Index

Analogy-based estimation, 146
Architecture, 69
 architectural block diagram, 74
characteristics and necessities, 72, 74, 75
design, 71–72
development, concept, 211
elements of system of systems, 71
first-level system architecture, 75
flowdown application to developmental parameters and practices, 71
guidelines for technology, 77
hardware and software architecture optimization, 78
medical system architecture, 74
network architecture bus topologies, 77
preliminary high-level system, 204
product and system, 70
resources, 78
selection, 69
criteria, 70
system architecting tools, 73
system architecture hierarchical (linear) representation, 76

trade examples in phase, with transition effects, 75
ASCII-accessible (text-based) commands, 206
AutoCAD MEP, 196
Automobile industry, 153

Battery control unit value stream, 170
Benchmarking, 13, 145, 209
Brainstorming assessments, 157
Budget limitations, 19, 136

Cash flow, 9
Certification, 107, 108
 by safety agencies, 108
Changing requirements, 34, 35
cost impact of, 34
during various design phase, 37
Collaborative optimization (CO) technique, 181, 238
Commercial off-the-shelf (COTS), 235
Commercial system, values, 8
Competition, 21, 22
Competitive cost, 143
Competitive systems, 22
Competitors, 22
Computer-aided design (CAD), 3, 158, 196, 206, 207, 238
Concept, 55
 axiomatic design, 56
 corporate strategies, 56
 creativity, 57–58
 rules for, 58
 design approaches, 56
 design thinking, 56
 drivers of innovation, 58
 functional integration, 57
 heritage, 59
 legacy/morphology, 56
 of operations (CONOPS), 9, 66
 options, multiple, 55
 requirements, 56
 simulation tools for, 56
 stage, 57
 structured approaches, 56
 trade studies, 193
TRIZ approaches, 56
Conflicts, 9, 47, 66, 110, 176, 197, 225, 231, 241, 242
 among values, 9
 reconciling, 18, 26
 resolving stakeholder, 26
CONOPS, see Concept, of operations (CONOPS)
Constraints, 17, 31, 62, 137, 154, 206, 244
Cost
 analysis, 144
 estimation relationship, 146
 factors affecting, 145
 structure characteristics, 145
Cost–benefit analysis, 22, 94
Cost estimation, 143–151
 costing factors, 144
 estimation methods, 144–148
 vs. project phase, 147
 learning curves, 148–149
 problems, 149–151
 hidden costs, 150
 software error sources and cost to correct, 151
 relationship, function of design sizing parameter, 146
 stakeholder involvement, 143–144
Coverage, defined, 88, 212
Customer
 focused process, 154
 needs and requirements, 179
 value, process to realize, 5, 8, 18, 133
Cycle time
 factors affecting, 145
 shorten, 163, 169
Database, 119
 breach, 195
 commonality, 158
 cost-information, 146
 failure, 195
 linkage, 3
 schedule Impact, 159
 secure, 190
 security database management, 78
 system’s knowledge, 204–207
Decision processes, 59
 amphibicycle example, 63, 65
 analytic hierarchy process, 65
 case studies, 179, 189–191
 cost/schedule issues, 59
 criteria used in various complex systems, 63
 measurable attributes, 63
 optimization, 63
 decision tree analysis, 62
 evaluations, 59, 61
 Kepner–Trego approaches, 63
 weight and rate approach, 63
 measurable attributes, 59, 60
 precautions, 59
 probabilistic methods, 61, 62
 Pugh matrix, 63, 64
 static decision methods, 61
 structured decision processes, 61
 trade analysis methods, 59, 60
 “weight-and-rate” approaches, 61
Design automation software, 197
Designed-in capability, 2
Design for X (DFX), 127, 213
 design for outsourcing, 128, 129
 factors affecting, cost and cycle time, 127, 128
 linkage in designing for cost, performance, and availability, 127, 128
Design requirements and objectives (DR&Os), 219
Design structure matrix (DSM), 215
activity relationships, 216
contingent activities and feedback loops, 218
cost and schedule risk, 217
representation of example process, 216
resequenced, 217
unmanned combat aerial vehicle, 219
Development management, 131
architecture, 132
evolutionary development, 133
incremental development, 132
key integrations, 132
linear development, 132
managing project development projects
CPM (critical path mapping) chart, 138, 140
Gantt chart, 137, 139
PERT chart, 138, 139
measuring progress, 133–141
GE Aircraft Engines, characteristics, 135
process to realize customer value, 133
research project cycle, 134
Six Flags amusement park project, 134
multiple deliveries, 133
organizations, 135
matrix organization for product design, 135, 136
project manager, 135
prioritizing sequencing, of activities, 138
design structure matrix, 141
refined process precedence matrix, 140
single delivery, 133
spiral model, 137
strategic approaches, 132
unified development, 132
V-shaped group of activities, 137
project cycle V+ model diagram, 138
waterfall design scheme, 136
Direct-production suppliers, 159
Documentation, 47, 84, 92, 113, 131, 150, 199–202, 208
DSM, see Design structure matrix (DSM)

Embedded sensors, 182
Equipment planning, 112

Estimation methods, 144–148
vs. project phase, 147

Facilitator, 44
Fail-safe concepts, 94
Failures, 81
Ames tunnel failure, 82
causes of, 81, 82
Chernobyl disaster, 82
design-caused problem, 82
electrical power distribution system, 82
fault tolerance, 87, 88
cross-strapping of channels, to avoid failures, 90
NASA’s Space Shuttle, 90
programmatic failures and, 93
human factors and hazards, 91–92
lack of suitable instrumentation, 82
list of, 82, 83
modes, 186
and effects, 84–87
out-of-specification operations, 82
overloading, 82, 83
product failure root cause analysis, 83, 84
programmatic faults, 93
redundancy concepts, 88–91
categories of redundancy, 89
providing increased reliability, 90
wrong environment/designs inadequate, 82
Fault tolerance, 87, 88, 93, 211
cross-strapping of channels, to avoid failures, 90
NASA’s Space Shuttle, 90
potential fault tolerance, 93
programmatic failures and, 93
Front-end emphasis, to ensure customer requirements, 2
Front-end systems, 196
Full operational system, 212
Functional analysis, 16, 41–46, 210, 211
Functional block diagram, 180
interfaces for spacecraft deployment mission, 45
Functional flows, 41–43
for Amphibicycle, 43, 44
diagrams, 43, 180, 191
for multisatellite project, 45
Functional flows (Continued)
multiple input/multiple output function flow, 42
sequential functional flow diagram, 42
translation, 43
for unmanned version of the F-35 fighter, 44

Gaussian process regression, 245
Government off-the-shelf (GOTS), 235
“Guesstimating,” 144

Handouts, minimization of, 3
Hardware projects, 144
Hazard. See also Failures
human factors and, 91–92
planning, in failure, 91
reduction and elimination, 92
system safety dealing with, 92

Health management system, for a
next-generation UAV, 173–188
concepts selection and trades, 181, 183
cost analysis, 186
design requirements, 174–177
failure analysis and mitigation, 183
functional analysis, 178–181
interfaces, 181
optimization of sensor number and layout, 177, 178
proposed management for implementation, 188
schedule to implementation, 187
system architecture, 183
validation and verification, 185–186

Hidden costs, 150
High-level functional flow, 203
High-percentage learning process, 148
House of Quality tool, 189

Human capital management process, 191

Implementation
framework for, 159
functional, 58
management for, 188
schedule to, 187
taken-for-granted fault tolerance, 87

INCOSE (International Council on Systems Engineering), 17, 154
lean systems engineering (LSE) group, 224, 225

Industry components, 14
Information vs. knowledge, 165, 166
Integrated hardware, and software development, 2

Integrated product and process development (IPPD), 2
advanced design IPPD environment, 122
benefits, 123, 124
impact on change traffic with IPTs on, 124
industries benefited, 124
and concurrency, 118
defined, 117–118

Integrated product teams (IPTs), 118
applications, 123
characteristics, 120
General Motors’ practices, 120
McDonnell Douglas firm, for F-18 E&F fighter, 120, 121
mechanisms for integrating teams, 121, 122
1200-person program, 120
product-to-system team assignments, 121
Venn diagram, showing intersection of IPPD and, 122, 123

Integrated project teams, 119–123
Honda Accord model case, 119

Integration, 108
facilitating V&V, 108, 109
software and hardware integration concerns and problems, 113
and test planning, 108
using QFD or N^2 matrices, 108

Intelligent structure concept, 181

Interaction, 7, 9, 41, 47, 48
functional, 53
hardware and software, 109
human-to-system, 47
metrics-data-barriers, 159
product/system with its environment, 47

Interactive performance, 14

Interfaces, 47, 205, 211
categorization, 48
compatibilities, 108
complexity
control, 53
document, 53
guidelines, 53
interdisciplinary, 245
seawolf swim-by-wire ship control, 49, 50
for wireless communication system, 49
International Council on Systems
Engineering (INCOSE), 221
Interviews, 8, 11, 18, 21, 22, 25
Inventory management, 8
Investment, 2, 8, 10, 22, 33, 146, 174, 176
IPPD, see Integrated product and process
development (IPPD)
IPTs, see Integrated product teams (IPTs)
Knowledge, 21
within an industry, 58
of customers and stakeholders, 21, 118
database, 203, 206, 207
driven process, 154
incomplete, 21
value flow, 166
Latin hypercube sampling, 245
Lean
build-to-package support center, 167
dealing with waste, 156–159
design, 156
published success stories, 156
enablers for systems engineering
(LEfSE), 221
ingineering approach and program
type, 161
enterprise model, 159–161
architecture and overarching
meta-principles, 159
maturity, 155
principles and practices, 153–161
thinking lean precepts, 154–156, 223
value definitions, 155
and value stream mapping, 213, 214
Lean systems engineering (LSE), 221,
223, 224
INCOSE, 224, 225
lean enablers for SE (LEfSE), 227, 228
examples, 229–232
intended use, 232
value, 225, 226
Learning curves, 148–149
cost reduction due to human learning, 149
derivation, 148
realistic, see Realistic learning curves
use, 148
LEfSE, see Lean, enablers for systems
engineering (LEfSE)
Legislation process
to enforce penalties for ID theft, 190
functional flow diagram for, 193
LSE, see Lean systems engineering (LSE)
Mapping process, 168
Market share, 8, 10, 22, 160
MATE (multiattribute trade space), 211
MBSE, see Model-based systems
engineering (MBSE)
MDAO, see Multidisciplinary analysis and
optimization (MDAO)
Measures of effectiveness (MOEs), 66
MIT-based Lean Advancement Initiative
(LAI), 222
Mitigation
checklist, 94
failure modes and mitigation plan, 186,
194, 195
risk mitigation practices, 100–105
MIT Lean Advantage Initiative (LAI),
214
Model-based systems engineering
(MBSE), 235
bottom-up disciplinary models, 237
continuing revolution in industry,
237–238
life-cycle time and process models, 237
status, 238–239
top-down system models, 237
Modeling
complex systems, examples, 235
definition of, 237
history of, 236–237
life-cycle milestones, 238
Monte Carlo simulations, 212
Multidisciplinary analysis and optimization
(MDAO), 66, 242, 243
history of, 245–246
nonlinear program (NLP), 243–245
optimization, 243–245
process
gradient-based methods, 244
grid and random searches, 244
intuition, 244
non-gradient-based methods,
244–245
Multidisciplinary analysis (Continued)
response surface formulations and adaptivity, 245
Multidisciplinary system design optimization (MSDO), 242
Multisatellite system, 22

National Aeronautic and Space Administration (NASA), 52
addendum to traditional SE manuals, 227
and GAO recommendations, 228
internal interface matrix, 52
NASA Ames wind tunnel explosion, 82, 92, 93

National Electrical Code (NEC), 204
N² diagram, character of interfaces, 191
Necessary waste, 154
Non-value-added activities, 168
N-squared (N²) matrix, 50–53
applications, 53
NASA internal interface matrix, 52, 53
rules, 51
simplified transmitter N×N matrix, 52
template, 51

Optimizing process flow, 169

Palisade software, 212
Passive sensors, 179
Photovoltaic modules, 205
Photovoltaic system construction projects, 196
Planning, 109, 209
conceptual, 187
integration and test planning, 108, 113
phase, 109
Process
development, 2
documentation, 208
Product and systems development, for unique identification authority of India, 189–195
concept development and trades, 192
design requirements, 190
failure modes and mitigation, 194
interfaces and functional analysis, 190–192

objectives, 189
project management, 194–195
stakeholders and values, 189–190
system architecture, 192
Product design, 7
Product development, 223
management, 212, 213
value stream, 3, 164, 214
optimization, 3
Productivity, 153
Six-Sigma Process, 156
Product values, 6, 13, 164
Profit margins, 9
Programmatic failures, 93
Purchaser, 7

QFD, see Quality function deployment (QFD)
Qualification, 107, 113
Quality assurance, 110–113
factors, 111
interrelationship in integration and testing, 111, 112
trends, 111
Quality control methods, 194
Quality function deployment (QFD), 23, 176, 210
analysis, 183
classic progression, 30
for cryogen replacement tool, 25. See also Stakeholders values matrix relationships, 26
process, 25
relationships b/w values and requirements, 201
strategy, 207
values–customer needs, 177
variants, 27
Quantifying requirements, 191
acceptable to public, 36
measurable attributes, 36
requirements basis for design, 36

RDT&E, see Research, development, testing, and evaluation (RDT&E)
Realistic learning curves, 149
Realistic model, 205
Redundancy concepts, 88–91
categories of redundancy, 89
NASA’s Space Shuttle, 90, 91
parallel redundancy, 89
providing increased reliability, 90
Regression analysis, of data, 146
Reliability, 95, 211

Requirements
development and management, 210
management, 34, 36
process, 37–39
QFD/House of quality crankcase, 38, 39
technical requirements, 37

Research
and development (R&D) projects, 146
development, testing, and evaluation (RDT&E), 148
supplier relations, supporting overarching practices, 159

Risk, 95, 211
contract risk characteristics, 100–105
interpretation of uncertainty, 97
management, 96, 99
estimating probabilities, 97, 98
for uncertain technology, 99
mitigation practices, 100–105
contract risk characteristics, 104
programmatic investment, principles of, 104
prototyping and simulations, 103
recurring programmatic risks, domains, 103
risk-reduction profile for the F-22 program, 101, 102
programmatic, 97
risk-reduction cost-effectiveness, 102
software risks, 99–100
checklist, 100, 102
management plan, 101

Six-sigma process, 156
Software development, for a photovoltaic system construction project, 196–208
functional flow and system architecture, 203–204
mechanisms to realize, 204–208
project scope and motivation, 196–197
requirements and conflicts, 197–203
review checklist, 208
risks and usage failures, 207–208
stakeholders and values, 197
Software error sources, 151
Software risks, 99–100
checklist, 100, 102
management plan, 101
Software system architecture, 204
Solar energy installation software, 173

Spreadsheet program, 206

Stakeholders, 163
connection, 7–11
and systems, 17, 18
values, 189
correlations, 202
needs, 190
potential, 198, 199
QFD, 175
quality function deployment relationships, 200
vs. corresponding values, 174

Stakeholder values, 5, 209
identities, 6
for oil filter system, 10
and qualitative requirements for supersonic businesses study, 33
quality function deployment (QFD), 23
values matrix, 24
steps to value stream mapping, 24
value proposition, 10
value stream, 10

Stating system, 190
Streamlining process, 163–167

Stretchable sensor network, 182
Structural prognostic program, 179
Supplier network, 160
proactive design and integration, 160
selection, 160

SE, see Systems engineering (SE)
Selection criteria, 21
Sensors, 185
network, 177
Signal transfer, 47
Simulation
complex systems, examples, 235
history of, 236–237
Six lean principles, 154

INDEX 257
System architecture, 185, 194
defined, 13
development, 8
hierarchical structures, 15
perspective, 31
of systems, 14, 15
value stream, 18, 19
Systems engineering (SE), 1, 13, 210, 221
cutting corners, 222
and design approach, 1, 2
framework depicting, 14
link between value analysis and measurable effectiveness, 14
INCOSE, concepts and definitions, 17
industry views, 16, 17
key practices, 16
process, benefits, 243
value activity flow diagram, 17
Tailor lean engineering, 160
Technology, 22
classification and relative cost risk, 147
Test planning, 108, 109, 113
outline, 113, 114
test funnel concept, 114, 115
Top-level functional flow diagram, 192
Total quality management, 155
Trade weight-and-rate approach, for selection, 184
Transportation, 14

UAV flight computer programmers, 174, 179, 180
UID card, 192
Unique Identification Authority of India (UIDAI), 189, 191
Unnecessary waste, 154
Unpiloted air vehicle (UAV), 173
Validation, 107, 109, 212
prognostic, 187
and verification progression, 112
Value approach
case studies, see Health management system; Product and systems development; Software development
concept and architecture development, 211
design for X, 213–214
functional analysis, 210–211
interfaces, 211
planning, 209
process summary and tools, 209–214
product development management, 212–213
requirements development and management, 210
risk, reliability, and fault tolerance, 211–212
stakeholder and, 210
systems engineering, 210
verification and validation, 212
Value-driven systems engineering approach, 197
Values
analysis, 1, 13, 14, 22, 23, 29, 32
customer, 18
proposition, 6
requirements QFD matrix for, 32
and stakeholder, 210
substituting, 26
translating to requirements, 32, 34
Value stream, 7, 107
analysis, 167
of development activities, 31
linear, 132
for manufacturing and product development, 157
Value stream mapping, 163–170, 164, 166, 169, 213
adaption to new developments, 167–170
generating information vs. generating knowledge, 165
process understanding for, 164
product development value stream, 164
product value stream development, 164
steps to, 170
streamlining process, 163–167
Vehicle health management interfaces, 181
Verification, 107, 212
design, 109, 110
reviews, 110
prognostic, 187
testing, 109
Waste
 implications on cost and schedule, 158, 159
measurement of information, 157
Ohno’s categorization, 157, 158
product development, 223

Weight optimization, 183
Wireless signals, 47

Words
 ambiguity, 35
 used in defining customer needs, 35

Worth, 6. See also Values