Hazard Analysis, 103</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Pretask Hazard Analysis, 104</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Job Hazard Analysis, 104</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Fundamental Risk Assessment, 109</td>
</tr>
<tr>
<td>5.8.5</td>
<td>Job Risk Assessment, 110</td>
</tr>
<tr>
<td>5.9</td>
<td>Conclusion, 112</td>
</tr>
<tr>
<td></td>
<td>Review Questions, 112</td>
</tr>
<tr>
<td></td>
<td>References, 113</td>
</tr>
<tr>
<td></td>
<td>Appendix 5.A, 114</td>
</tr>
<tr>
<td></td>
<td>Appendix 5.B: Common Hazards and Descriptions, 115</td>
</tr>
<tr>
<td></td>
<td>Appendix 5.C: Personal Protective Equipment Hazard Assessment Form Example, 118</td>
</tr>
<tr>
<td></td>
<td>Appendix 5.D: Job Hazard Analysis Form Example, 119</td>
</tr>
</tbody>
</table>

6 What-If Hazard Analysis

Bruce K. Lyon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Objectives, 121</td>
</tr>
<tr>
<td>6.2</td>
<td>Introduction, 121</td>
</tr>
<tr>
<td>6.3</td>
<td>Overview and Background, 121</td>
</tr>
<tr>
<td>6.4</td>
<td>Process Hazard Analysis, 122</td>
</tr>
<tr>
<td>6.5</td>
<td>Mandated Assessments, 123</td>
</tr>
<tr>
<td>6.6</td>
<td>What-If Analysis and Related Methods, 125</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Brainstorming – Structured and Unstructured, 125</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Checklist Analysis, 126</td>
</tr>
<tr>
<td>6.6.3</td>
<td>What-If Hazard Analysis, 127</td>
</tr>
<tr>
<td>6.6.4</td>
<td>What-If/Checklist, 130</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Structured What-If Technique (SWIFT), 131</td>
</tr>
<tr>
<td>6.6.6</td>
<td>Hazard and Operability (HAZOP) Study, 135</td>
</tr>
<tr>
<td>6.7</td>
<td>Risk Scoring and Ranking, 137</td>
</tr>
<tr>
<td>6.8</td>
<td>Application of “What-If”, 139</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusion, 143</td>
</tr>
<tr>
<td></td>
<td>Review Questions, 143</td>
</tr>
<tr>
<td></td>
<td>References, 144</td>
</tr>
</tbody>
</table>

7 Preliminary Hazard Analysis

Georgi Popov & Bruce K. Lyon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Objectives, 145</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduction, 145</td>
</tr>
<tr>
<td>7.3</td>
<td>Preliminary Hazard List, 147</td>
</tr>
<tr>
<td>7.4</td>
<td>PHAs and their Application, 147</td>
</tr>
<tr>
<td>7.5</td>
<td>The Control of Hazardous Energy, 148</td>
</tr>
<tr>
<td>7.6</td>
<td>Fundamental System Safety Tenets, 149</td>
</tr>
<tr>
<td>7.7</td>
<td>Conducting a PHA, 150</td>
</tr>
<tr>
<td>7.8</td>
<td>Scoring Systems, 152</td>
</tr>
<tr>
<td>7.9</td>
<td>Practical Application, 153</td>
</tr>
<tr>
<td>7.10</td>
<td>Summary, 157</td>
</tr>
</tbody>
</table>
CONTENTS

Review Questions, 157
References, 157
Practical Example, 161

8 Failure Mode and Effects Analysis 163
Georgi Popov & Bruce K. Lyon

8.1 Objectives, 163
8.2 Introduction, 163
8.3 Purpose and Use, 164
8.4 Defining Failure Modes, 166
8.5 Risk Description Considerations, 167
8.6 FMEA Process Steps, 172
8.7 Practical Application, 175
8.8 Summary, 176
Review Questions, 179
References, 179
Practical Example – Assignment #2 – FMEA, 179

9 Bow-Tie Risk Assessment Methodology 181
Georgi Popov & Bruce K. Lyon

9.1 Objectives, 181
9.2 Introduction, 181
9.3 History, 182
9.4 Overview, 182
9.5 Bow-Tie Methodology, 184
9.6 Practical Application, 186
9.6.1 Case Study #1: Spray Paint Operation, 186
9.6.2 Case Study #2: Bhopal Disaster, 193
9.7 Summary, 195
Review Questions, 195
References, 196
Appendix 9.A: QAP Corporation – Annual Report, 196

10 Design Safety Reviews 209
Bruce K. Lyon

10.1 Objectives, 209
10.2 Introduction, 209
10.3 Challenges and Obstacles to Overcome, 211
10.4 Standards Requiring Design Safety, 214
10.5 The Review of Designs, 215
10.6 Hazardous Energy Control, 216
10.7 Ergonomic Review of Designs, 217
10.8 Design Review Process, 218
10.9 Hazard Analysis and Risk Assessment in Design, 220
10.10 Conclusion, 224
Review Questions, 225
References, 225
11 Risk Assessment and the Prevention Through Design (PtD) Model

Georgi Popov, Bruce K. Lyon, & John N. Zey

11.1 Objectives, 227
11.2 Introduction, 227
11.3 The Concept of Prevention Through Design (PtD), 229
11.4 Risk Assessment Process and the PtD Model, 229
11.5 Case Study, 234
 11.5.1 Methods, 234
 11.5.2 Results, 234
 11.5.3 Occupational Size-Selective Criteria and Particles Size Sampling, 237
11.6 PtD and the Business Process, 243
11.7 Summary, 244

Review Questions, 244
References, 244

12 Industrial Hygiene Risk Assessment

Georgi Popov, Steven Hicks, & Tsvetan Popov

12.1 Objectives, 247
12.2 Introduction, 247
12.3 Fundamental Concepts, 248
12.4 Anticipating and Identifying Occupational Health Risks, 249
12.5 Determining Occupational Health Risks, 250
 12.5.1 Health Risk Rating Methodology, 250
 12.5.2 Exposure Rating Methodologies, 251
 12.5.3 Health Effect and Exposure Methodology, 251
 12.5.4 COSHH Essentials Tool, 251
 12.5.5 OSHA’s Calculation for Mixtures, 254
 12.5.6 The ART Tool, 254
 12.5.7 Stoffenmanager, 254
12.6 Health Risk Assessments and Prioritization, 255
12.7 Modified HRR/IH FMEA Methodology, 256
 Sampling, 257
 Results, 257
12.8 Control Banding Nanotool, 261
12.9 Dermal Risk Assessment, 261
12.10 Occupational Health Risk and PTD Process Alignment, 262
12.11 Summary, 264
 Review Questions, 265
 References, 265

13 Machine Risk Assessments

Bruce K. Lyon

13.1 Objectives, 267
13.2 Introduction, 267
13.3 Machine Safety Standards, 268
13.4 Machine Hazards, 270
13.5 Machine Safeguarding, 271
 13.5.1 Machine Safety Control Systems, 273
CONTENTS

13.6 Selecting Machines for Assessment, 274
13.7 Risk Assessment of Machines, 274
13.8 Estimating Risk, 278
13.9 Case Study, 279
13.10 Assessment of Machine Maintenance and Service, 282
 13.10.1 Risk Assessment Process, 284
 13.10.2 Risk Reduction Process, 285
13.11 Summary, 285
 Review Questions, 286
 References, 286
 Appendix 13.A: Machine Safeguards Methods, 287

14 Project-Oriented Risk Assessments 291

Bruce K. Lyon

14.1 Objectives, 291
14.2 Introduction, 291
14.3 Fatalities and Serious Incidents, 293
14.4 Error Traps in Nonroutine Tasks, 294
14.5 Management of Change, 294
14.6 Construction Project Work, 296
14.7 Construction Project Risk Assessment, 297
14.8 Safe Work Methods, 299
14.9 Pretask Hazard Analysis, 301
14.10 The Use of Checklists, 303
14.11 Maintenance and Service Work, 304
14.12 Operating Hazard Analysis, 305
14.13 Analyzing Specific Hazards, 308
14.14 Pre-Entry Hazard Analysis, 308
14.15 Fall Hazard Assessment, 311
14.16 Summary, 317
 Review Questions, 317
 References, 317

15 Food Processing Risk Assessments 319

Georgi Popov, Bruce K. Lyon, & Ying Zhen

15.1 Objectives, 319
15.2 Overview, 319
15.3 Introduction to Food Risk, 320
15.4 Risk Assessment Techniques in the Food Industry, 320
15.5 Food Safety-Related Hazards, 321
 15.5.1 Biological Food Hazards, 321
 15.5.2 Chemical Food Hazards, 322
 15.5.3 Physical Food Hazards, 323
15.6 Techniques for Assessing Food Risk, 323
15.7 Hazard Analysis and Critical Control Points, 324
15.8 Integration of Risk Assessment Methods, 325
15.9 PtD and HACCP Integration, 338
15.10 Conclusions, 339
16 Ergonomic Risk Assessment

Bruce K. Lyon & Georgi Popov

<table>
<thead>
<tr>
<th>16.1 Objectives, 343</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2 Introduction, 343</td>
</tr>
<tr>
<td>16.3 Ergonomics and Design, 344</td>
</tr>
<tr>
<td>16.4 Ergonomic Hazards, 345</td>
</tr>
<tr>
<td>16.5 Ergonomic Risk Factors, 346</td>
</tr>
<tr>
<td>16.6 Establishing an Ergonomics Assessment Process, 346</td>
</tr>
<tr>
<td>16.6.1 Scope and Context, 348</td>
</tr>
<tr>
<td>16.6.2 Goals and Objectives, 348</td>
</tr>
<tr>
<td>16.6.3 Responsibilities, 348</td>
</tr>
<tr>
<td>16.6.4 Training, 348</td>
</tr>
<tr>
<td>16.6.5 Ergonomics Team, 348</td>
</tr>
<tr>
<td>16.7 Assessing Ergonomic Risk, 349</td>
</tr>
<tr>
<td>16.8 Ergonomics Improvement Process, 350</td>
</tr>
<tr>
<td>16.8.1 Identify Jobs, 350</td>
</tr>
<tr>
<td>16.8.2 Assessment Tools, 351</td>
</tr>
<tr>
<td>16.8.3 Assessment Team, 352</td>
</tr>
<tr>
<td>16.8.4 Performing the Assessments, 352</td>
</tr>
<tr>
<td>16.8.5 Identifying Corrective Measures, 353</td>
</tr>
<tr>
<td>16.8.6 Implementing Measures, 353</td>
</tr>
<tr>
<td>16.8.7 Verify and Refine, 353</td>
</tr>
<tr>
<td>16.8.8 Communicate Results, 354</td>
</tr>
<tr>
<td>16.9 ERAT: A Practical Assessment Tool, 354</td>
</tr>
<tr>
<td>16.9.1 ERAT Example: Pork Processing Belly Grader, 356</td>
</tr>
<tr>
<td>16.10 Conclusion, 359</td>
</tr>
</tbody>
</table>

Review Questions, 360
References, 360

Appendix 16.A: Sample Ergonomic Responsibilities for Involved Stakeholders, 361
Appendix 16.B: Sample Ergonomics Training for Involved Stakeholders, 363
Appendix 16.E: Hierarchy of Ergonomic Risk Controls, 367

17 Assessing Operational Risks at an Organizational Level

Bruce K. Lyon

<table>
<thead>
<tr>
<th>17.1 Objectives, 369</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2 Introduction, 369</td>
</tr>
<tr>
<td>17.3 Risks to an Organization, 370</td>
</tr>
<tr>
<td>17.4 Organizational Risk Management, 371</td>
</tr>
<tr>
<td>17.5 Key Definitions in Organizational Risk, 372</td>
</tr>
</tbody>
</table>
18 Risk Assessment Applications in Lean Six Sigma and Environmental Management Systems

Georgi Popov

18.1 Objectives, 389
18.2 Introduction, 389
18.3 Environmental Management Systems (EMS), 390
18.4 ISO 14001 Implementation, 390
 18.4.1 Environmental Policy and Planning, 392
 18.4.2 Environmental Aspects, 393
 18.4.3 Identify Environmental Aspects, 395
 18.4.4 Identification Process, 395
 18.4.5 Location, Department, Index, and Aspect, 396
 18.4.6 Impacts to Environmental Properties, 397
 18.4.7 Impact Subtotal and Polarity Adjustment, 397
 18.4.8 Impact Severity, 398
 18.4.9 Impact Probability, 398
 18.4.10 Frequency, 400
 18.4.11 Legal Risks, 400
 18.4.12 Current Controls, 401
 18.4.13 Significance Score for Significance Scores without Controls Section, 401
 18.4.14 Personnel Risk, 401
 18.4.15 Significance Scores with Controls Section, 403
 18.4.16 Overall Significance Rating Chart, 403
18.5 EMS and Implementation of Lean Six Sigma Practices, 404
18.6 Conclusions, 407

Review Questions, 407
References, 408

19 Business Aspects of Operational Risk Assessment

Elyce Biddle

19.1 Objectives, 409
19.2 Introduction, 409
19.3 The Business Case Development Tool, 410
 19.3.1 Steps of the Tool, 411
19.4 Business Case Examples, 412
 19.4.1 Case Example One: Post Incident, 412
 19.4.2 Case Example Two: Regulatory Requirement, 413
 19.4.3 Case Example Three: Operational, 416
 19.4.4 Case Example Four: Postoperational, 418
19.5 Conclusion, 424

Review Questions, 424
References, 424