Contents

Contributors, xxiv
Preface, xxxv

1 Traditional chocolate making, 1
 Stephen T. Beckett
 1.1 History, 1
 1.2 Outline of the process, 2
 1.2.1 Preparation of cocoa nib – flavour development, 5
 1.2.2 Grinding – particle size reduction, 5
 1.2.3 Conching – flavour and texture development, 7
 1.3 Concept of the book, 7
 References, 8

2 Cocoa beans: from tree to factory, 9
 Mark S. Fowler and Fabien Coutel
 2.1 Introduction, 9
 2.2 Growing cocoa, 10
 2.2.1 Where cocoa is grown, 10
 2.2.2 Varieties of cocoa: Criollo, Forastero, Trinitario and Nacional, 10
 2.2.3 Climatic and environmental requirements, 13
 2.2.4 Propagation of the planting material, 13
 2.2.5 Establishment and development of the plants in the field, 14
 2.2.6 Major pests and diseases, 15
 2.2.7 Flowering and pod development, 16
 2.2.8 Harvesting, pod opening and yields, 17
 2.2.9 Environmental and sustainability aspects of cocoa cultivation, 19
 2.2.10 Labour practices on farms, 19
 2.3 Fermentation and drying, 20
 2.3.1 Fermentation, 20
 2.3.2 Microbiological aspects of fermentation, 21
 2.3.3 Development of cocoa flavour precursors, 22
 2.3.4 Drying, 23
 2.4 The cocoa supply chain, 25
 2.4.1 Internal market, 26
 2.4.2 International cocoa markets, 26
 2.4.3 Shipment of cocoa, 29
 2.4.4 Moisture movement during shipment, 29
2.4.5 Storage of cocoa, 30
2.4.6 Infestation of cocoa, 31
2.5 The cocoa value chain: long-term perspectives and challenges, 31
2.6 Quality assessment of cocoa, 34
 2.6.1 Composition of cocoa beans, 34
 2.6.2 Cocoa beans: quality aspects and contracts, 34
 2.6.3 Cocoa beans: sampling and the “cut test”, 36
 2.6.4 Contaminants and residues, 41
 2.6.5 Cocoa butter hardness, 41
 2.6.6 Sensory evaluation, 42
2.7 Types and origins of cocoa beans used in chocolate, 42
 2.7.1 Sources of bulk cocoas, 43
 2.7.2 Côte d’Ivoire, 43
 2.7.3 Ghana, 43
 2.7.4 Indonesia, 44
 2.7.5 Nigeria, 44
 2.7.6 Cameroon, 44
 2.7.7 Brazil, 45
 2.7.8 Ecuador, 45
 2.7.9 Speciality and “fine” or “flavour” cocoas, 45
Conclusions, 47
References, 48
Appendix: Abbreviations, acronyms and organisations, 49

3 Production of cocoa mass, cocoa butter and cocoa powder, 50
 Henri J. Kamphuis, revised by Mark S. Fowler
3.1 Introduction, 50
3.2 Cleaning of cocoa beans, 50
3.3 Removal of shell, 52
3.4 Breaking and winnowing, 53
3.5 Alkalisation, 54
3.6 Bean and nib roasting, 54
3.7 Cocoa mass (cocoa liquor), 58
 3.7.1 Grinding cocoa nibs, 58
 3.7.2 Quality of cocoa nibs for the chocolate industry, 59
 3.7.3 Quality of cocoa mass for the production of cocoa powder
 and butter, 60
3.8 Cocoa butter, 62
3.9 Cocoa press cake and cocoa powder, 65
 3.9.1 Types of cocoa powder, 67
 3.9.2 Quality of cocoa powder, 68
Conclusion, 69
Appendix: Manufacturers of cocoa processing equipment, 70
References and further reading, 70
4 Sugar and bulk sweeteners, 72

Christof Krüger

4.1 Introduction, 72
4.2 The production of sugar, 72
4.3 Sugar qualities, 74
4.4 The storage of sugar, 75
4.5 Sugar grinding and the prevention of sugar dust explosions, 77
4.6 Amorphous sugar, 80
4.7 Other sugars and bulk sweeteners, 81
 4.7.1 Invert sugar, 81
 4.7.2 Glucose, 82
 4.7.3 Fructose, 82
 4.7.4 Tagatose, 83
 4.7.5 Lactose, 84
 4.7.6 Isomaltulose, 84
 4.7.7 Trehalose, 84
 4.7.8 Polydextrose, 84
 4.7.9 Inulin, 85
 4.7.10 Sorbitol, 86
 4.7.11 Mannitol, 86
 4.7.12 Xylitol, 86
 4.7.13 Erythritol, 87
 4.7.14 Maltitol, 87
 4.7.15 Maltitol syrup, 88
 4.7.16 Isomalt, 88
 4.7.17 Lactitol, 88
4.8 Physiological characteristics of sugars, bulk sweeteners and special polysaccharides, 89
4.9 The sweetening power of sugars and bulk sweeteners, 92
4.10 Other sensory properties of sugars and bulk sweeteners, 93
4.11 Solubilities and melting points of sugars and bulk sweeteners, 95
4.12 Maximum conching temperatures of chocolate masses with different bulk sweeteners, 95
4.13 Separate conching process for “no sugar added” chocolates, 97
4.14 Pre- and probiotic chocolates, 97

Conclusions, 98

References, 98

5 Ingredients from milk, 102

Ulla P. Skytte and Kerry E. Kaylegian

5.1 Introduction, 102
5.2 Milk components, 103
 5.2.1 Milk protein, 103
 5.2.2 Milk fat, 105
5.2.3 Lactose, 114
5.2.4 Vitamins and minerals, 114
5.3 Milk-based ingredients for chocolate, 114
 5.3.1 Milk fat ingredients, 115
 5.3.2 Milk powders, 118
Conclusion, 131
References, 131

6 Chocolate Crumb, 135
 Martin A. Wells
 6.1 Introduction and history, 135
 6.2 Benefits of milk crumb, 136
 6.3 Typical crumb recipes, 137
 6.4 Flavour development in chocolate crumb, 137
 6.5 Sugar crystallisation during crumb manufacture, 141
 6.6 The structure of chocolate crumb, 142
 6.6.1 Crystallinity, 143
 6.6.2 Fat availability, 143
 6.6.3 Fat droplet size, 143
 6.6.4 Aeration, 144
 6.6.5 Overall particle size distribution, 145
 6.7 Typical crumb processes and equipment, 145
 6.7.1 Batch oven process, 146
 6.7.2 Continuous processes, 146
 6.8 Effect of the crumb process upon the crumb properties, 150
 6.9 Changes to crumb during storage, 150
Conclusion, 151
References, 152

7 Properties of cocoa butter and vegetable fats, 153
 Geoff Talbot
 7.1 Introduction, 153
 7.2 Cocoa butter, 154
 7.2.1 Fatty acid and triglyceride composition, 154
 7.2.2 Polymorphism, 156
 7.2.3 Minor components, 161
 7.3 Cocoa butter equivalents, 162
 7.3.1 Main CBE component fats, 164
 7.3.2 Other CBE component fats, 170
 7.3.3 Structured triglycerides in CBEs, 171
 7.3.4 Production and uses of CBEs, 173
 7.4 Lauric cocoa butter substitutes, 176
 7.4.1 Quality control, 177
 7.4.2 Hydrogenated lauric CBSs, 178
7.5 Non-lauric cocoa butter replacers, 179
7.6 Vegetable fats with specific properties, 181
 7.6.1 Anti-bloom fats, 181
 7.6.2 Lower-calorie fats, 182
Conclusion, 182
References and further reading, 183

8 Flavour development in cocoa and chocolate, 185
 Gottfried Ziegleder
8.1 Introduction, 185
8.2 Fermentation, 185
 8.2.1 The fermentation process, 185
 8.2.2 Chemical changes and development of flavour precursors, 187
 8.2.3 Over-fermentation, 189
8.3 Drying, 190
 8.3.1 Influence of drying on flavour and flavour precursors, 190
 8.3.2 Flavour of unroasted, fermented cocoa beans, 191
8.4 Roasting, 193
 8.4.1 The roasting process, 193
 8.4.2 Utilisation of flavour precursors, 194
 8.4.3 Roast flavour, 195
 8.4.4 Flavour of alkalised cocoa, 201
8.5 Conching, 201
 8.5.1 Thin-film treatment of roasted cocoa mass, 201
 8.5.2 The conching process, 202
 8.5.3 Effect of conching on aroma development, 202
8.6 Dark chocolate and milk chocolate, 205
 8.6.1 Dark chocolate flavour, 205
 8.6.2 Milk chocolate flavour, 206
8.7 Flavour release in chocolate, 208
References, 209

9 Particle size reduction, 216
 Gregory R. Ziegler and Richard Hogg
9.1 Introduction, 216
9.2 Principles of fine grinding, 217
 9.2.1 Breakage mechanisms, 217
 9.2.2 Grinding processes, 218
9.3 Grinding equipment, 220
 9.3.1 Crushers, 220
 9.3.2 Media mills, 220
 9.3.3 Impact mills, 221
 9.3.4 Fluid energy mills, 222
 9.3.5 Guidelines for equipment selection, 222
Contents

9.4 Cocoa nib grinding, 224
9.5 Chocolate refining, 226
 9.5.1 The five-roll refiner, 228
 9.5.2 Crumb chocolate, 232
 9.5.3 Sugar substitutes, 232
 9.5.4 The refiner-conche, 232
 9.5.5 Refining in the presence of water, 233
 9.5.6 Milling cocoa powder, 233
9.6 Particle size reduction and chocolate flow properties, 233
9.7 Particle size and sensory properties, 237
Conclusions, 238
References, 239

10 Conching, 241
Stephen T. Beckett, Konstantinos Paggios and Ian Roberts
10.1 Introduction: the reason for conching, 241
 10.1.1 Flavour development, 241
 10.1.2 Flow property optimisation, 242
10.2 The principles of conching, 242
 10.2.1 Removal of volatiles and temperature control, 242
 10.2.2 Fat and emulsifier additions, 244
 10.2.3 Degree of mixing, 245
10.3 The three phases of conching, 248
 10.3.1 Dry phase conching, 248
 10.3.2 Pasty phase conching, 249
 10.3.3 Liquid phase conching, 250
10.4 Conching machines, 251
 10.4.1 History, 251
 10.4.2 The first conche development, 252
 10.4.3 Classification of conches, 252
 10.4.4 Vertically oriented shaft conches, 252
 10.4.5 Horizontally oriented shaft conches, 254
 10.4.6 Single shaft conches, 255
 10.4.7 Two shaft conches, 258
 10.4.8 Three shaft conches, 262
 10.4.9 Continuous conches, 263
 10.4.10 Add-on solutions to the conching process, 265
 10.4.11 Combined grinding and conching, 266
Conclusion, 272
References and further reading, 273

11 Chocolate flow properties, 274
Bettina Wolf
11.1 Introduction, 274
11.2 Non-Newtonian flow, 275
11.3 Presentation of viscosity measurements, 278
11.4 Single point flow measurement, 279
 11.4.1 Gallenkamp torsion viscometer, 280
 11.4.2 MacMichael viscometer, 281
11.5 Rotational viscometers, 282
11.6 Vibrational viscometers, 285
11.7 Oscillatory rheometers, 285
11.8 Sample preparation and measurement procedures, 286
 11.8.1 Sample preparation, 286
 11.8.2 Checking the viscometer, 287
 11.8.3 Preconditioning, 287
 11.8.4 Shear rate range, 288
 11.8.5 Holding time at the maximum shear rate, 288
 11.8.6 Hysteresis, 288
 11.8.7 Overall measurement time, 288
11.9 Factors affecting the flow properties of chocolate, 289
 11.9.1 Fat content, 289
 11.9.2 Particle size distribution, 290
 11.9.3 Surface active agents (emulsifiers), 291
 11.9.4 Conching, 294
 11.9.5 Moisture, 295
11.10 Advanced methods to characterise chocolate flow behaviour, 295

Conclusions, 296
Acknowledgements, 296
References, 296

12 Bulk chocolate handling, 298
 John H. Walker
12.1 Introduction, 298
12.2 Viscosity and viscometry, 298
 12.2.1 What is viscosity?, 298
 12.2.2 Laminar and turbulent flow, 300
12.3 Pump sizes, 301
 12.3.1 Power, 301
 12.3.2 Speed, 301
12.4 General criteria for choosing a pump, 301
12.5 Types of pump, 302
 12.5.1 Gear pumps, 302
 12.5.2 Sliding vane pump, 303
 12.5.3 Lobe and rotary piston pumps, 303
 12.5.4 Screw pump, 304
 12.5.5 Pawl pumps, 305
 12.5.6 Progressive cavity pump, 305
 12.5.7 Positive displacement piston and diaphragm pumps, 306
12.6 Pipeline pigging, 307
12.7 Storage of liquid chocolate, 308
12.8 Jacketed pipe work, 309
 12.8.1 Corrosion of stainless steel, 310
12.9 Valves, 311
 12.9.1 Plug cock valve, 311
 12.9.2 Butterfly valve, 311
 12.9.3 Ball valve, 311
12.10 Contamination removal, 312
 12.10.1 Magnets, 312
 12.10.2 Sieving, 312
Conclusions, 313
Acknowledgements, 313

13 Tempering, 314
Erich J. Windhab
13.1 Introduction, 314
13.2 Physics of cocoa butter crystallisation, 315
13.3 Chocolate tempering technology, 316
13.4 Measurement of temper and its related characteristics, 318
 13.4.1 Tempermeters, 319
 13.4.2 Differential scanning calorimetry, 321
 13.4.3 Thermorheometry, 322
 13.4.4 Nuclear magnetic resonance, 323
13.5 Tempering processes, 323
 13.5.1 The principle of conventional continuous chocolate “stir/shear-tempering”, 324
 13.5.2 Impact of temperature/temperature control, 324
 13.5.3 Impact of shear, 326
 13.5.4 Importance of residence time distribution, 330
 13.5.5 “Recipe factors” influencing tempering quality, 331
13.6 Types of tempering machine, 331
 13.6.1 Chocolate tempering kettles, 331
 13.6.2 Types of continuous industrial tempering machines, 332
 13.6.3 Continuous industrial seed-tempering, 341
13.7 Properties of CBCS tempered chocolate, 346
 13.7.1 Pre-crystallised liquid state, 346
 13.7.2 Semi-solid and solid state, 348
 13.7.3 Industrial process layouts, 350
13.8 Other methods of tempering, 352
Conclusion, 352
Acknowledgements, 353
References and further reading, 353
Appendix: Machinery manufacturers, 355
14 Moulding, enrobing and cooling chocolate products, 356
 Michael P. Gray, revised and updated by Ángel Máñez-Cortell

14.1 Introduction, 356
14.2 Moulding, 356
 14.2.1 Background, 356
 14.2.2 Loose and fixed mould plants, 357
 14.2.3 Mould conditioning, 360
 14.2.4 Depositors, 361
 14.2.5 Adding inclusions, 363
 14.2.6 Removal of air bubbles, 364
 14.2.7 Shell forming, 364
 14.2.8 Centre filling, 365
 14.2.9 Backing off, 365
 14.2.10 Cooling, 367
 14.2.11 Demoulding, 370
 14.2.12 Troubleshooting demoulding problems, 371
 14.2.13 In-line storage systems, 373
 14.2.14 Keeping moulds clean and changeovers, 374
 14.2.15 Other methods for shelling forming, 374
 14.2.16 Troubleshooting moulded product faults, 377
 14.2.17 Mould design, care and innovations, 379

14.3 Enrobing, 383
 14.3.1 Background, 383
 14.3.2 Basic layout of an enrober, 384
 14.3.3 Enrobbers with inbuilt temperers, 384
 14.3.4 Enrobbers with external temperers, 385
 14.3.5 Chocolate recirculation, 385
 14.3.6 Temper, 387
 14.3.7 Product centre, 387
 14.3.8 Enrober components, 387
 14.3.9 Changeovers, 393
 14.3.10 Avoidance of air bubbles, 393
 14.3.11 Avoidance of chocolate build-up inside an enrober, 393
 14.3.12 Downstream processes, 394
 14.3.13 Cooling, 395
 14.3.14 Troubleshooting enrobbed product faults, 397

Conclusions, 398
Acknowledgements, 398
References and further reading, 398

15 Non-conventional machines and processes, 400
 Dave J. Peters

15.1 Introduction, 400
15.2 Ultrasound, 400
15.3 High shear/low temperature crystalliser, 402
15.4 High pressure temperer, 404
15.5 Extrusion, 405
 15.5.1 Types of extruders, 405
 15.5.2 The extruder as a flavour modifier, 407
 15.5.3 The extruder as a chocolate conche, 407
 15.5.4 The extrusion of tubular shapes, ropes and nets, 410
15.6 “Single shot” depositors, 413
 15.6.1 Background, 413
 15.6.2 Basic principle of single shot depositing, 414
 15.6.3 Limitations of single shot depositing, 415
 15.6.4 Key control parameters, 417
15.7 Aeration of chocolate, 418
 15.7.1 Types of aeration, 418
 15.7.2 Vacuum aeration, 419
 15.7.3 High pressure aeration systems, 419
 15.7.4 Water evaporation methods, 420
15.8 Cold forming technologies, 421
 15.8.1 Background, 421
 15.8.2 Typical cold forming process, 422
 15.8.3 Advantages of cold forming technologies, 424
 15.8.4 Disadvantages of cold forming, 426
 15.8.5 Cold forming variants, 427
15.9 Paste conching, 428
Conclusions, 428
References, 429

16 Chocolate panning, 431

Marcel Aebi, revised by Mark S. Fowler

16.1 Introduction, 431
 16.1.1 History, 431
 16.1.2 Definitions, 431
16.2 Panning methods, 432
 16.2.1 Chocolate panning, 433
 16.2.2 Soft coatings, 433
 16.2.3 Hard coating, 433
 16.2.4 Film and suspension coating, 433
16.3 The process of chocolate panning, 434
 16.3.1 Centre selection, 434
 16.3.2 Centre preparation, 435
 16.3.3 Selection of chocolate and compound coatings, 438
 16.3.4 Chocolate and compound engrossing, 439
 16.3.5 Polishing and sealing, 442
16.4 Packaging and storage, 444
16.5 The panning department, 445
 16.5.1 Room conditions, 445
 16.5.2 Quality and troubleshooting, 446
 16.5.3 Panning equipment, 446
Conclusions and future developments, 449
References and further reading, 449
Appendix: Manufacturers of panning equipment, 449

17 Chocolate rework, 450
Edward Minson and Randall Hofberger
 17.1 Introduction, 450
 17.2 Rework, 450
 17.3 Constraints, 451
 17.4 Economics, 453
Conclusions, 455
References, 455

18 Artisan chocolate making, 456
Sophie Jewett
 18.1 Introduction, 456
 18.2 Chocolate trends in mature markets, 456
 18.2.1 Value-seeking consumers, 456
 18.2.2 Premium quality chocolate consumption, 456
 18.2.3 Sustainability, 457
 18.2.4 Nostalgia and tradition, 457
 18.2.5 Health and wellbeing, 457
 18.3 Selecting the right product lines to make, 458
 18.3.1 Filled chocolates, 458
 18.3.2 Hand-dipped or enrobed chocolate confectionery, 459
 18.3.3 Moulded chocolate forms, 461
 18.3.4 Chocolate bars or fragments, 462
 18.3.5 Bean to bar chocolate products, 463
 18.4 Critical considerations, 464
 18.4.1 Ingredients, 464
 18.4.2 Equipment, 465
 18.4.3 Working environment, 465
 18.4.4 Shelf life, 465
 18.4.5 Storage, 466
 18.4.6 Packaging, 466
 18.4.7 Labelling, 466
 18.4.8 Costings and pricing, 467
 18.4.9 Skills, 467
 18.4.10 Health and safety, 468
 18.5 Taking products to market, 469
 18.5.1 Market stalls and food festivals, 469
18.5.2 On-line retail sales, 470
18.5.3 Private orders and commissions, 470
18.5.4 Wholesale distribution, 471
18.5.5 Chocolate concessions, 471
18.5.6 Chocolate making for sweet shops and cafés, 472
18.6 Selecting the right chocolate, 473
18.6.1 Flavour, smoothness and speed of melt, 473
18.6.2 Viscosity, 473
18.6.3 In-house manufactured or purchased chocolate, 473
18.6.4 Legal and recipe requirements, 473
18.7 Hand-tempering techniques, 474
18.7.1 Why does chocolate need tempering?, 474
18.7.2 Hand-tempering methods, 475
18.7.3 Testing chocolate for temper, 477
Conclusions, 478
Further reading, 478

19 Chocolate compounds and coatings, 479

Stuart Dale

19.1 Introduction, 479
19.2 What are chocolate compounds and coatings?, 479
19.2.1 Ice cream coatings, 481
19.3 Manufacture of compounds and coatings, 482
19.4 How compounds are used, 485
19.5 Benefits of using chocolate compounds, 485
19.5.1 Non-tempering, 485
19.5.2 Cooling, 486
19.5.3 Heat resistance and fat bloom, 486
19.5.4 Texture and prevention of cracking, 487
19.5.5 Health benefits, 487
19.6 Trans fatty acids in chocolate compounds, 488
19.7 Environmental aspects, 489
19.8 Summary of the properties of compound coatings, 489
19.9 The future of compound coatings, 489
References and further reading, 491

20 Recipes, 492

Edward G. Wohlmuth

20.1 Chocolate tastes in different countries, 492
20.1.1 History, 492
20.1.2 Taste in different countries, 492
20.2 The basic ingredients, 494
20.2.1 Sugar, 494
20.2.2 Milk, 494
20.2.3 Cocoa beans and mass, 494
20.3 Conching to develop flavours, 495
20.4 Chocolate recipes, 496
 20.4.1 Chocolate bars/tablets, 496
 20.4.2 Chocolate confectionery products, 498
 20.4.3 Ice cream and frozen desserts/confectionery, 500
 20.4.4 Bakery and biscuit products
 (including chocolate chips), 502
 20.4.5 Speciality products, 505
 20.4.6 No added sugar chocolate, 506
 20.4.7 Compounds and coatings, 507
Conclusions, 508

21 Sensory evaluation of chocolate and cocoa products, 509
Meriel L. Harwood and John E. Hayes
1.1 Introduction, 509
21.2 Types of sensory tests, 510
 21.2.1 Threshold tests, 510
 21.2.2 Discrimination tests, 511
 21.2.3 Affective testing, 512
 21.2.4 Descriptive analysis, 512
 21.2.5 Time–intensity analysis, 513
21.3 Special considerations, 513
 21.3.1 Use of coloured lighting, 514
 21.3.2 Sample presentation, 514
 21.3.3 Palate cleansers, 514
 21.3.4 Fatigue and sample size, 515
 21.3.5 Evaluation temperature and product form, 516
 21.3.6 Tasting instructions, 516
21.4 General considerations/good sensory testing practices, 517
 21.4.1 Blinding codes, 517
 21.4.2 Sensory testing environment, 517
 21.4.3 Sample serving containers, 518
 21.4.4 Recruitment, 518
Conclusions, 519
References, 519

22 Nutritional and health aspects of chocolate, 521
Joshua D. Lambert
22.1 Introduction, 521
22.2 Macronutrients, 522
 22.2.1 Fats, 522
 22.2.2 Carbohydrates, 522
 22.2.3 Proteins, 522
22.3 Vitamins and minerals, 523
22.4 Flavanols and proanthocyanidins, 523
22.5 Methylxanthines, 524
22.6 Cardiovascular disease, 524
22.7 Obesity and metabolic syndrome, 525
22.8 Inflammation, 526
22.9 Neuroprotective and cognitive effects, 527
Conclusions, 529
Acknowledgements, 529
References, 529

23 Quality control and shelf life, 532
Marlene B. Stauffer
23.1 Introduction, 532
23.2 Finding the perfect bean, 532
23.3 Cocoa bean preparation on arrival, 535
23.4 Cocoa bean cleaning, 535
23.5 Roasting of cocoa beans, 537
23.5.1 Whole bean roasting, 538
23.5.2 Winnowing (separation of shell from nib), 539
23.5.3 Nib roasting, 539
23.6 Cocoa nib grinding, 539
23.7 Cocoa butter pressing, 541
23.8 Cocoa powder, 542
23.9 Chocolate manufacturing, 542
23.9.1 Mixing, 544
23.9.2 Refining, 544
23.9.3 Conching, 544
23.9.4 Standardising, 545
23.9.5 Particle size, 546
23.9.6 Type of fats, 547
23.10 Specifications, 547
23.10.1 Physical parameters, 547
23.10.2 Fineness (particle size), 548
23.10.3 Fat content, 548
23.10.4 Microbiological specifications, 548
23.11 Tempering, 548
23.12 Shelf life of finished confections, 549
23.12.1 What is shelf life?, 550
23.12.2 Effect of formulation, 550
23.12.3 Manufacturing, 551
23.12.4 Packaging and storage, 551
23.12.5 Distribution, 552
23.12.6 Shelf life determination, 553
24 Instrumentation, 555

Ulrich Loeser

24.1 Introduction, 555
 24.1.1 General measurement tasks, 555
 24.1.2 Microbiological measurements, 555
 24.1.3 Use of data analysis, 556
 24.1.4 Use of data analysis to provide long-term production stability, 556

24.2 Production measurement technology – in-/on-line, off-line, 557
 24.2.1 Recording time, 557
 24.2.2 Recording position (location), 557
 24.2.3 Recording by numbers, 561
 24.2.4 Recording “patterns”, 562
 24.2.5 Recording the degree of filling (fill level), 562
 24.2.6 Recording by weighing, 562
 24.2.7 Measuring temperatures, 564
 24.2.8 Recording the degree of temper, 567
 24.2.9 Pressure measurement, 569
 24.2.10 Measuring moisture/relative humidity, 570
 24.2.11 Recording flow characteristics, 570
 24.2.12 Recording particle size, 574
 24.2.13 Production monitoring, 575
 24.2.14 Detecting foreign matter, 582

24.3 Laboratory analysis, 584
 24.3.1 Moisture measurement, 585
 24.3.2 Determination of fat content (Soxhlet), 587
 24.3.3 Solid fat content, 588
 24.3.4 Particle size measurement, 590
 24.3.5 Triglyceride (triacylglycerides) composition (vegetable fat content), 592

24.4 Summary of important analytical procedures in a typical quality assurance laboratory, 594
 24.4.1 General, 594
 24.4.2 Analysis, 594

Conclusions, 595
Acknowledgements, 596
References and further reading, 596

25 Food safety in chocolate manufacture and processing, 598
 Faith Burndred and Liz Peace
 25.1 Introduction, 598
 25.2 The importance of food safety management in chocolate processing, 598
25.3 HACCP and prerequisite programmes, 599

25.4 Physical hazards, 599
 25.4.1 Physical hazards in incoming raw materials, 599
 25.4.2 Physical hazards during processing, 600
 25.4.3 Physical hazards from failures of prerequisite programmes, 602
 25.4.4 Equipment to prevent and detect physical hazards, 604

25.5 Chemical hazards, 604
 25.5.1 Chemical hazards in incoming ingredients, 605
 25.5.2 Chemical hazards occurring during processing, 607

25.6 Microbiological hazards, 607
 25.6.1 Salmonella, 607
 25.6.2 Salmonella in raw materials, 608
 25.6.3 Prevention of microbiological contamination during processing, 611
 25.6.4 Water control and cleaning practices, 612
 25.6.5 Microbiological monitoring, 613
 25.6.6 Escherichia coli 0157:H7 and other verocytotoxin-producing E. coli, 613

25.7 Allergen hazards, 614
 25.7.1 Allergens as ingredients, 615
 25.7.2 Allergens from cross-contacts at the factory, 616
 25.7.3 Control measures, 616

Conclusions, 617
References, 617

26 Packaging, 620
Carl E. Jones

26.1 Introduction, 620

26.2 Confectionery types, 620
 26.2.1 Moulded chocolate tablets and bars, 620
 26.2.2 Chocolate countlines, 621
 26.2.3 Bulk chocolate, 623
 26.2.4 Boxed chocolates, 623
 26.2.5 Twist wrapping, 626
 26.2.6 Easter eggs and other seasonal chocolate novelties, 628
 26.2.7 Shelf ready/retail ready packaging, 630

26.3 Flow wrap machinery and sealing, 631

26.4 Materials, 633
 26.4.1 Aluminium foil, 633
 26.4.2 Paper and board, 634
 26.4.3 Regenerated cellulose film, 637
 26.4.4 Plastic films, 638
 26.4.5 Cold seal, 642
 26.4.6 Biopolymers, 644
26.5 Sustainability, 646
 26.5.1 Biodegradable, 647
 26.5.2 Compostable, 647
 26.5.3 Renewable resources, 647
 26.5.4 Bioplastics, 647
 26.5.5 Recyclability, 648
 26.5.6 Recycled content, 648
26.6 Portion control, 648
 26.6.1 Tablets/blocks, 649
 26.6.2 Nibbles, 649
26.7 Quality control and environmental criteria, 651
 26.7.1 Quality control, 651
 26.7.2 Environmental issues, 652

References and further reading, 653

27 The global chocolate confectionery market, 654
 Jonathan Thomas
 27.1 Background, 654
 27.2 The global chocolate market, 656
 27.3 Industry supply, 657
 27.4 Global production and consumption of chocolate, 659
 27.5 Reasons for eating confectionery, 662
 27.6 The marketing of confectionery, 665
 27.7 The regulatory position, 669
 Conclusions, 672
 References, 674

28 Legal aspects of chocolate manufacture, 675
 Richard Wood
 28.1 Introduction, 675
 28.2 International standards – the Codex Alimentarius, 675
 28.2.1 Cocoa products, 676
 28.2.2 Chocolate products, 677
 28.3 European standards, 680
 28.3.1 Names and definitions, 681
 28.3.2 Optional ingredients, 685
 28.3.3 Calculation of minimum amounts, 685
 28.3.4 Use of vegetable fats other than cocoa butter, 685
 28.3.5 Industry initiatives, 686
 28.3.6 Chocolate cigarettes, 686
 28.4 United States of America, 686
 28.4.1 Breakfast cocoa, 687
 28.4.2 Cocoa/medium fat cocoa, 687
 28.4.3 Low fat cocoa, 687
 28.4.4 Chocolate liquor, 687
28.4.5 Sweet chocolate, 687
28.4.6 Milk chocolate, 687
28.4.7 Buttermilk chocolate, 688
28.4.8 Skim milk chocolate, 688
28.4.9 White chocolate, 688
28.4.10 Use of vegetable fats other than cocoa butter, 689

28.5 Canada, 689
28.5.1 Cocoa powder, 689
28.5.2 Low fat cocoa powder, 689
28.5.3 Cocoa liquor, unsweetened chocolate, bitter chocolate, 689
28.5.4 Chocolate, bittersweet chocolate, semi-sweet chocolate, dark chocolate, 689
28.5.5 Sweet chocolate, 689
28.5.6 Milk chocolate, 690
28.5.7 White chocolate, 690

28.6 BRIC markets, 690

28.7 Use of additives, 690

28.8 Labelling, 692
28.8.1 Legal name, 692
28.8.2 List of ingredients, 692
28.8.3 The quantity of certain ingredients (“quantitative ingredients declaration”), 692
28.8.4 Date of minimum durability and special storage conditions, 693
28.8.5 Batch code, 693
28.8.6 Business name and address, 693
28.8.7 Place of origin, 693
28.8.8 Net quantity or weight, 693
28.8.9 Nutrition information, 693

Conclusions, 693

Further reading, 694

29 Intellectual property: Protecting products and processes, 695

Patrick J. Couzens

29.1 Introduction, 695

29.2 Patents, 695
29.2.1 What is a patent?, 695
29.2.2 International protection, 698
29.2.3 The life of a patent family, 699
29.2.4 The cost of a patent, 701
29.2.5 Where to find patents, 702
29.2.6 How to read a patent, 702
29.3 Trade marks, 708
 29.3.1 Maintaining trade mark rights, 710
 29.3.2 Unfair competition and “passing off”, 711
29.4 Designs, 711
29.5 Copyright, 712
29.6 Contracts and agreements, 713
29.7 Trade secrets, 715
29.8 Defensive publication, 717
29.9 Strategy, 717
 29.9.1 High-level strategy, 718
 29.9.2 Innovation strategy and IP, 719
 29.9.3 IP strategies for individual developments, 720
29.10 Enforcement, 723
29.11 How to find help, 724
Conclusions, 725
References, 725
Appendix: Useful web addresses, 726

30 Future trends, 727
 Stephen T. Beckett
30.1 Past predictions, 727
 30.1.1 New materials, 727
 30.1.2 Packaging, 728
 30.1.3 Processing, 729
30.2 Present position, 729
 30.2.1 Materials, 729
 30.2.2 Processing, 730
30.3 Possible future trends, 731
References, 732

Glossary, 734

Useful physical constants, 737

Index, 739