INDEX

Air circuit breakers, 236–237
Ampère’s law, 26, 64, 74, 75
Animal sensitivities to electric current, 102–104
ANSI Standard C37.50–1989, 275–278
low-voltage AC power circuit breakers
testing according to, 275–278
endurance tests, 277
overload tests, 277
short-circuit current tests, 278
Arc flash hazards, 172–215
analysis, 172–215
procedural or administrative methods, 173
safety by prevention, 174
factors affecting, 176–180
85% factor, 179
box gap, 177
distance, 178
electrode gap, 177
fault type, 178
frequency, 178
grounding type, 177
voltage, 177
low-voltage transformer secondary arc
flash protection using fuses, 203–215
mitigation techniques, 175
operational safety, 174
reduction, low-voltage breaker
instantaneous trips coordination for, 187–204
time–current curve examples, 190–204
remediation of, 181–187
safety by protection 174
Automatic electric defibrillator (AED), 109
Bioelectromagnetism, 114
Body parts, capacitance of, 69–71
Box gap, 177
Bundled conductors, pinch forces on, 311–316
Bus bar impedance calculations, 84–89
Cable inductance, 81–83
Cable mechanical limits, 319
Cable resistance, 53–58
Cable thermal limits, 318
Calculus with vectors, the gradient, 18–23
Coulomb’s law, 20
de operator (V), 19
electric field (v/m), 20
gradient of the field, 19
gradient theorem, 22
scalar field, 18
vector field, 20
Capacitance, 59–73
of body parts, 69–71
skin capacitance, 69–70
trunk and limb, 70–71
of cables, 72–73
capacitor banks, 62
ceramic disk capacitor, 60
de link capacitors, 72
in electrical circuits, 65–69
electrical hazards of, 71–72
electrolytic capacitor, 60
film capacitor, 60
filter capacitors, 71
fundamentals, 59–62
and permittivity, 62–65
power capacitors, 71
Capacitance (Continued)
stack rack capacitors, 61
surge capacitors, 62
tantalum capacitors, 60
Ceramic disk capacitor, 60
Charging current determination, 169–171
three-line diagram, 170
zero-sequence diagram, 170
Chopped-wave impulse test, 339
Circuit breakers (CBs), 235–298, See also
low-voltage circuit breakers
high fault currents effects on, 235–298
air circuit breakers, 236–237
case studies, 245–249
insufficient interrupting capability, 236
loss of interruption medium, 241–242
SF₆ circuit breakers, 239–241
switching devices, interrupting ratings of, 242–243
vacuum circuit breakers, 237–239
Circuit model of human body, 90–100, See also
current effect on human body;
frequency response of human body
impedance with wet skin, 94
electrical shock calculation using, 90–93
hand-to-foot conduction, with dry skin, 91
complex numbers, 5
argument of, 6
exponential form, 6
magnitude of, 6
in a polar form, 5
in a rectangular form, 5
Complex plane, 5
Conductance, 38–42, See also particle conductivity
Conductor
equations of motion, 331–332
motion due to fault currents, 328–329
shape effect, high fault currents and, 330–331
stretch effect, high fault currents and, 332
Connector damage due to excessive
short-circuit stresses, 143–144
Coordination time interval, 234
Corona rings, 327
Coulomb’s law, 20
Critical operations power system (COPS), 189
Critically damped system, 68
Cross product or outer product of two vectors, 17–18
Curl, 23–25
Current effect on human body, 101–117, See also
human body impedance
electrical shock, 101–102
electrocution equation, 103
exposure conditions effects, 107–108
bare feet, 107–108
shoes and other insulated objects, 108
wet conditions, 107–108
hand-to-foot conduction, 110–111
human and animal sensitivities to electric current, 102–104
human body impedance, 104–107
medical imaging and simulations, 114–117
respiratory paralysis, 103
ventricular fibrillation, 103
Current limiting fuses (CLF), 175
Current paths through the body, 108–113
Current transformer (CT) saturation,
217–219
delayed tripping, 218
failure to trip, 218
false tripping, 218
line-to-line testing, 226
low-ratio CTs, saturation of, 219–224,
See also individual entry
testing of, 224–227
three-phase testing, 226
Current-limiting fuses, 244
Cylindrical coordinate system, 12
DC link capacitors, 72
Defibrillation, 109
Del operator (V), 19
Delayed tripping, 218
Differential area vector, 11, 14, 16
Differential of a number, 3
Differential of a scalar field, 19
Displacement field, 74
Distribution class surge arrester, 350
Distribution line conductor motion, 319–320
Distribution systems, 147–171
ferroresonance, 166
grounding in, 163–166
grounding of, 147–171
high-resistance grounding of, 167–171
charging current determination, 169–171
overvoltages in, 163–166
secondary systems, 120/240 V single phase, 154–159
sequence network, 163
positive-sequence networks, 163
negative-sequence networks, 163
single-phase multigrounded neutral distribution line, 152
stray currents in, 147
three-phase multigrounded neutral distribution line, 148–154
transient overvoltages, 166
ungrounded three-phase feeder, 164
wire configurations, 163
four-wire multigrounded neutral system, 163
four-wire unigrounded neutral system, 163
three-wire ungrounded, 163
three-wire unigrounded, 163
zero-sequence capacitive reactance, 163

Divergence, 23–25
Dot product or inner product of two vectors, 17–18

Electric field (v/m), 20
Electrical circuits, capacitance in, 65–69
series RLC circuit, 67
Electrical hazards of capacitance, 71–72
Electrical impedance tomography (EIT), 114
Electrical shock, 101–102
calculation using circuit model of human body, 90–93
Electrical theory, inductance in, 74–76
Electrocardiography (ECG), 117
Electrode equation, 103
Electrode gap, 177
Electrolytic capacitor, 60
Electromagnetic force test, 143
Electromagnetism, mathematics used in, 1–29
Electromechanical protective relay, 231
Endurance tests, 256
Energy boundary curve (EBC), 190
Energy flow, 44–47
Euler’s formula, 6
Exponential form of complex numbers, 6
Expulsion type fuses, 244
False tripping, 218
Faraday’s law, 25
Fault current tests for connectors, 144
Fault currents effects on protective relays, 232–233
Ferroresonance, 166
Film capacitor, 60
Filter capacitors, 71
Finite element method (FEM) models, 117
Fixed bus bar, 299
Flameproof resistors, 35
Flexible conductor buses, 305–316
Flux, 23
Force safety devices (FSDs), 316–318
operation of, 317
Frequency response of human body, 93–100
Full-wave impulse test, 339
Fuses, 244–245
current-limiting fuses, 244
expulsion type fuses, 244
low-voltage transformer secondary arc flash protection using, 203–215
Gas-insulated substations (GIS), 322–324
high fault currents effects on, 322–324
Gauss’s law, 26–28
Gradient (grad) of the field, 19
Gradient theorem, 22
Ground fault current interrupter (GFCI), 147, 154
Ground grid design, 118–137
conductor sizing, 119–122
critical parameters in, 119
detailed design, 127
fundamentals of, 118–137
ground grid layout, 124
ground potential rise (GPR), calculation of, 125
ground resistance calculation, 124
IEEE Standard 80, 128–137, See also individual entry
maximum grid current, calculation, 125
mesh voltage, calculation, 125–127
procedures, 119–127
sample procedure for, 120
site survey, 119
step voltage, 122–124
calculation, 127
touch voltage, 122–124
Ground grid operation and maintenance, 138–146
excessive short-circuit currents
connector damage due to, 143–144
thermal damage due to, 142–143
fault current tests for connectors, 144
high fault currents, effects of, 138–142
safety aspects of, 138–146
soil drying increasing soil resistivity, 144–145
Grounding equipment, 142–143
damage or failure of, 142–143
Grounding in distribution systems, 163–166
Grounding type, 177
Grover formula, 76
High fault currents effect, 138–142, 216–234, See also under circuit breakers
on coordination, 228–230
current transformer (CT) saturation, 217–219, See also individual entry
fault currents effects on protective relays, 232–233
high fault currents effect on coordination, 228–230
on protection and metering, 216–234
protective relay ratings and settings, 230–232
in substation equipments damage, 299–324, See also under substation equipment damages
on transmission lines, 325–337, See also under transmission lines
upgrading protection system methods, 233–234
update protective device coordination study, 233–234
update short-circuit study, 233
High-resistance grounding of distribution systems, 167–171
High-voltage circuit breakers testing, 297–298
.capacitor switching current tests, 298
.conformance tests, 298
.continuous-current-carrying tests, 298
design tests, 297
dielectric withstand tests, 298
interrupting time tests, 298
load current switching tests, 298
maximum-voltage tests, 298
.power frequency tests, 298
.production tests, 297
.short-circuit current interrupting tests, 298
.standard operating duty (standard duty cycle) tests, 298
.transient recovery voltage (TRV) tests, 298
Horizontally spaced conductors, 329
Human and animal sensitivities to electric current, 102–104
Human body impedance, 104–107
components, 106
.internal body impedance, 104
Human response to electrical shock, 113–114
current magnitude, 113–114
duration, 113–114
.exposure conditions, 113–114
IEC Standard 60898–1 and -2, 288–290
circuit breakers used in households and similar installations testing according to, 288–290
IEC Standard 60934, 290–297
circuit breakers used in equipments testing according to, 290–297
IEC Standard 60947–1, 282–284
low-voltage switchgear and controlgear testing according to, 282–284
IEC Standard 60947–2, 284–287
low-voltage AC and DC circuit breakers testing according to, 284–287
operational performance capability tests, 286
.short-circuit current tests, 286
IEC Standard 60947–4–1, 287–288
circuit breakers used for across-the-line starters for motors testing according to, 287–288
IEEE Standard 80, ground grid design example from, 128–137
X/R ratio of transformers, 129
.low-voltage DC power circuit breakers testing according to, 278–282
Imaginary numbers, 3
Imaginary unit, 3
Impulse function, 339
INDEX

1.2/50 impulse wave, 339
Inductance, 74–89
bus bar impedance calculations, 84–89
cable inductance, 81–83
definitions of, 74
in electrical theory, 74–76
external inductance, 82
internal inductance, 82
internal self-inductance, 75
partial inductance, 76
skin effect, 77–81
surge impedance, 83–84
Inductors or reactors, 77
Insulated-case circuit breakers (ICCBs), 249–250
Insulation coordination, 352
Integers, 2
Intermediate class surge arrester, 350
Internal body impedance, 104
Internal self-inductance, 75
Irrational numbers, 3
Legally required standby systems (LRSS), 188
Let-through current, 341
Lightning and surge protection, 338–352
Low-ratio CTs, saturation of, 219–224
AC saturation, 219–221
DC saturation, 221–224
Low-voltage AC power circuit breakers
testing, 275–278
Low-voltage circuit breakers, 249–251
insulated-case circuit breakers (ICCBs), 249–250
molded-case circuit breakers (MCCBs), 250
testing of, 251–297
according to UL Standard 489, 252–259
Low-voltage power circuit breakers (LVPCBs), 249
Lumped circuit parameter, 31
Magnetic flux, 74
Magnetic resonance imaging (MRI), 117
Manuzio formula, 336–337
Mathematical operations with vectors, 17–18
Mathematics used in electromagnetism, 1–29. See also numbers
Matrix, 17
Maximum grid current, calculation, 125
Maxwell’s displacement current, 74
Maxwell’s equations, 25–29
Mechanical loading on phase-to-phase spacers, calculation of, 335–336
Medical imaging and simulations, 114–117
Mesh voltage, calculation, 125–127
Miniature circuit breaker, 261
Mitigation techniques, 175
Molded-case circuit breakers (MCCBs), 250
Natural numbers, 2
Negative integers, 2
Non-ceramic insulators (NCI), 325–328
high fault currents effect on, 325–328
phase-to-phase insulators, 325–326
post insulators, 325–326
suspension insulators, 325–326
Noninductive resistor, 36
Nonnegative integers, 2
Norm of a vector, 8
Numbers, 2–17
complex numbers, 5
differential of a number, 3
imaginary numbers, 3
integers, 2
irrational numbers, 3
mathematical operations with vectors, 17–18
natural numbers, 2
negative integers, 2
nonnegative integers, 2
positive integers, 2
rational numbers, 2
real numbers, 3
scalar, 8
vectors, 7
Numerical protective relays, 230
Objectionable currents, 147
Ohm’s law, 41
Ohmic conductivity, 41
Overdamped system, 68
Overload characteristic, 32
Overvoltages in distribution systems, 163–166
Partial inductance, 76
Particle conductivity, 50–53
Permittivity, 62–65
 relative permittivity, 64
Personal protective equipment (PPE), 173
Phase-to-phase insulators, 325–326
Phase-to-phase spacers, 335–336
Phasors, 7
Pinned bus bar, 299
Plate resistor, 36
Plate rheostat, 36
Polar form
 of complex numbers, 5
 of a vector, 8
Polarization, 74
Positive integers, 2
Post insulators, 325–326
Power and energy flow, 44–47
Power capacitors, 71
Poynting vector, 75
Protected pole, 291
Protective relay
 fault currents effects on, 232–233
 ratings and settings, 230–232
 electromechanical protective relay, 231
 numerical protective relays, 230
Puffer system, 239
Rational numbers, 2
Real numbers, 3
Rectangular form of complex numbers, 5
Relative permittivity, 64
Remediation of arc flash hazards, 181–187
Resistance, 38–42
 cable resistance, 53–58
 definition, 40
 property of materials, 30–58
 in electric power systems, 36
 electrical safety aspects, 30–58
 flameproof resistors, 35
 hazards caused by, 31–38
 spreading resistance, 48–49
Resistivity (\(\rho\)), 38
 sheet resistivity, 47–48
Respiratory paralysis, 103
Ribbon resistor, 36
Ribbon-wound resistor, 36
Rotary arc quenching method, 240
S, 336–337
Scada systems, 299
Scalar, 8
Scalar field, 18–19
 differential of, 19
Secondary systems, 120/240 V single phase,
 154–159
Sequence network, 163
SF\(_6\) circuit breakers, 239–241
 high fault currents effects on, 239–240
 rotary arc quenching method, 240
 thermal expansion method, 240
Sheet resistivity, 47–48
Short circuits
 connector damage due to, 143–144
 dynamic effects of, 302–304
 tests, 269
 thermal damage due to, 142–143
 thermal effects, 304–305
Short-circuit mechanical forces on rigid bus bars, 300–302
Silicon carbide (SiC) valve-type arrester, 350
Single-phase multigrounded neutral distribution line, 152
Skin capacitance, 69–70
Skin effect, 77–81
Slack bus, 300
Soil resistivity, soil drying increasing, 144–145
Spherical coordinates, 14
‘Square root of minus one’, 3
Stack rack capacitors, 61
Station class surge arrester, 350
Step voltage, 122–124
 calculation, 127
Stevens equation, 106
Stokes’ theorem, 23–25
Strain bus, 299
Stray-current problems, remediation of, 160–163
Stray currents in distribution systems, 147
 with one conductor shorted to neutral, 159
 touching a grounded conductor, 158–159
Stray voltage, 147
Substation cable and conductor systems, 318–319
Substation equipment damages, due to high fault currents, 299–324
 distribution line conductor motion, 319–320
 dynamic effects of short circuits, 302–304
 flexible conductor buses, 305–316
conductor motion during a fault, 307–311
pinch forces on bundled conductors, 311–316
force safety devices (FSDs), 316–318
on gas-insulated substations (GIS), 322–324
mechanical forces and thermal effects, 299–324
definitions, 299–300
short-circuit mechanical forces on rigid bus bars, 300–302
circular cross section, 300–302
rectangular cross section, 302
short-circuit thermal effects, 304–305
substation cable and conductor systems, 318–319
cable mechanical limits, 319
cable thermal limits, 318
substation insulators, 320–322
station post insulators for rigid bus bars, 320–322
Substation insulators, high fault currents effects on, 320–322
Supplementary protectors testing, 261–270
Surge capacitors, 62
Surge impedance, 83–84, 344
Surges, 338–343
full-wave impulse test, 340 chopped-wave impulse test, 339
insulation withstand characteristics and protection, 346–349
propagation, 343–346
reflection, 343–346
refraction, 343–346
surge arrester
application, 350–352
characteristics, 349–350
distribution class, 350
intermediate class, 350
station class, 350
switching surge test, 339
voltage sources and waveshapes, 338–343
lightning strokes, 338
power equipment, 338
Suspension insulators, 325–326
Sverak’s equation, 124, 140
Switching devices, interrupting ratings of, 242–243
Switching surge test, 339
Tantalum capacitors, 60
Tension change with motion, calculation of, 334–335
Thermal damage due to excessive short-circuit currents, 142–143
Thermal expansion method, 240
‘Thermal-magnetic’ circuit breakers, 32
Three-phase multigrounded neutral distribution line, 148–154
line configuration, 150
Touch voltage, 122–124
Transmission lines, 325–337
high fault currents effect on, 325–337
calculation procedure, 333–334
conductor equations of motion, 331–332
conductor motion due to fault currents, 328–329
conductor shape effect, 330–331
conductor stretch effect, 332
horizontally spaced conductors, 329
mechanical loading on phase-to-phase spacers, calculation of, 335–336
non-ceramic insulators (NCI), 325–328
S, 336–337
tension change with motion, calculation of, 334–335
vertically spaced conductors, 332–333
UL Standard 1008, 270–275
transfer switch equipment testing according to, 270–275
endurance tests, 272
overload tests, 272
short-circuit withstand tests, 273
UL Standard 1077
supplementary protectors testing, 261–270
AC supplementary protectors, 267
endurance tests, 268
interrupting tests, 268
overload tests, 267
short-circuit tests, 269
for use in electrical equipment, 261–270
UL Standard 489
low-voltage molded-case circuit breakers testing, 252–259
UL Standard (Continued)
endurance tests, 256
interrupting tests, 258
overload test circuits, 254–255
for use with uninterruptible power
supplies, 259–261
Underdamped system, 68
Ungrounded three-phase feeder, 164
distributed capacitances in, 164
interconnected sequence networks of, 165
Uninterruptable power supplies (UPS), 259–261
Unit vector, 7
Upgrading protection system methods, 233–234
Vacuum circuit breakers, 237–239
Vector field, 20

Vectors, 7, See also calculus with vectors,
the gradient
differential length vector, 8
mathematical operations with, 17–18
addition, 17
cross product or outer product of two
vectors, 17
dot product or inner product of two
vectors, 17
subtraction, 17
norm of, 8
one-dimensional vectors, 7
polar form, 8
unit vector, 7–8
Ventricular fibrillation, 103
Vertically spaced conductors, 332–333
Zero-sequence capacitive reactance, 163
Z-matrix method, 150