Index

Access to neuropsychological services in the schools, 9
Acquired knowledge: Academic achievement, 439–472
 mathematics disorders, 461–470
 assessment of, 467–470
SNP Model classification of, 468
 tests of fact retrieval, 468
 tests of mathematical calculations, 468–469
 tests of mathematical reasoning, 469–470
 tests of oral counting, 468
 qualitative behaviors of, 470
 definitions of, 462
 identifying concern of, 466–467
 neuroanatomical circuitry of, 463
 subtypes of, 462–466
 executive memory dysfunction, 464, 466
 number-sense dyscalculia, 463, 465
 verbal-symbolic dyscalculia (dyscalculia–Gerstmann syndrome), 463–464, 465
 visual-spatial dyscalculia, 464, 466
SNP Model classification of, 450
 tests of basic reading skills:
 orthographic coding, 451
 tests of basic reading skills:
 morphological/syntactic coding, 451
 tests of basic reading skills: phonological decoding, 450
 tests of reading comprehension, 452
 identifying concerns of, 447–449
neuroanatomical circuitry of, 440–443
 subtypes of, 444–448
 phonological dyslexia, 445–446
 spelling or word-form dyslexia, 445, 448
 surface dyslexia, 445, 447
 tests for speech and language pathologists, when to assess for, 439–440
SNP Model classification of, 459
 tests of expository composition, 459–460
 tests of handwriting skills, 461
 tests of orthographic spelling, 460–461
 tests of written expression, 459
SNP Model classification of, 457
 identifying concerns of, 457–458
 neuroanatomical circuitry of, 457
 qualitative behaviors of, 458
 subtypes of, 452–456
 constructional dysgraphia, 453, 455
 ideational dysgraphia, 453, 455
 ideomotor dysgraphia, 453, 455
 mixed dysgraphia, 453–454
 motor dysgraphia, 454, 456
 orthographic dysgraphia, 453–454
 phonological dysgraphia, 453–454
 semantic/syntactic (direct) dysgraphia, 453, 455
Acquired knowledge: Acculturation knowledge and language abilities, 421–438
 acculturation knowledge, 421–423
 assessing semantic memory, tests of, 422–423
SNP Model classification of, 422
Acquired knowledge (Continued)
when to assess for semantic memory,
422
language abilities, 424–437
assessing oral expression,
qualitative behaviors, 433–435
tests of oral expression, 429–433
tests of vocabulary knowledge,
430–432
assessing receptive language, 433–435
qualitative behaviors, 435
tests of receptive language, 433–435
identifying concerns of, 429
neuroanatomy of language, 424–427
lateralization of language, 424
oral expression, 424–425
receptive language or listening
comprehension, 425–426
right hemispheric involvement in
language, 427
summary of aphasias, 426–427
SNP Model classification of, 430
tests for speech and language
pathologists, 435–437
when to assess for, 429

Alcohol exposure, 85
American Board of Clinical
Neuropsychology (ABCN),
56–59
American Board of Professional
Neuropsychology (ABN),
56–59
American Board of Professional Psychology
(ABPP), 56
American Board of School
Neuropsychology (ABSNP),
57–59
Anoxia, 73
Anterior cingulate circuit, 347–348
Asthma, 82
Attention and working memory facilitators/
inhibitors, 373–396
allocating and maintaining attention
facilitators/inhibitors, 373–388
assessment of, 380–388
behavioral rating scales, 387–388
continuous performance tests,
383–384
qualitative behaviors,
SNP Model classifications of, 381
tests of attentional capacity, 384–387
tests of selective/focused and sustained
attention, 380–383
identifying concerns of, 380
neuroanatomy of, 376–379
theories of attention, 374–376
attentional capacity, 376
selective/focused attention, 375
sustained attention, 376
when to assess for, 379
working memory, 388–395
assessment of, 391–395
identifying concerns of, 390–391
neuroanatomy of, 390
qualitative behaviors, 391, 394–395
SNP Model classifications of, 391

Brain imaging studies on learning and
behavior, 33
Brain tumors, 73–74
Behavior Rating Inventory of Executive
Function Scales (BRIEF),
369–371
California Verbal Learning Test –
Children’s Version (CVLT–C),
316
Children’s Auditory Verbal Learning
Test – 2 (CALVT–2), 316
Children’s Memory Scale (CMS), 316
Case study illustration, 209–260
Clinical interpretation guidelines, 181–207
Clinical interpretation examples, 196–205
data analysis and interpretations,
188–195
ask how the child approached the
tasks, 188
avoid underinterpretation of the
data, 191–192
be careful of self-fulfilling
prophecies, 189
depth of processing interpretation
integrating reported problems with observable behavior and assessment data, 189–190
look for confirming trends in data, 190–191
selecting a test or assessment battery, 181–188
adopting a flexible approach to assessment, 183–184
case conceptualization, 181–183
relating the assessment to the referral question(s), 183
tests reporting to measure the same construct sometimes measure something different, 185
understanding the neurocognitive demands of the assessment measures, 184–185
understanding the role of behavioral rating scales, 186–187
understanding the role of “brief” measures, 186
when is enough, enough, in terms of testing? 187–188
Cocaine exposure, 85–86
Cognitive-Hypothesis-Testing Model, 99–102
Cross-battery assessment, 41

Definition of school neuropsychology, 12–13
Delis Kaplan Executive Function System (D-KEFS), 176–178
reporting D-KEFS scores within the SNP model, 177–178
Development of neuropsychological tests specifically designed for children, 32
Dorsolateral prefrontal circuit, 343–345

Early neuropsychological test batteries for children, 27–29
Ecologically valid assessment, 33–35
Emerging specialization of school neuropsychology, 1–21
definition of school neuropsychology, 12–13
journals that publish school neuropsychological research, 15, 18–19
need for neuropsychological assessment in the schools, 9–12
access to neuropsychological services in the schools, 9
limited usefulness of some neuropsychological reports, 9–11
unique contribution of school neuropsychological assessments, 11–12
reasons why there is a growing interest in school neuropsychology, 1–8
increased number of children with medical conditions that affect school performance, 3–6
increased use of medications with schools-aged children, 6
increase in the number of challenging educational and behavioral issues if the schools, 7–8
increased emphasis on the identification of processing disorders in specific learning disabilities, 8
recent school neuropsychology books, 14, 16–17
recognition of the neurobiological bases of childhood learning and behavioral disorders, 2–3
roles and functions of a school neuropsychologist, 13–15
Encephalitis, 76–77
End stage renal disease, 82–83
Environmental toxin exposure, 86
Executive functions, 339–372
assessment of, 351–371
cognitive flexibility or set shifting, 351–355
concept formation, 355–357
problem solving, planning, and reasoning, 357–362
SNP Model classifications of, 352
Executive functions (Continued)
qualitative behaviors, 364–368
corrected versus uncorrected errors, 367
feedback during task performance, 368
imitating behaviors, 368
omission and commission errors, 367
percent accuracy, 368
repetition errors, 367
rule violations, 368
set-loss errors, 366–367
sequencing errors, 368
time discontinuation errors, 368
total attempted items, 368
use of feedback during task performance, 368
response inhibition, 362–364
behavioral rating of, 369–371
Behavior Rating Inventory of Executive Function Scales (BRIEF), 369–371
Frontal-subcortical circuits, 344–345
identifying concerns of, 350
McCloskey’s 32 self-regulation executive function capabilities, 339–342
neuroanatomy of, 343–348
anterior cingulate circuit, 347–348
dorsolateral prefrontal circuit, 343–345
orbitofrontal circuit, 345–347
what are executive functions? 339–342
when to assess for, 348–349
Federal education laws and national task force reports, 36–40
Frontal-subcortical circuits, 344–345
Functional profile stage, 29–31
Future directions of school neuropsychological assessment, 473–480
continued refinement of the school neuropsychology conceptual model, 473
future trends in school neuropsychological assessment, 476–477
computerized assessment, 476–477
need for more base rates for qualitative behaviors, 477–
neuroeducation and school neuropsychology, 474–475
neuroimaging and school neuropsychology, 475–476
training issues in school neuropsychological assessment, 477–479
Genetic abnormalities, 77
Halstead and Reitan’s contribution to clinical neuropsychology, 25–26
HIV/AIDS, 83
Historical influences of clinical neuropsychology and school psychology, 23–49
brain imaging studies on learning and behavior, 33
development of neuropsychological tests specifically designed for children, 32
environmentally valid assessment, 33–35
functional profile stage, 29–31
influences of clinical neuropsychology, 23–49
integrative and predictive stage, 31–35
process assessment approach, 33
single-test approach stage, 23–25
test battery/lesion specification stage, 25–29
Halstead and Reitan’s contribution to clinical neuropsychology, 25–26
Historical influences of school psychology on school neuropsychology, 36–42
cross-battery assessment, 41
federal education laws and national task force reports, 36–40
IDEA, 36–37, 39, 46
NCLB, 36–37
White paper on SLD identification, 36, 39–40
linking assessment to evidence-based interventions, 41–42
theoretical frames of reference, 40–41
History of school neuropsychology, 43–48
1960s, 45
1970s, 46
1980s, 46
1990s, 46–47
2000s, 47–48
2010s, 48
Hydrocephalus, 84–85
IDEA, 36–37, 39, 46, 456
Influences of clinical Neuropsychology, 23–35
Increase in the number of challenging educational and behavioral issues in the schools, 7–8
Increased emphasis on the identification of processing disorders in specific learning disabilities, 8
Increased number of children with medical conditions that affect school performance, 3–6
Increased use of medications with school-aged children, 6
Influences of cultural, social-economic, and environmental factors, 123, 192, 194–195, 205
Integrated SNP/CHC Model, 111–123
Integrative and predictive stage, 31–35
Journals that publish school neuropsychological research, 15, 18–19
Juvenile diabetes, 83–84
Kaplan and colleague’s contribution to clinical neuropsychology, 27
Kaplan and colleague’s contribution to clinical neuropsychology, 27
Learning and memory cognitive processes, 303–337
assessing for, 314–336
immediate delayed verbal memory, 329–332
immediate verbal memory, 320–325
immediate delayed visual memory, 332–334
qualitative behaviors for, 334
immediate visual memory, 325–329
rate of new learning, 318–320
SNP Model classifications of, 314–315
verbal-visual associative learning and recall, 334–336
conceptual model of learning and memory, 306–309
evidence for and against the modal model of memory, 305–306
identifying learning and memory concerns, 313–314
long-term memory, 304–305
neuroanatomy of, 309–310
sensory memory, 303–304
short-term memory, 304
stand-alone tests of, 315–317
California Verbal Learning Test – Children’s Version (CVLT–C), 316
Children’s Auditory Verbal Learning Test – 2 (CALVT–2), 316
Children’s Memory Scale (CMS), 316
Test of Memory and Learning – Second Edition (TOMAL–2), 316–317
Wechsler Memory Scale – Fourth Edition (WMS–IV), 317
Wide Range Assessment of Memory and Learning – Second Edition (WRAML2), 317
theories of, 303–306
when to assess for, 312–313
Leukemia, 84
Levels of assessment model, 102–105
Limited usefulness of some neuropsychological reports, 9–11
Linking assessment to evidence-based interventions, 13, 32
Low birth weight and prematurity, 86
Luria’s contribution to clinical neuropsychology, 26–27
Marijuana exposure, 86–87
Mathematics disorders, 461–470
McCloskey’s 32 self-regulation executive function capabilities, 339–342
Meningitis, 77
Modification of testing materials, 91–92
Need for neuropsychological assessment in the schools, 9–12
NEPSY-II, 159–169
 administration choices, 163–164
diagnostic referral batteries, 164–165
full assessment, 163
general referral battery, 164
order of subtest administration, 167
reporting NEPSY-II scores within the SNP Model, 168–169
selective assessment batteries, 165–166
subtest descriptions, 160–163
types of scores generated, 167–168
Neuroanatomical circuitry of reading, 440–443
Neurofibromatosis, 77–78
Neuromuscular diseases, 80–82
Cerebral Palsy, 80–81
Muscular Dystrophy, 81–82
 attentional processing items, 380
 auditory processing items, 295
 executive function items, 350
 language abilities, learning and memory, 313
 mathematics achievement, 467
 reading achievement items, 449
 sensorimotor items, 269
 speed, fluency, and efficiency of processing, 402
 visuospatial items, 288
 working memory items, 390
 written language achievement items, 458
Neuropsychological disorder nomenclature
 Academic impairments, 441
 attention impairment terms, 379
 executive function terms, 349
 language impairments, 428
 learning and memory terms, 310–312
 motor impairment terms, 268
 sensory impairments terms, 268
 visuospatial impairments terms, 286
Neuropsychological test batteries for children, 27–29
Nicotine exposure, 86
No Child Left Behind Act (NCLB), 36–37
Non-response to evidence-based interventions, 89
Orbitofrontal circuit, 345–347
Process assessment approach, 33
Proposed professional guidelines to train school neuropsychologists, 60–67
Rapid drop in achievement that cannot be explained, 89
Reading disorders, 440–449
Reasons why there is a growing interest in school neuropsychology, 1–8
Recent school neuropsychology books, 14, 16–17
Recognition of the neurobiological bases of childhood learning and behavioral disorders, 2–3
Report writing, 127–158
 basic principles, 127–138
 “a picture is worth a thousand words”, 133
 avoiding the use of jargon, 131–132
 components of a school neuropsychological report, 138–157
 describing the child’s performance and not just the test scores, 133–134
 including or not including data in a report, 132–133
linear versus integrative report writing styles, 131
organizing the report, 138–139
relate the child’s test performance to real–world examples, 135–136
tips for report writing, 129–130
why are school neuropsychological evaluation lengthy? 127–128
current assessment instruments and procedures, 142–143
diagnostic impressions, 154
evaluation results, 144–154
identifying information, intervention strategies and recommendations, 155–157
reason for referral, 139
summary section, 154
suggested report headers, 146
test observations and related assessment validity, 143–144
what to title the report? 138
Roles and functions of a school neuropsychologist, 13–15
School re-entry, 87–89
School Neuropsychological Conceptual Model, 99–125
continued refinement, 473–474
integrated SNP/CHC model, 111–123
levels of assessment model, 102–105
model from 2007 to 2012, 105–111
overview, 105–123
prior models of school neuropsychological assessment, 99–102
transactional model, 99–100
Seizure disorders, 78–79
Sensorimotor functions, 261–281
assessing sensorimotor functions, 270–380
fine-motor functions, 272–273
tests of coordinated finger/hand movements, 273–274
gross motor functions, 278
tests of gross motor functions, 278
Identifying sensorimotor functions, 269–270
lateral preference, 270
sensory functions, 271–272
tests of auditory and visual acuity, 271–272
tests of tactile sensation and perception, 272
when to assess sensorimotor functions, 267
sensory functions, 261–264
definitions, 261–262
neuroanatomy of, 262–264
sensory impairments terms, 268
Sickle cell disease and other cerebrovascular diseases, 78, 80
Significant scatter in psychoeducational test performance, 90
Single test approach stage, 23–25
SNP Model classifications of, 271
motor functions, 264–270
definitions, 264–266
neuroanatomy of, 266–267
qualitative behaviors, 278–280
visual–motor integration skills, 274
tests of visual–motor copying skills, 274–276
visual scanning, 276–277
qualitative behaviors, 276
Specialty certification in school neuropsychology, 57
American Board of School Neuropsychology (ABSNP), 57
Specific Learning Disabilities
IDEA definition, 40
Speed, fluency, and efficiency of processing facilitators/inhibitors, 397–419
assessing, 403–418
acquired knowledge fluency, 413–416
Speed, fluency (Continued)
- tests of mathematics fluency, 416
- tests of reading fluency, 413–415
- tests of writing fluency, 415
- fluency with accuracy, 416–418
- performance fluency, 403–411
- tests of figural fluency, 405, 407
- tests of naming fluency, 407–410
- tests of oral fluency, 410–411
- tests of perceptual fluency and rate of test taking, 405–407
- tests of psychomotor fluency, 404–405
- retrieval fluency, 411–413
- SNP Model classification of, 403
definitions, 397–398
- identifying deficits in, 401
- models of processing speed, 398–400
- neuroanatomy of, 400–401
- when to assess for, 401

Spina Bifida, 84–85
Students with special needs, 91–95
Subtypes of reading disorders, 444–447
Suspected processing weaknesses, 90

Test batteries, 159–179
- Delis-Kaplan Executive Function System, 176–178
- NEPSY-II, 159–169
- Wechsler Intelligence Scale for Children – Fourth Edition
 Integrated, 169–176

Test battery/lesion specification stage, 25–29

Test of Memory and Learning – Second Edition (TOMAL-2), 316–317

Theoretical Frames of Reference, 40–41

Train school neuropsychologists, proposed
professional guidelines to, 60–67
clinical syndromes and related
neuropsychological deficits, 66
conceptual model, 65
continuing education, 67
ethics and professional competencies, 66
evidence-based interventions, 66
functional neuroanatomy, 62

genetic and neurodevelopmental
disorders, 65–66
history of clinical, pediatric, and school
neuropsychology, 64
major theoretical approaches, 64
neuropsychological disorder
nomenclature, 65
neuropsychopharmacology, 66
professional issues, 64
specific theories of, assessment of, and
interventions with major
cognitive processes
supervised experiences, 66–67

Training and Credentialing in School
Neuropsychology, 51–68
how does the integration of
neuropsychological principles fit
within the broader field of school
psychology? 51–53
training and credentialing standards,
53–60
what constitutes competency? 53–60
specialty certification in adult and
pediatric neuropsychology, 56–57
specialty certification in school
neuropsychology, 57

Transactional model, 99–100

Unique contribution of school
neuropsychological assessments,
11–12

Visuospatial and auditory cognitive
processes, 283–301
auditory processes, 291–300
- assessing auditory processing,
 296–300
- SNP Model classifications of, 296
tests of basic sound discrimination,
 296–297
tests of auditory/phonological
 processing, 297–300
identifying auditory processing
 concerns, 295
neuroanatomy of, 294–295
visuospatial processes, 283–291
assessing visuospatial processes, 289–291
identifying visuospatial processing concerns, 288–289
neuroanatomy of, 284–288
dorsal and ventral pathways, 285–286
face recognition, 287–288
primary visual pathway, 285
visual object recognition, 286–287
qualitative behaviors of visuospatial perception, 291–292
tests of visuospatial perception, 289–291
tests of visuospatial reasoning, 291–294
Wechsler Intelligence Scale for Children – Fourth Edition Integrated, 169–176
perceptual reasoning process subtests, 172–173
Block Design Multiple Choice, 172
Block Design No Time Bonus, 172
Block Design Process Approach, 172–173
Elithorn Mazes, 173
processing speed process subtests, 175
Coding Copy, 175
Coding Recall, 175
reporting WISC–IV Integrated scores within the SNP model, 175–176
verbal comprehension process subtests, 171–172
Comprehension Multiple Choice, 171–172
Information Multiple Choice, 171–172
Similairties Multiple Choice, 171–172
Picture Vocabulary Multiple Choice, 171–172
Vocabulary Multiple Choice, 171–172
working memory process subtests, 173–175
Arithmetic Process Approach, 174
Letter Number Sequencing Process Approach, 174
Letter Span, 174
Spatial Span, 174
Visual Digit Span, 173
Written Arithmetic, 174–175
When to refer for a school neuropsychological assessment, 69–97
acquired or congenital brain damage, 73–80
anoxia, 73
brain tumors, 73–74
encephalitis, 76–77
genetic abnormalities, 77
meningitis, 77
neurofibromatosis, 77–78
seizure disorders, 78–79
Sickle Cell Disease and other cerebrovascular diseases, 78, 80
central nervous system infection or compromise, 82–85
asthma, 82
End Stage Renal Disease, 82–83
HIV/AIDS, 83
Hydrocephalus, 84–85
Juvenile Diabetes, 83–84
Leukemia, 84
Spina Bifida, 84–85
common referral reasons, 69–91
head injuries, 71–73
known or suspected neurological disorder, 70–71
modification of testing materials, 91–92
neurodevelopmental risk factors, 85–87
alcohol exposure, 85
cocaine exposure, 85–86
environmental toxin exposure, 86
nicotine exposure, 86
low birth weight and prematurity, 86
marijuana exposure, 86–87
neuromuscular diseases, 80–82
Cerebral Palsy, 80–81
Muscular Dystrophy, 81–82
neuropsychological tests translated into a foreign language, 94
When to refer for a school (Continued)
non-response to evidence-based interventions, 89
rapid drop in achievement, 89
recognizing influences of cultural, social-economic, and environmental factors, 93–95
school re-entry, 87–89
significant scatter in psychoeducational test performance, 90
students with special needs, 91–95
suspected processing weaknesses, 89
White paper on SLD identification, 36, 39–40
Wide Range Assessment of Memory and Learning – Second Edition (WRAML2), 317
Written language disorders, 449, 452–461